JP4097018B2 - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition Download PDF

Info

Publication number
JP4097018B2
JP4097018B2 JP2002186627A JP2002186627A JP4097018B2 JP 4097018 B2 JP4097018 B2 JP 4097018B2 JP 2002186627 A JP2002186627 A JP 2002186627A JP 2002186627 A JP2002186627 A JP 2002186627A JP 4097018 B2 JP4097018 B2 JP 4097018B2
Authority
JP
Japan
Prior art keywords
composition
sample
glass
temperature
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002186627A
Other languages
Japanese (ja)
Other versions
JP2004026588A (en
Inventor
寛 水谷
進 西垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Original Assignee
Koa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp filed Critical Koa Corp
Priority to JP2002186627A priority Critical patent/JP4097018B2/en
Publication of JP2004026588A publication Critical patent/JP2004026588A/en
Application granted granted Critical
Publication of JP4097018B2 publication Critical patent/JP4097018B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、誘電体磁器組成物に係り、特に、誘電体の高周波特性が優れ、且つ低温焼成が可能な誘電体磁器組成物に関する。
【0002】
【従来の技術】
近年、携帯電話に代表される移動体通信機器は小型化、軽量化が進んでいて、使用される部品にも小型・軽量化が求められている。例えば、マイクロ波用セラミックフィルタは、セラミック磁器組成物のグリーンシートに例えば銀(Ag)材料を印刷し、これらのシートを重ね合わせ、焼成することで積層フィルタ等の積層型部品が製造される。この場合の焼成は、銀(Ag)が溶け出さない温度(900℃前後が望ましい)で、銀(Ag)とセラミック磁器組成物を同時に焼結させることが好ましい。
【0003】
マイクロ波用セラミックフィルタのチップ素地には、BaO−TiO系組成の誘電体磁器組成物が好適であり、その特性は比誘電率が30〜40と高く、共振周波数(ここでは以下、測定周波数)の温度係数も小さいので有用であることが知られている。しかし、この組成物は、その焼成温度が約1300℃と高温であり、これより低い温度では焼結せず誘電体特性も著しく低下する。
【0004】
適当な焼結助剤を用いて、900℃前後の温度でBaO−TiO系組成物の焼結を試みた場合、この温度での良好な焼結は難しく、焼結したとしても誘電体磁器組成物の誘電体特性が大きく変化するため、高周波帯域において優れた高誘電率、高Qの特性が得られなくなってしまう。
【0005】
一般的に誘電体磁器組成物を低温で焼成するために、焼結助剤としてホウケイ酸ガラスを用いることが知られている。このガラスを用いてBaO−TiO系組成物を930℃で焼成した5件の試料のデータを表2に示す。ホウケイ酸ガラスを焼結助剤として用いた焼成では、表2のデータが示すように、BaO−TiO系組成物を銀(Ag)の融点以下の温度で良好に焼結させることは困難である。従って、一般的に知られた焼結助剤を用いた方法では、銀(Ag)と同時焼成でき、例えばマイクロ波用セラミックフィルタが必要とする誘電体特性を十分に満足する誘電体磁器組成物を作り出せないという問題があった。
【0006】
【発明が解決しようとする課題】
本発明は上述した事情に鑑みて為されたもので、良好な誘電体特性を有すると共に、比較的低温で銀電極などと同時に焼成が可能で緻密な焼結体が得られる誘電体磁器組成物を提供することを目的とする。
【0007】
【課題を解決するための手段】
以上の課題を解決するために、本発明の誘電体磁器組成物は、一般式αBaO・(1−α)TiO(αは、モル比で、0.12≦α≦0.24)で表される組成物を主成分とする材料100重量部に対して、GeOを含むガラスをx重量部(10≦x≦17.5)と、Bをy重量部(3.0≦y≦7.5)添加して焼成したことを特徴とする。
【0008】
前記ガラスは、組成式=aGeO−bBaO−cBiで表され、ここに、a,b,cