JP2004026543A - Dielectric porcelain composition and laminated ceramic component using the same - Google Patents

Dielectric porcelain composition and laminated ceramic component using the same Download PDF

Info

Publication number
JP2004026543A
JP2004026543A JP2002183077A JP2002183077A JP2004026543A JP 2004026543 A JP2004026543 A JP 2004026543A JP 2002183077 A JP2002183077 A JP 2002183077A JP 2002183077 A JP2002183077 A JP 2002183077A JP 2004026543 A JP2004026543 A JP 2004026543A
Authority
JP
Japan
Prior art keywords
glass
dielectric
tio
parts
ceramic composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002183077A
Other languages
Japanese (ja)
Other versions
JP4052032B2 (en
Inventor
Takashi Kono
河野 孝史
Koichi Fukuda
福田 晃一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2002183077A priority Critical patent/JP4052032B2/en
Publication of JP2004026543A publication Critical patent/JP2004026543A/en
Application granted granted Critical
Publication of JP4052032B2 publication Critical patent/JP4052032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dielectric porcelain composition which can be baked at 800-1,000°C enabling interpolation and lamination through its simultaneous baking with a low-resistance conductor such as Cu and Ag and has a low dielectric loss tanδ (i.e. a high Q value), a small absolute value of temperature coefficient τ<SB>f</SB>of resonance frequency and a dielectric constant ε<SB>r</SB>of about 20-70 to form a multilayer ceramic component, etc., of a moderate size. <P>SOLUTION: The composition contains 5-150 pts.wt. glass component against 100 pts.wt. essential component of the formula: xZn<SB>2</SB>TiO<SB>4</SB>-yZnTiO<SB>3</SB>-z(lBaO-mTiO<SB>2</SB>-nR<SB>2</SB>O<SB>3</SB>) (wherein x, y, z, l, m and n each satisfies 0<x<1, 0<y<1, 0.10≤l≤0.22, 0.38≤m≤0.8 and 0.17≤n≤0.41, provided that x+y+z=1 and l+m+n=1; and R is a rare earth element). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、低抵抗導体であるAu、AgやCu等と同時焼成が可能で、積層セラミック部品に好適な低い誘電損失(高いQ値)を有する誘電体磁器組成物、およびそれを用いた積層セラミックコンデンサやLCフィルタ等の積層セラミック部品に関するものである。特に、ZnTiO、ZnTiO、BaO−TiO−R(Rは希土類元素)及びガラス成分からなる誘電体磁器組成物とそれを用いた積層セラミック部品に関する。
【0002】
【従来の技術】
近年、マイクロ波回路の集積化に伴い、小型でかつ誘電損失(tanδ)が小さく誘電特性が安定した誘電体共振器が求められている。このような誘電体共振器に使用される誘電体磁器組成物には、比誘電率εが比較的大きいこと、無負荷Q値が大きいこと、共振周波数の温度係数τが小さいことなどが要求されている。一般に、比誘電率εは大きいほど共振器を小さくできるが、共振周波数が高くなるほど共振器も小さくなる。しかしながら共振器が小さくなりすぎると加工精度の要求が厳しくなり、かつ電極の印刷精度の影響を受けやすくなるため、用途等によって共振器が小さくなりすぎないように、比誘電率εは適切な範囲のものが要求される。また、誘電体磁器の上に導電体を印刷したアンテナ素子を作製する場合は、優れたアンテナ特性を発揮するには、誘電体磁器の比誘電率は小さいものが要求される。本発明は、比誘電率εが20から70程度の誘電体磁器組成物に関するものである。
【0003】
この種の誘電体磁器組成物として、BaO−MgO−WO系材料(特開平6−236708号公報)、Al−TiO−Ta系材料(特開平9−52760号公報)、BaO−TiO−Nd系誘電体磁器組成物(特開昭60−35406号公報)、BaO−TiO−Nd−Bi系誘電体磁器組成物(特開昭62−72558号公報)などが提案されている。
【0004】
【発明が解決しようとする課題】
最近、誘電体磁器組成物を積層した積層セラミックスコンデンサやLCフィルタ等の積層セラミック部品が開発されており、誘電体磁器組成物と内部電極との同時焼成による積層化が行われている。しかしながら、前記誘電体磁器組成物は焼成温度が1300〜1400℃と高いため内部電極との同時焼成を行うことは困難な面があり、積層化構造とするためには電極材料として高温に耐えるパラジウム(Pd)や白金(Pt)等の材料に限定されていた。このため、電極材料として低抵抗導体でかつ安価な銀(Ag)、Ag−Pd、およびCu等を使用して、1000℃以下の低温で同時焼成可能な誘電体磁器組成物が求められている。
【0005】
本発明の目的は、Cu、Agといった低抵抗導体の同時焼成による内挿化、多層化ができる800〜1000℃以下の温度で焼成可能で、かつ、低い誘電損失tanδ(高いQ値)を有し、共振周波数の温度係数τの絶対値が小さくかつ積層セラミック部品等を適度な大きさに形成できるように比誘電率εが20から70程度の誘電体磁器組成物を提供することにある。また、このような誘電体磁器組成物からなる誘電体層とCuまたはAgを主成分とする内部電極とを有する積層セラミックコンデンサやLCフィルタ等の積層セラミック部品を提供することである。
【0006】
【課題を解決するための手段】
本発明者等は、従来の誘電体磁器材料における上記課題を解決するために鋭意検討した結果、下記の組成のものがこの要求を満足するものであることを見出した。
【0007】
本発明は、一般式xZnTiO−yZnTiO−z(lBaO−mTiO−nR)で表され、x、y、z、l、m、nがそれぞれ、0<x<1、0<y<1、0.10≦l≦0.22、0.38≦m≦0.8、0.17≦n≦0.41、x+y+z=1、l+m+n=1、Rは希土類元素の範囲内である主成分100重量部に対して、ガラス成分を5重量部以上150重量部以下含有することを特徴とする誘電体磁器組成物に関する。
【0008】
前記ガラス成分としては、PbO系ガラス、ZnO系ガラス、SiO系ガラスあるいはPbO、ZnO、Bi、BaO、B、SiO、ZrO、TiO、Al、CaO、SrOの群から選択された2種以上の金属酸化物からなるガラスであることが好ましい。
【0009】
さらに、本発明は前記主成分100重量部に対して、CuOを40重量部以下含有する前記の誘電体磁器組成物に関する。
【0010】
また、本発明は前記主成分100重量部に対して、MnOを30重量部以下含有する前記の誘電体磁器組成物に関する。
【0011】
また、本発明は、複数の誘電体層と、該誘電体層間に形成された内部電極と、該内部電極に電気的に接続された外部電極とを備える積層セラミック部品において、前記誘電体層が前記誘電体磁器組成物を焼成して得られる誘電体磁器にて構成され、前記内部電極がCu単体若しくはAg単体、又はCu若しくはAgを主成分とする合金材料にて形成されていることを特徴とする積層セラミック部品に関する。
【0012】
ZnTiO、ZnTiO、BaO−TiO−R(Rは希土類元素)およびガラス成分からなる特定の組成とすることにより、1000℃以下の焼成温度で、比誘電率εが20〜70程度で、誘電損失が小さく、共振周波数の温度係数の絶対値が60ppm/℃以下とすることができる。また、CuO又はMnOを副成分として添加することにより、さらに焼成温度を低下させることができる。これにより、Cu若しくはAg単体、又はCu若しくはAgを主成分とする内部電極を有する積層セラミック部品を提供することができる。
【0013】
【発明の実施の形態】
以下、本発明の誘電体磁器組成物について具体的に説明する。
【0014】
本発明の誘電体磁器組成物は、一般式xZnTiO−yZnTiO−z(lBaO−mTiO−nR)で表され、x、y、z、l、m、nがそれぞれ、0<x<1、0<y<1、0.10≦l≦0.22、0.38≦m≦0.8、0.17≦n≦0.41、x+y+z=1、l+m+n=1、Rは希土類元素の範囲内である主成分100重量部に対して、ガラス成分を5重量部以上150重量部以下含有することを特徴とする。
【0015】
本発明の誘電体磁器組成物は、セラミックス母材となる前記主成分100重量部に対してガラス成分が5重量部未満では焼成温度が高くなり、150重量部を超える場合にはガラスが溶出してセッターと反応する傾向にある。
【0016】
前記組成においてlが0.22より大きいと共振しなくなり、0.10より小さいと誘電率と無負荷Q値が小さくなり好ましくない。またmが0.8より大きいとτが+60ppm/℃以上になり、0.38より小さいと誘電率が小さくなり好ましくない。さらにnが0.41より大きいと誘電率と無負荷Q値が小さくなり、0.17より小さいと誘電率が小さくなり好ましくない。
【0017】
また、本発明に用いるZnTiOは酸化亜鉛ZnOと酸化チタンTiOとをモル比2:1で混合し焼成することにより得ることができる。また、ZnTiOはZnOとTiOとをモル比1:1で混合し焼成することにより得ることができる。ZnTiOおよびZnTiOの原料として、TiOとZnOの他に、焼成時に酸化物となる硝酸塩、炭酸塩、水酸化物、塩化物、および有機金属化合物等を使用してもよい。
【0018】
本発明の誘電体磁器組成物では、ガラスを所定量含有することを特徴とする。ここで、ガラスとは非結晶質の固体物質で、溶融により得られたものをいう。ガラスの中に一部結晶化したものを含む結晶化ガラスもガラスに含まれる。固体物質としては、酸化物から成る無機物質があげられ、本発明に用いるガラスとしては、PbO系ガラス、ZnO系ガラス、SiO系ガラス、その他金属酸化物からなるガラスが挙げられる。PbO系ガラスは、PbOを含有するガラスであり、PbO−SiO、PbO−B、PbO−Pを含有するガラスや、RO−PbO−SiO,RO−CaO−PbO−SiO、RO−ZnO−PbO−SiO、RO−Al−PbO−SiOを含有するガラス(但しここでRはNaO、KO)などが例示される。ZnO系ガラスは、ZnOを含有するガラスであり、ZnO−Al−BaO−SiO、ZnO−Al−RO−SiO、などが例示される。SiO系ガラスは、SiOを含有するガラスであり、SiO−Al−RO、SiO−Al−BaO、などが例示される。
【0019】
さらに、本発明に用いるガラスとしては、PbO系ガラス、ZnO系ガラス、SiO系ガラスの他にも、各種金属酸化物からなるガラスも使用することができ、PbO、ZnO、Bi、BaO、B、SiO、ZrO、TiO、Al、CaO、SrOの群から選択された2種以上の金属酸化物からなるガラスも用いられる。ガラスは非晶質ガラスや結晶質ガラスのどちらを用いてもよい。PbOを含有すると焼成温度は低下する傾向にあるが、無負荷Q値が低下する傾向にあり、ガラス中のPbO成分の含有量は、40重量%以下が好ましい。また、ガラス中にSiOとAl成分を同時に含むガラス(即ち、SiO−Al系ガラス)は、本発明に用いるガラスとして特に好適である。特に本発明では、ZnO−Al−BaO−SiO系ガラスが、高い無負荷Q値を得ることができる点から好ましい。
【0020】
また、本発明の前記希土類成分としては、Nd、Sm、Dy、Pr、La、HoあるいはEuの群から選択された1種以上の元素であることが好ましい。
【0021】
本発明によれば、一般式xZnTiO−yZnTiO−z(lBaO−mTiO−nR)で表され、x、y、z、l、m、nがそれぞれ、0<x<1、0<y<1、0.10≦l≦0.22、0.38≦m≦0.8、0.17≦n≦0.41、x+y+z=1、l+m+n=1、Rは希土類元素の範囲内である主成分100重量部に対して、ガラス成分を5重量部以上150重量部以下含有させることにより、800〜1000℃の焼成温度で低温焼結可能で、かつ比誘電率εが20〜70程度で、無負荷Q値が大きく、共振周波数の温度係数τが±60ppm/℃以内という特性を有する誘電体磁器組成物を得ることができる。
【0022】
さらに、本発明の誘電体磁器組成物では、主成分がZnTiO、ZnTiO、(lBaO−mTiO−nR)の3成分で構成されているため、組成範囲が広がり、所望の比誘電率εr、Q、τf等の組合わせを選択できるというメリットがある。
【0023】
本発明では、焼成前にZnTiO、ZnTiO、BaO−TiO−R(Rは希土類元素)およびガラス粒子は、個別に粉砕し混合されるか、あるいは、各原料粒子は混合された状態で粉砕されるが、焼成前のこれら原料粒子の平均粒子径は5μm未満、好ましくは1μm以下であることにより、さらに低温焼成が可能となる。なお、平均粒子径を過度に小さくすると取り扱いが困難になる場合があるので、0.05μm以上とするのが好ましい。
【0024】
さらに、本発明では、前記誘電体磁器組成物にさらに副成分としてCuOを含有させることもできる。即ち、一般式xZnTiO−yZnTiO−z(lBaO−mTiO−nR)で表され、x、y、z、l、m、nがそれぞれ、0<x<1、0<y<1、0.10≦l≦0.22、0.38≦m≦0.8、0.17≦n≦0.41、x+y+z=1、l+m+n=1、Rは希土類元素の範囲内である主成分100重量部に対して、ガラス成分を5重量部以上150重量部以下、CuOを40重量部含有する誘電体磁器組成物とすることにより、前記の各種特性を劣化させることなく、さらに焼成温度を下げることができる。CuOが主成分100重量部に対して40重量部を越える場合は、τが−60ppm/℃より小さくなり好ましくない。
【0025】
また、本発明では、同じく前記の誘電体磁器組成物に副成分としてMnOを含有させることもできる。即ち、一般式xZnTiO−yZnTiO−z(lBaO−mTiO−nR)で表され、x、y、z、l、m、nがそれぞれ、0<x<1、0<y<1、0.10≦l≦0.22、0.38≦m≦0.8、0.17≦n≦0.41、x+y+z=1、l+m+n=1、Rは希土類元素の範囲内である主成分100重量部に対して、ガラス成分を5重量部以上150重量部以下、MnOを30重量部含有する誘電体磁器組成物とすることによっても、前記の各種特性を劣化させることなく、同様に焼成温度を下げることができる。MnOが主成分100重量部に対して30重量部を越える場合は、Q値が低下するため好ましくない。
【0026】
副成分として添加するCuO又はMnOは単独で添加してもよいし、両成分を一緒に添加しても良い。
【0027】
次に、本発明の誘電体磁器組成物の製造方法の一例について説明する。
【0028】
まず、酸化チタンと酸化亜鉛を2:1の比率に秤量し、水、アルコール等の溶媒と共に湿式混合する。続いて、水、アルコール等を除去した後、粉砕し、酸素含有雰囲気(例えば空気雰囲気)下にて900〜1200℃で約1〜5時間程度仮焼成する。このようにして得られた仮焼粉はZnTiOである。さらに、酸化チタンと酸化亜鉛を1:1の比率に秤量し、ZnTiOと同様な作製方法でZnTiOを作製する。
【0029】
次に酸化バリウム(BaO)、酸化ネオジウム(Nd)および酸化チタン(TiO)を所定量秤量し、水、アルコール等の溶媒と共に湿式混合する。続いて、水、アルコール等を除去した後、粉砕し、酸素含有雰囲気(例えば空気雰囲気)下にて900〜1200℃で約1〜5時間程度仮焼成する。このようにして得られた仮焼粉はタングステンブロンズ構造を示す誘電体磁器組成物BaO−TiO−Ndである。これらZnTiO、ZnTiO、BaO−TiO−Ndとガラス、及び必要に応じてCuO又はMnOを所定の比率に秤量し、水、アルコール等の溶媒と共に湿式混合する。続いて、水、アルコール等を除去した後、粉砕して原料粉末を作製する。
【0030】
本発明の誘電体磁器組成物の誘電特性はペレットの形状で評価する。詳しくは、前記原料粉末にポリビニルアルコールの如き有機バインダーを混合して均質にし、乾燥、粉砕をおこなった後、ペレット形状に加圧成形(圧力100〜1000Kg/cm程度)する。得られた成形物を空気の如き酸素含有ガス雰囲気下にて800〜1000℃で焼成することにより、ZnTiO相、ZnTiO相、BaO−TiO−Nd相およびガラス相が共存する誘電体磁器組成物を得ることができる。
【0031】
本発明の誘電体磁器組成物は、必要により適当な形状、およびサイズに加工、あるいはドクターブレード法等によるシート成形、およびシートと電極による積層化を行うことにより、各種積層セラミック部品の材料として利用できる。積層セラミック部品としては、積層セラミックコンデンサ、LCフィルタ、誘電体共振器、誘電体基板などが挙げられる。
【0032】
本発明の積層セラミック部品は、複数の誘電体層と、該誘電体層間に形成された内部電極と、該内部電極に電気的に接続された外部電極とを備えており、前記誘電体層が前記誘電体磁器組成物を焼成して得られる誘電体磁器にて構成され、前記内部電極がCu単体若しくはAg単体、又はCu若しくはAgを主成分とする合金材料にて形成されている。本発明の積層セラミック部品は、誘電体磁器組成物を含有する誘電体層と、Cu単体若しくはAg単体、又はCu若しくはAgを主成分とする合金材料とを、同時焼成することにより得られる。
【0033】
上記積層セラミック部品の1実施形態として、例えば図1に示したトリプレートタイプの共振器が挙げられる。
【0034】
図1は、本発明に係る1実施形態のトリプレートタイプの共振器を示す斜視図である。図1に示すように、トリプレートタイプの共振器は、複数の誘電体層と、該誘電体層間に形成された内部電極2と、該内部電極に電気的に接続された外部電極3とを備える積層セラミック部品である。トリプレートタイプの共振器は、内部電極2を中央部に配置して複数枚の誘電体セラミックス層1を積層して得られる。内部電極2は、図1に示した第1の面Aからこれに対向する第2の面Bまで貫通するように形成されており、第1の面Aのみ開放面で、第1の面Aを除く共振器の5面には外部電極3が形成されており、第2の面Bにおいて内部電極2と外部電極3が接続されている。内部電極2の材料は、CuまたはAgあるいは、それらを主成分として構成されている。本発明の誘電体磁器組成物では低温で焼成できるため、これらの内部電極の材料が使用できる。
【0035】
【実施例】
以下、本発明を下記実施例に基づいて、具体的に説明する。
【0036】
実施例1
酸化チタン(TiO)0.33モル、酸化亜鉛(ZnO)0.66モルをエタノールと共にボールミルにいれ、12時間湿式混合した。溶液を脱媒後、粉砕し、空気雰囲気下1000℃で仮焼成し、ZnTiO仮焼粉を得た。次にTiO0.5モル、ZnO 0.5モルを同様な方法で湿式混合・仮焼成してZnTiO仮焼粉を得た。さらに酸化バリウム(BaO)0.08モル、酸化ネオジウム(Nd)0.19モル、酸化チタン(TiO)0.73モルをエタノールと共にボールミルにいれ、12時間湿式混合した。溶液を脱媒後、粉砕し、空気雰囲気下1200℃で仮焼成し、タングステンブロンズ構造を持つBaO−TiO−Nd仮焼粉を得た。これらZnTiO仮焼粉、ZnTiO仮焼粉とBaO−TiO−Nd仮焼粉とを表1に示した配合量で調製したものを母材とした。この母材と母材100重量部に対して、ZnO 15重量%、SiO 24重量%、Al 3重量%、PbO 27重量%、BaO 1重量%、B 30重量%から構成されるガラス粉末12重量部を添加したものをボールミルにいれ、24時間湿式混合した。溶液を脱媒後、平均粒子径が1μmになるまで粉砕し、この粉砕物に適量のポリビニルアルコール溶液を加えて乾燥後、直径12mm、厚み4mmのペレットに成形し、空気雰囲気下において、900℃で2時間焼成した。図2に作製した焼結体のX線回折図を示した。図2に示したように本発明の誘電体磁器組成物の焼結体においてもZnTiO相、ZnTiO相、及びBaO−TiO−Nd相が共存していることがわかる。
【0037】
こうして得られた誘電体磁器組成物を直径7mm、厚み3mmの大きさに加工した後、誘電共振法によって、共振周波数5〜10GHzにおける無負荷Q値、比誘電率εおよび共振周波数の温度係数τを求めた。その結果を表2に示した。
【0038】
【表1】

Figure 2004026543
【0039】
【表2】
Figure 2004026543
【0040】
また前記母材とガラスの混合物100gに対して、結合剤としてポリビニルブチラール9g、可塑剤としてジブチルフタレート6gおよび溶剤としてトルエン60gとイソプロピルアルコール30gを添加しドクターブレード法により厚さ100μmのグリーンシートを作製した。そして、このグリーンシートを、65℃の温度で200kg/cmの圧力を加える熱圧着により、22層積層した。その際、内部電極としてAgを印刷した層が厚み方向の中央部にくるように配置した。得られた積層体を900℃で2時間焼成した後、外部電極を形成して、図1に示すようなトリプレートタイプの共振器を作製した。大きさは、幅4.9mm、高さ1.9mm、長さ4.0mmである。
【0041】
得られたトリプレートタイプの共振器について共振周波数2GHzで無負荷Q値を評価した。その結果、焼成温度は900℃で、比誘電率εは66、共振周波数の温度係数τは5ppm/℃で無負荷Qは220であった。このように、本発明に係る誘電体磁器組成物を使用することにより、優れた特性を有するトリプレートタイプの共振器が得られた。
【0042】
実施例2〜5
上記実施例1と同様にZnTiO、ZnTiOとBaO−TiO−Ndを表1に示した配合量で混合したものを母材とし、この母材とガラスを表1に示した配合量で混合後、実施例1と同一条件でペレット形状の焼結体を作製し、種々の特性を評価した。その結果を表2に示した。
【0043】
実施例6〜8
上記実施例1と同様にZnTiO、ZnTiOとBaO−TiO−Ndを表1に示した配合量で混合したものを母材とし、この母材とガラスを表1に示した配合量で混合後、実施例1と同一条件でペレット形状の焼結体を作製し、種々の特性を評価した。その結果を表2に示した。
【0044】
実施例9〜11
上記実施例1と同様にZnTiO、ZnTiOとBaO−TiO−R(ここでRは希土類元素)を表1に示した配合量で混合したものを母材とし、この母材とガラスを表1に示した配合量で混合後、実施例1と同一条件でペレット形状の焼結体を作製し、種々の特性を評価した。その結果を表2に示した。
【0045】
実施例12、13
上記実施例1と同様にZnTiO、ZnTiOとBaO−TiO−Ndを表1に示した配合量で混合したものを母材とし、この母材とガラス及びMnOを表1に示した配合量で混合後、実施例1と同一条件でペレット形状の焼結体を作製し、種々の特性を評価した。その結果を表2に示した。
【0046】
実施例14、15
上記実施例1と同様にZnTiO、ZnTiOとBaO−TiO−Ndを表1に示した配合量で混合したものを母材とし、この母材とガラス及びCuOを表1に示した配合量で混合後、実施例1と同一条件でペレット形状の焼結体を作製し、種々の特性を評価した。その結果を表2に示した。
【0047】
実施例16
上記実施例1と同様にZnTiO、ZnTiOとBaO−TiO−Ndを表1に示した配合量で混合したものを母材とし、この母材とガラス及びMnOとCuOとを表1に示した配合量で混合後、実施例1と同一条件でペレット形状の焼結体を作製し、種々の特性を評価した。その結果を表2に示した。
【0048】
実施例17〜19
上記実施例1と同様にZnTiO、ZnTiOとBaO−TiO−Ndを表1に示した配合量で混合したものを母材とし、この母材とガラスを表1に示したの配合量で混合後、実施例1と同一条件でペレット形状の焼結体を作製し、種々の特性を評価した。その結果を表2に示した。
【0049】
比較例1〜3
上記実施例1と同様にZnTiO、ZnTiOとBaO−TiO−Ndを表1に示した配合量で混合したものを母材とし、この表1記載のガラスを表1に示した配合量で混合後、実施例1と同一条件でペレット形状の焼結体を作製した。しかしながらガラスの添加量が母材100重量部に対して5重量部未満の条件では1000℃以下では焼結できず1200℃まで高めないと緻密化することができなかった。また150重量部を超えた場合にはガラスが溶出してセッターと反応し、良好な焼結体は得られなかった。その結果を表2に示した。
【0050】
比較例4、5
上記実施例5のBaO−TiO−Nd成分中のBaO含有量lが0.02≦l≦0.2以外の配合量で混合した以外は、実施例5と同様な方法で焼結体を作製し特性を評価した。その結果を表2に示した。
【0051】
【発明の効果】
本発明の誘電体磁器組成物によれば、比誘電率εが20から70で、かつ無負荷Q値が大きく、しかも共振周波数の温度係数τが±60ppm/℃以内と小さい誘電体磁器組成物を提供することができる。また1000℃以下の温度で焼成できるため、焼成に要する電力費が低減されるとともに、Cu単体若しくはAg単体、又はCu若しくはAgを主成分とする合金材料からなる低抵抗導体と同時焼成可能であり、さらにこれを内部電極とした積層部品を提供できる。
【図面の簡単な説明】
【図1】本発明に係る積層セラミック部品の1実施形態の説明図である。
【図2】実施例1で得られた本発明にかかる誘電体磁器組成物の焼結体のX線回折図である。
【符号の説明】
1 誘電体セラミック層
2 内部電極
3 外部電極[0001]
BACKGROUND OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is a dielectric ceramic composition having a low dielectric loss (high Q value) suitable for multilayer ceramic parts and capable of being simultaneously fired with low resistance conductors such as Au, Ag and Cu, and a laminate using the same The present invention relates to multilayer ceramic parts such as ceramic capacitors and LC filters. In particular, the present invention relates to a dielectric ceramic composition comprising Zn 2 TiO 4 , ZnTiO 3 , BaO—TiO 2 —R 2 O 3 (R is a rare earth element) and a glass component, and a multilayer ceramic component using the dielectric ceramic composition.
[0002]
[Prior art]
In recent years, with the integration of microwave circuits, a dielectric resonator having a small size, a small dielectric loss (tan δ), and a stable dielectric characteristic has been demanded. The dielectric ceramic composition used for such a dielectric resonator has a relatively large relative dielectric constant ε r , a large no-load Q value, a small temperature coefficient τ f of the resonance frequency, and the like. It is requested. In general, the relative dielectric constant epsilon r can be reduced greater the resonator and becomes smaller as the resonator resonance frequency is increased. However, if the resonator becomes too small, the requirements for processing accuracy become severe, and it becomes easy to be affected by the printing accuracy of the electrodes. Therefore, the relative dielectric constant ε r is appropriate so that the resonator does not become too small depending on the application. A range of things is required. In the case of producing an antenna element in which a conductor is printed on a dielectric ceramic, a dielectric ceramic having a small relative dielectric constant is required to exhibit excellent antenna characteristics. The present invention relates to a dielectric ceramic composition having a relative dielectric constant ε r of about 20 to 70.
[0003]
As this kind of dielectric ceramic composition, BaO—MgO—WO 3 system material (Japanese Patent Laid-Open No. 6-236708), Al 2 O 3 —TiO 2 —Ta 2 O 5 system material (Japanese Patent Laid-Open No. 9-52760). ), BaO—TiO 2 —Nd 2 O 3 dielectric ceramic composition (Japanese Patent Laid-Open No. 60-35406), BaO—TiO 2 —Nd 2 O 3 —Bi 2 O 3 dielectric ceramic composition (special No. 62-72558) is proposed.
[0004]
[Problems to be solved by the invention]
Recently, multilayer ceramic parts such as multilayer ceramic capacitors and LC filters in which a dielectric ceramic composition is laminated have been developed, and lamination is performed by simultaneous firing of the dielectric ceramic composition and internal electrodes. However, since the dielectric ceramic composition has a firing temperature as high as 1300 to 1400 ° C., it is difficult to perform simultaneous firing with the internal electrode. It was limited to materials such as (Pd) and platinum (Pt). Therefore, there is a demand for a dielectric ceramic composition that can be fired simultaneously at a low temperature of 1000 ° C. or lower by using low-resistance conductor and inexpensive silver (Ag), Ag—Pd, Cu, or the like as an electrode material. .
[0005]
It is an object of the present invention to be able to be fired at a temperature of 800 to 1000 ° C. or less capable of interpolating and multilayering low resistance conductors such as Cu and Ag, and has a low dielectric loss tan δ (high Q value). And providing a dielectric ceramic composition having a relative dielectric constant ε r of about 20 to 70 so that the absolute value of the temperature coefficient τ f of the resonance frequency is small and a multilayer ceramic component or the like can be formed to an appropriate size. is there. Another object of the present invention is to provide a multilayer ceramic component such as a multilayer ceramic capacitor or an LC filter having a dielectric layer made of such a dielectric ceramic composition and an internal electrode mainly composed of Cu or Ag.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems in conventional dielectric ceramic materials, the present inventors have found that the following compositions satisfy this requirement.
[0007]
The present invention is represented by the general formula xZn 2 TiO 4 -yZnTiO 3 -z ( lBaO-mTiO 2 -nR 2 O 3), x, y, z, l, m, n are each, 0 <x <1, 0 <y <1, 0.10 ≦ l ≦ 0.22, 0.38 ≦ m ≦ 0.8, 0.17 ≦ n ≦ 0.41, x + y + z = 1, l + m + n = 1, R is a range of rare earth elements The present invention relates to a dielectric ceramic composition characterized by containing 5 to 150 parts by weight of a glass component with respect to 100 parts by weight of the main component.
[0008]
Examples of the glass component include PbO glass, ZnO glass, SiO 2 glass, or PbO, ZnO, Bi 2 O 3 , BaO, B 2 O 3 , SiO 2 , ZrO 2 , TiO 2 , Al 2 O 3 , and CaO. The glass is preferably made of two or more metal oxides selected from the group of SrO.
[0009]
Furthermore, the present invention relates to the above dielectric ceramic composition containing 40 parts by weight or less of CuO with respect to 100 parts by weight of the main component.
[0010]
The present invention also relates to the above dielectric ceramic composition containing 30 parts by weight or less of MnO with respect to 100 parts by weight of the main component.
[0011]
The present invention also provides a multilayer ceramic component comprising a plurality of dielectric layers, an internal electrode formed between the dielectric layers, and an external electrode electrically connected to the internal electrode. It is composed of a dielectric ceramic obtained by firing the dielectric ceramic composition, and the internal electrode is formed of Cu alone or Ag alone, or an alloy material mainly containing Cu or Ag. The present invention relates to a multilayer ceramic component.
[0012]
By setting the specific composition of Zn 2 TiO 4 , ZnTiO 3 , BaO—TiO 2 —R 2 O 3 (R is a rare earth element) and a glass component, the relative dielectric constant ε r is at a firing temperature of 1000 ° C. or less. About 20 to 70, the dielectric loss is small, and the absolute value of the temperature coefficient of the resonance frequency can be 60 ppm / ° C. or less. Moreover, the firing temperature can be further reduced by adding CuO or MnO as a subcomponent. Thereby, it is possible to provide a multilayer ceramic component having Cu or Ag alone or an internal electrode mainly composed of Cu or Ag.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the dielectric ceramic composition of the present invention will be specifically described.
[0014]
The dielectric ceramic composition of the present invention are represented by the general formula xZn 2 TiO 4 -yZnTiO 3 -z ( lBaO-mTiO 2 -nR 2 O 3), x, y, z, l, m, n , respectively, 0 <x <1, 0 <y <1, 0.10 ≦ l ≦ 0.22, 0.38 ≦ m ≦ 0.8, 0.17 ≦ n ≦ 0.41, x + y + z = 1, l + m + n = 1, R is characterized by containing 5 to 150 parts by weight of a glass component with respect to 100 parts by weight of the main component within the range of rare earth elements.
[0015]
In the dielectric ceramic composition of the present invention, the firing temperature is high when the glass component is less than 5 parts by weight with respect to 100 parts by weight of the main component as the ceramic base material, and the glass is eluted when the glass component exceeds 150 parts by weight. Tend to react with setters.
[0016]
In the above composition, if l is larger than 0.22, resonance does not occur, and if it is smaller than 0.10, the dielectric constant and unloaded Q value are decreased, which is not preferable. If m is larger than 0.8, τf is +60 ppm / ° C. or more, and if m is smaller than 0.38, the dielectric constant is decreased, which is not preferable. Further, when n is larger than 0.41, the dielectric constant and unloaded Q value are decreased, and when it is smaller than 0.17, the dielectric constant is decreased, which is not preferable.
[0017]
In addition, Zn 2 TiO 4 used in the present invention can be obtained by mixing zinc oxide ZnO and titanium oxide TiO 2 at a molar ratio of 2: 1 and baking. ZnTiO 3 can be obtained by mixing and firing ZnO and TiO 2 at a molar ratio of 1: 1. As raw materials for Zn 2 TiO 4 and ZnTiO 3 , in addition to TiO 2 and ZnO, nitrates, carbonates, hydroxides, chlorides, and organometallic compounds that become oxides during firing may be used.
[0018]
The dielectric ceramic composition of the present invention is characterized by containing a predetermined amount of glass. Here, glass refers to an amorphous solid substance obtained by melting. Crystallized glass including a partially crystallized glass is also included in the glass. Examples of the solid substance include inorganic substances composed of oxides, and examples of the glass used in the present invention include PbO glass, ZnO glass, SiO 2 glass, and other glass composed of metal oxides. The PbO-based glass is a glass containing PbO, glass containing PbO—SiO 2 , PbO—B 2 O 3 , PbO—P 2 O 5 , R 2 O—PbO—SiO 2 , R 2 O—. Glass containing CaO—PbO—SiO 2 , R 2 O—ZnO—PbO—SiO 2 , R 2 O—Al 2 O 3 —PbO—SiO 2 (where R is Na 2 O, K 2 O), etc. Is exemplified. The ZnO-based glass is a glass containing ZnO, and examples thereof include ZnO—Al 2 O 3 —BaO—SiO 2 and ZnO—Al 2 O 3 —R 2 O—SiO 2 . SiO 2 glass is a glass containing SiO 2, SiO 2 -Al 2 O 3 -R 2 O, SiO 2 -Al 2 O 3 -BaO, and the like can be mentioned.
[0019]
Furthermore, as the glass used in the present invention, in addition to PbO-based glass, ZnO-based glass, and SiO 2 -based glass, glass made of various metal oxides can be used, and PbO, ZnO, Bi 2 O 3 , A glass made of two or more metal oxides selected from the group of BaO, B 2 O 3 , SiO 2 , ZrO 2 , TiO 2 , Al 2 O 3 , CaO, and SrO is also used. As the glass, either amorphous glass or crystalline glass may be used. When PbO is contained, the firing temperature tends to decrease, but the unloaded Q value tends to decrease, and the content of the PbO component in the glass is preferably 40% by weight or less. Further, glass containing SiO 2 and Al 2 O 3 components simultaneously in glass (that is, SiO 2 —Al 2 O 3 glass) is particularly suitable as the glass used in the present invention. In particular, in the present invention, ZnO—Al 2 O 3 —BaO—SiO 2 -based glass is preferable because a high unloaded Q value can be obtained.
[0020]
The rare earth component of the present invention is preferably one or more elements selected from the group of Nd, Sm, Dy, Pr, La, Ho, or Eu.
[0021]
According to the present invention, represented by general formula xZn 2 TiO 4 -yZnTiO 3 -z ( lBaO-mTiO 2 -nR 2 O 3), x, y, z, l, m, n are each, 0 <x < 1, 0 <y <1, 0.10 ≦ l ≦ 0.22, 0.38 ≦ m ≦ 0.8, 0.17 ≦ n ≦ 0.41, x + y + z = 1, l + m + n = 1, R is a rare earth element By including 5 to 150 parts by weight of the glass component with respect to 100 parts by weight of the main component within the range of 1, the low-temperature sintering is possible at a firing temperature of 800 to 1000 ° C., and the relative dielectric constant ε r Is about 20 to 70, the unloaded Q value is large, and the dielectric ceramic composition having the characteristics that the temperature coefficient τ f of the resonance frequency is within ± 60 ppm / ° C. can be obtained.
[0022]
Furthermore, in the dielectric ceramic composition of the present invention, the main component is composed of three components of Zn 2 TiO 4 , ZnTiO 3 and (lBaO-mTiO 2 -nR 2 O 3 ), so that the composition range is widened and desired. There is an advantage that a combination of the relative dielectric constants εr, Q, τf, etc. can be selected.
[0023]
In the present invention, Zn 2 TiO 4 , ZnTiO 3 , BaO—TiO 2 —R 2 O 3 (R is a rare earth element) and glass particles are individually pulverized and mixed before firing, or each raw material particle is Although it is pulverized in a mixed state, the average particle size of these raw material particles before firing is less than 5 μm, preferably 1 μm or less, so that further low-temperature firing is possible. In addition, since handling may become difficult when an average particle diameter is too small, it is preferable to set it as 0.05 micrometer or more.
[0024]
In the present invention, the dielectric ceramic composition may further contain CuO as a subcomponent. That is, represented by the general formula xZn 2 TiO 4 -yZnTiO 3 -z ( lBaO-mTiO 2 -nR 2 O 3), x, y, z, l, m, n are each, 0 <x <1,0 < y <1, 0.10 ≦ l ≦ 0.22, 0.38 ≦ m ≦ 0.8, 0.17 ≦ n ≦ 0.41, x + y + z = 1, l + m + n = 1, R is within the range of rare earth elements By making a dielectric ceramic composition containing 5 parts by weight or more and 150 parts by weight or less of a glass component and 40 parts by weight of CuO with respect to 100 parts by weight of a main component, without deteriorating the above-mentioned various characteristics, The firing temperature can be lowered. When CuO exceeds 40 parts by weight with respect to 100 parts by weight of the main component, τ f becomes less than −60 ppm / ° C., which is not preferable.
[0025]
In the present invention, the dielectric ceramic composition can also contain MnO as a subcomponent. That is, represented by the general formula xZn 2 TiO 4 -yZnTiO 3 -z ( lBaO-mTiO 2 -nR 2 O 3), x, y, z, l, m, n are each, 0 <x <1,0 < y <1, 0.10 ≦ l ≦ 0.22, 0.38 ≦ m ≦ 0.8, 0.17 ≦ n ≦ 0.41, x + y + z = 1, l + m + n = 1, R is within the range of rare earth elements Even with a dielectric ceramic composition containing 5 to 150 parts by weight of a glass component and 30 parts by weight of MnO with respect to 100 parts by weight of a main component, without deteriorating the above-mentioned various characteristics, Similarly, the firing temperature can be lowered. When MnO exceeds 30 parts by weight with respect to 100 parts by weight of the main component, the Q value decreases, which is not preferable.
[0026]
CuO or MnO added as a subcomponent may be added alone, or both components may be added together.
[0027]
Next, an example of a method for producing the dielectric ceramic composition of the present invention will be described.
[0028]
First, titanium oxide and zinc oxide are weighed in a ratio of 2: 1 and wet mixed with a solvent such as water or alcohol. Subsequently, after removing water, alcohol, and the like, it is pulverized and calcined at 900 to 1200 ° C. for about 1 to 5 hours in an oxygen-containing atmosphere (for example, air atmosphere). The calcined powder thus obtained is Zn 2 TiO 4 . Further, titanium oxide and zinc oxide are weighed at a ratio of 1: 1, and ZnTiO 3 is produced by the same production method as Zn 2 TiO 4 .
[0029]
Next, barium oxide (BaO), neodymium oxide (Nd 2 O 3 ), and titanium oxide (TiO 2 ) are weighed in predetermined amounts and wet mixed with a solvent such as water or alcohol. Subsequently, after removing water, alcohol, and the like, it is pulverized and calcined at 900 to 1200 ° C. for about 1 to 5 hours in an oxygen-containing atmosphere (for example, air atmosphere). The calcined powder thus obtained is a dielectric ceramic composition BaO—TiO 2 —Nd 2 O 3 having a tungsten bronze structure. These Zn 2 TiO 4 , ZnTiO 3 , BaO—TiO 2 —Nd 2 O 3 and glass, and if necessary, CuO or MnO are weighed in a predetermined ratio and wet mixed with a solvent such as water or alcohol. Subsequently, water, alcohol, and the like are removed, and then pulverized to produce a raw material powder.
[0030]
The dielectric property of the dielectric ceramic composition of the present invention is evaluated by the shape of a pellet. Specifically, the raw material powder is mixed with an organic binder such as polyvinyl alcohol, homogenized, dried and pulverized, and then pressed into a pellet shape (pressure 100 to 1000 kg / cm 2 ). By firing the obtained molded product at 800 to 1000 ° C. in an oxygen-containing gas atmosphere such as air, the Zn 2 TiO 4 phase, the ZnTiO 3 phase, the BaO—TiO 2 —Nd 2 O 3 phase and the glass phase are obtained. A coexisting dielectric ceramic composition can be obtained.
[0031]
The dielectric ceramic composition of the present invention can be used as a material for various multilayer ceramic parts by processing into an appropriate shape and size if necessary, or forming a sheet by a doctor blade method or the like, and laminating with a sheet and an electrode. it can. Examples of the multilayer ceramic component include a multilayer ceramic capacitor, an LC filter, a dielectric resonator, and a dielectric substrate.
[0032]
The multilayer ceramic component of the present invention includes a plurality of dielectric layers, an internal electrode formed between the dielectric layers, and an external electrode electrically connected to the internal electrode, the dielectric layer comprising: The dielectric ceramic composition is made of a dielectric ceramic obtained by firing, and the internal electrode is made of Cu alone or Ag alone, or an alloy material containing Cu or Ag as a main component. The multilayer ceramic component of the present invention can be obtained by co-firing a dielectric layer containing a dielectric ceramic composition and an alloy material containing Cu or Ag alone or Cu or Ag as a main component.
[0033]
As an embodiment of the multilayer ceramic component, for example, a triplate type resonator shown in FIG.
[0034]
FIG. 1 is a perspective view showing a triplate type resonator according to an embodiment of the present invention. As shown in FIG. 1, the triplate type resonator includes a plurality of dielectric layers, an internal electrode 2 formed between the dielectric layers, and an external electrode 3 electrically connected to the internal electrodes. It is a multilayer ceramic component provided. The triplate type resonator is obtained by arranging a plurality of dielectric ceramic layers 1 with the internal electrode 2 disposed in the center. The internal electrode 2 is formed so as to penetrate from the first surface A shown in FIG. 1 to the second surface B opposite to the first surface A, and only the first surface A is an open surface, and the first surface A External electrodes 3 are formed on the five surfaces of the resonator except for, and the internal electrode 2 and the external electrode 3 are connected on the second surface B. The material of the internal electrode 2 is composed of Cu or Ag or their main component. Since the dielectric ceramic composition of the present invention can be fired at a low temperature, these internal electrode materials can be used.
[0035]
【Example】
Hereinafter, the present invention will be specifically described based on the following examples.
[0036]
Example 1
Titanium oxide (TiO 2 ) 0.33 mol and zinc oxide (ZnO) 0.66 mol were placed in a ball mill together with ethanol and wet mixed for 12 hours. After removing the solution, the solution was pulverized and calcined at 1000 ° C. in an air atmosphere to obtain a Zn 2 TiO 4 calcined powder. Next, 0.5 mol of TiO 2 and 0.5 mol of ZnO were wet-mixed and calcined in the same manner to obtain a ZnTiO 3 calcined powder. Further, 0.08 mol of barium oxide (BaO), 0.19 mol of neodymium oxide (Nd 2 O 3 ), and 0.73 mol of titanium oxide (TiO 2 ) were placed in a ball mill together with ethanol and wet mixed for 12 hours. After removing the solution, the solution was pulverized and calcined at 1200 ° C. in an air atmosphere to obtain BaO—TiO 2 —Nd 2 O 3 calcined powder having a tungsten bronze structure. These base materials were prepared by preparing these Zn 2 TiO 4 calcined powder, ZnTiO 3 calcined powder and BaO—TiO 2 —Nd 2 O 3 calcined powder in the blending amounts shown in Table 1. From this base material and 100 parts by weight of the base material, ZnO 15 wt%, SiO 2 24 wt%, Al 2 O 3 3 wt%, PbO 27 wt%, BaO 1 wt%, B 2 O 3 30 wt% What added the glass powder 12 weight part comprised was put into the ball mill, and was wet-mixed for 24 hours. After removing the solution, the solution was pulverized until the average particle diameter became 1 μm, and an appropriate amount of polyvinyl alcohol solution was added to the pulverized product, dried, and then formed into pellets having a diameter of 12 mm and a thickness of 4 mm. For 2 hours. FIG. 2 shows an X-ray diffraction pattern of the produced sintered body. As shown in FIG. 2, it can be seen that Zn 2 TiO 4 phase, ZnTiO 3 phase, and BaO—TiO 2 —Nd 2 O 3 phase coexist in the sintered body of the dielectric ceramic composition of the present invention. .
[0037]
After processing the dielectric ceramic composition thus obtained to a size of 7 mm in diameter and 3 mm in thickness, the dielectric resonance method was used to measure the no-load Q value, the relative dielectric constant ε r and the temperature coefficient of the resonance frequency at a resonance frequency of 5 to 10 GHz. τ f was determined. The results are shown in Table 2.
[0038]
[Table 1]
Figure 2004026543
[0039]
[Table 2]
Figure 2004026543
[0040]
Further, 9 g of polyvinyl butyral as a binder, 6 g of dibutyl phthalate as a plasticizer, 60 g of toluene and 30 g of isopropyl alcohol as a binder are added to 100 g of the base material and glass mixture, and a green sheet having a thickness of 100 μm is prepared by a doctor blade method. did. And 22 layers of this green sheet were laminated | stacked by the thermocompression bonding which applies the pressure of 200 kg / cm < 2 > at the temperature of 65 degreeC. At that time, the layer printed with Ag as the internal electrode was arranged at the center in the thickness direction. The obtained laminate was baked at 900 ° C. for 2 hours, and then external electrodes were formed to produce a triplate type resonator as shown in FIG. The size is 4.9 mm in width, 1.9 mm in height, and 4.0 mm in length.
[0041]
With respect to the obtained triplate type resonator, an unloaded Q value was evaluated at a resonance frequency of 2 GHz. As a result, the firing temperature was 900 ° C., the relative dielectric constant ε r was 66, the temperature coefficient τ f of the resonance frequency was 5 ppm / ° C., and the no-load Q was 220. As described above, a triplate type resonator having excellent characteristics was obtained by using the dielectric ceramic composition according to the present invention.
[0042]
Examples 2-5
In the same manner as in Example 1, Zn 2 TiO 4 , ZnTiO 3 and BaO—TiO 2 —Nd 2 O 3 were mixed in the compounding amounts shown in Table 1 as a base material, and this base material and glass are shown in Table 1. After mixing at the indicated blending amounts, pellet-shaped sintered bodies were produced under the same conditions as in Example 1, and various properties were evaluated. The results are shown in Table 2.
[0043]
Examples 6-8
In the same manner as in Example 1, Zn 2 TiO 4 , ZnTiO 3 and BaO—TiO 2 —Nd 2 O 3 were mixed in the compounding amounts shown in Table 1 as a base material, and this base material and glass are shown in Table 1. After mixing at the indicated blending amounts, pellet-shaped sintered bodies were produced under the same conditions as in Example 1, and various properties were evaluated. The results are shown in Table 2.
[0044]
Examples 9-11
In the same manner as in Example 1, Zn 2 TiO 4 , ZnTiO 3 and BaO—TiO 2 —R 2 O 3 (where R is a rare earth element) were mixed in the compounding amounts shown in Table 1 as a base material. After mixing the base material and glass in the blending amounts shown in Table 1, pellet-shaped sintered bodies were produced under the same conditions as in Example 1, and various properties were evaluated. The results are shown in Table 2.
[0045]
Examples 12 and 13
As in Example 1, Zn 2 TiO 4 , ZnTiO 3 and BaO—TiO 2 —Nd 2 O 3 mixed at the blending amounts shown in Table 1 were used as a base material, and this base material, glass and MnO were represented. After mixing at the blending amount shown in 1, pellet-shaped sintered bodies were produced under the same conditions as in Example 1, and various properties were evaluated. The results are shown in Table 2.
[0046]
Examples 14 and 15
In the same manner as in Example 1, Zn 2 TiO 4 , ZnTiO 3 and BaO—TiO 2 —Nd 2 O 3 were mixed at the blending amounts shown in Table 1 as a base material, and this base material, glass and CuO were represented. After mixing at the blending amount shown in 1, pellet-shaped sintered bodies were produced under the same conditions as in Example 1, and various properties were evaluated. The results are shown in Table 2.
[0047]
Example 16
In the same manner as in Example 1, Zn 2 TiO 4 , ZnTiO 3 and BaO—TiO 2 —Nd 2 O 3 mixed at the blending amounts shown in Table 1 were used as a base material. This base material, glass, MnO and CuO Were mixed at the blending amounts shown in Table 1, pellet-shaped sintered bodies were produced under the same conditions as in Example 1, and various properties were evaluated. The results are shown in Table 2.
[0048]
Examples 17-19
In the same manner as in Example 1, Zn 2 TiO 4 , ZnTiO 3 and BaO—TiO 2 —Nd 2 O 3 were mixed in the compounding amounts shown in Table 1 as a base material, and this base material and glass are shown in Table 1. After mixing at the indicated blending amounts, pellet-shaped sintered bodies were produced under the same conditions as in Example 1, and various properties were evaluated. The results are shown in Table 2.
[0049]
Comparative Examples 1-3
In the same manner as in Example 1, Zn 2 TiO 4 , ZnTiO 3 and BaO—TiO 2 —Nd 2 O 3 mixed at the blending amounts shown in Table 1 were used as the base material. After mixing with the blending amount shown in the above, a pellet-shaped sintered body was produced under the same conditions as in Example 1. However, under the condition that the added amount of glass is less than 5 parts by weight with respect to 100 parts by weight of the base material, sintering cannot be performed at 1000 ° C. or less, and densification cannot be achieved unless the temperature is increased to 1200 ° C. When the amount exceeded 150 parts by weight, the glass eluted and reacted with the setter, and a good sintered body could not be obtained. The results are shown in Table 2.
[0050]
Comparative Examples 4 and 5
The BaO—TiO 2 —Nd 2 O 3 component of Example 5 was calcined in the same manner as in Example 5 except that the BaO content 1 was mixed at a blending amount other than 0.02 ≦ l ≦ 0.2. A knot was prepared and the characteristics were evaluated. The results are shown in Table 2.
[0051]
【The invention's effect】
According to the dielectric ceramic composition of the present invention, the dielectric ceramic having a relative dielectric constant ε r of 20 to 70, a large unloaded Q value, and a small resonance frequency temperature coefficient τ f within ± 60 ppm / ° C. A composition can be provided. In addition, since it can be fired at a temperature of 1000 ° C. or lower, the power cost required for firing is reduced, and it can be fired simultaneously with a low resistance conductor made of Cu alone or Ag alone, or an alloy material mainly composed of Cu or Ag. Furthermore, a laminated component using this as an internal electrode can be provided.
[Brief description of the drawings]
FIG. 1 is an explanatory view of an embodiment of a multilayer ceramic component according to the present invention.
2 is an X-ray diffraction pattern of a sintered body of a dielectric ceramic composition according to the present invention obtained in Example 1. FIG.
[Explanation of symbols]
1 Dielectric ceramic layer 2 Internal electrode 3 External electrode

Claims (5)

一般式xZnTiO−yZnTiO−z(lBaO−mTiO−nR)で表され、x、y、z、l、m、nがそれぞれ、0<x<1、0<y<1、0.10≦l≦0.22、0.38≦m≦0.8、0.17≦n≦0.41、x+y+z=1、l+m+n=1、Rは希土類元素、の範囲内である主成分100重量部に対して、ガラス成分を5重量部以上150重量部以下含有することを特徴とする誘電体磁器組成物。It is represented by the general formula xZn 2 TiO 4 -yZnTiO 3 -z ( lBaO-mTiO 2 -nR 2 O 3), x, y, z, l, m, n are each, 0 <x <1,0 <y < 1, 0.10 ≦ l ≦ 0.22, 0.38 ≦ m ≦ 0.8, 0.17 ≦ n ≦ 0.41, x + y + z = 1, l + m + n = 1, R is within the range of rare earth elements A dielectric ceramic composition comprising 5 to 150 parts by weight of a glass component with respect to 100 parts by weight of a main component. 前記ガラス成分が、PbO系ガラス、ZnO系ガラス、SiO系ガラス、およびPbO、ZnO、Bi、BaO、B、SiO、ZrO、TiO、Al、CaO、SrOの群から選択される2種以上の金属酸化物からなるガラスから選択される少なくとも一種であることを特徴とする請求項1記載の誘電体磁器組成物。The glass component is PbO glass, ZnO glass, SiO 2 glass, and PbO, ZnO, Bi 2 O 3 , BaO, B 2 O 3 , SiO 2 , ZrO 2 , TiO 2 , Al 2 O 3 , CaO. 2. The dielectric ceramic composition according to claim 1, wherein the dielectric ceramic composition is at least one selected from glasses made of two or more metal oxides selected from the group of SrO. 前記主成分100重量部に対して、CuOを40重量部以下含有することを特徴とする請求項1又は2記載の誘電体磁器組成物。3. The dielectric ceramic composition according to claim 1, comprising 40 parts by weight or less of CuO with respect to 100 parts by weight of the main component. 前記主成分100重量部に対して、MnOを30重量部以下含有することを特徴とする請求項1又は2記載の誘電体磁器組成物。3. The dielectric ceramic composition according to claim 1, comprising 30 parts by weight or less of MnO with respect to 100 parts by weight of the main component. 複数の誘電体層と、該誘電体層間に形成された内部電極と、該内部電極に電気的に接続された外部電極とを備える積層セラミック部品において、前記誘電体層が前記請求項1ないし4記載の誘電体磁器組成物を焼成して得られる誘電体磁器にて構成され、前記内部電極がCu単体若しくはAg単体、又はCu若しくはAgを主成分とする合金材料にて形成されていることを特徴とする積層セラミック部品。5. A multilayer ceramic component comprising a plurality of dielectric layers, an internal electrode formed between the dielectric layers, and an external electrode electrically connected to the internal electrode, wherein the dielectric layer is the first to fourth aspects. It is comprised with the dielectric material ceramic obtained by baking the dielectric material ceramic composition of description, The said internal electrode is formed with the alloy material which has Cu or Ag simple substance, or Cu or Ag as a main component. Characteristic multilayer ceramic parts.
JP2002183077A 2002-06-24 2002-06-24 Dielectric composition and multilayer ceramic component using the same Expired - Fee Related JP4052032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002183077A JP4052032B2 (en) 2002-06-24 2002-06-24 Dielectric composition and multilayer ceramic component using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002183077A JP4052032B2 (en) 2002-06-24 2002-06-24 Dielectric composition and multilayer ceramic component using the same

Publications (2)

Publication Number Publication Date
JP2004026543A true JP2004026543A (en) 2004-01-29
JP4052032B2 JP4052032B2 (en) 2008-02-27

Family

ID=31179396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002183077A Expired - Fee Related JP4052032B2 (en) 2002-06-24 2002-06-24 Dielectric composition and multilayer ceramic component using the same

Country Status (1)

Country Link
JP (1) JP4052032B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004103929A1 (en) * 2003-05-20 2004-12-02 Ube Industries, Ltd. Dielectric ceramic composition, process for producing the same, dielectric ceramic employing it and multilayer ceramic component
WO2005085154A1 (en) * 2004-03-05 2005-09-15 Ube Industries, Ltd. Dielectric particle aggregate, low temperature sinterable dielectric ceramic composition using same, low temperature sintered dielectric ceramic produced by using same
CN100351203C (en) * 2004-01-30 2007-11-28 株式会社村田制作所 Composition for ceramic substrate, ceramic substrate, process for producing ceramic substrate and glass composition
CN100369162C (en) * 2004-11-12 2008-02-13 国巨股份有限公司 Dielectric material and producing method thereof
WO2008126351A1 (en) * 2007-03-15 2008-10-23 Panasonic Corporation Laminated ceramic capacitor and method for manufacturing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004103929A1 (en) * 2003-05-20 2004-12-02 Ube Industries, Ltd. Dielectric ceramic composition, process for producing the same, dielectric ceramic employing it and multilayer ceramic component
US7276461B2 (en) 2003-05-20 2007-10-02 Ube Industries, Ltd. Dielectric ceramic composition, method of manufacturing the same, and dielectric ceramics and laminated ceramic part using the same
CN100351203C (en) * 2004-01-30 2007-11-28 株式会社村田制作所 Composition for ceramic substrate, ceramic substrate, process for producing ceramic substrate and glass composition
WO2005085154A1 (en) * 2004-03-05 2005-09-15 Ube Industries, Ltd. Dielectric particle aggregate, low temperature sinterable dielectric ceramic composition using same, low temperature sintered dielectric ceramic produced by using same
EP1724244A1 (en) * 2004-03-05 2006-11-22 Ube Industries, Ltd. Dielectric particle aggregate, low temperature sinterable dielectric ceramic composition using same, low temperature sintered dielectric ceramic produced by using same
EP1724244A4 (en) * 2004-03-05 2007-12-05 Ube Industries Dielectric particle aggregate, low temperature sinterable dielectric ceramic composition using same, low temperature sintered dielectric ceramic produced by using same
JPWO2005085154A1 (en) * 2004-03-05 2007-12-06 宇部興産株式会社 Dielectric particle aggregate, low-temperature sintered dielectric ceramic composition using the same, and low-temperature sintered dielectric ceramic manufactured using the same
US7641970B2 (en) 2004-03-05 2010-01-05 Ube Industries, Ltd. Dielectric particle aggregate comprising a surface layer of zinc titanate, low temperature sinterable dielectric ceramic composition using same
JP4775583B2 (en) * 2004-03-05 2011-09-21 宇部興産株式会社 Dielectric particle aggregate, low-temperature sintered dielectric ceramic composition using the same, and low-temperature sintered dielectric ceramic manufactured using the same
CN100369162C (en) * 2004-11-12 2008-02-13 国巨股份有限公司 Dielectric material and producing method thereof
WO2008126351A1 (en) * 2007-03-15 2008-10-23 Panasonic Corporation Laminated ceramic capacitor and method for manufacturing the same

Also Published As

Publication number Publication date
JP4052032B2 (en) 2008-02-27

Similar Documents

Publication Publication Date Title
KR100814674B1 (en) Dielectric porcelain composition and method for production thereof
JP4482939B2 (en) Dielectric ceramic composition, dielectric ceramic, and multilayer ceramic component using the same
JP4775583B2 (en) Dielectric particle aggregate, low-temperature sintered dielectric ceramic composition using the same, and low-temperature sintered dielectric ceramic manufactured using the same
JP3737774B2 (en) Dielectric ceramic composition
JP4096822B2 (en) Dielectric ceramic composition and multilayer ceramic component using the same
JP2005289789A (en) Dielectric ceramic composition and multilayer ceramic part using the same
JP4613826B2 (en) Ceramic substrate composition, ceramic substrate, method for producing ceramic substrate, and glass composition
JP4052032B2 (en) Dielectric composition and multilayer ceramic component using the same
KR20160103113A (en) Layered body, layered device, and methods for producing same
KR101137272B1 (en) Dielectric ceramic composition, process for producing the same, dielectric ceramic employing it and multilayer ceramic component
KR20030040159A (en) Ceramic capacitor and method for the manufacture thereof
JP4052031B2 (en) Dielectric composition and multilayer ceramic component using the same
JP4174668B2 (en) DIELECTRIC CERAMIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, DIELECTRIC CERAMIC USING THE SAME, AND MULTILAYER CERAMIC COMPONENT
JP4281549B2 (en) Dielectric ceramic composition and multilayer ceramic component using the same
EP1315231A2 (en) Dielectric ceramic composition and laminated ceramic parts using the same
JP4235896B2 (en) DIELECTRIC CERAMIC COMPOSITION, PROCESS FOR PRODUCING THE SAME, DIELECTRIC CERAMIC USING THE SAME, AND MULTILAYER CERAMIC COMPONENT
JP4114503B2 (en) Dielectric ceramic composition and multilayer ceramic component using the same
JP2003221274A (en) Dielectric porcelain composition and integrated ceramic parts using it
JP2003160377A (en) Dielectric ceramic composition and laminated ceramic part using the same
JP2003221273A (en) Dielectric porcelain composition and integrated ceramic parts using it
JP2003160375A (en) Dielectric ceramic composition and laminated ceramic part using the same
JP2003160376A (en) Dielectric ceramic composition and laminated ceramic part using the same
JP2005001944A (en) Dielectric porcelain composition and multilayered ceramic component using the same
JP2000095563A (en) Dielectric porcelain composition and ceramic electronic part
JP2003217966A (en) Ceramic capacitor and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4052032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees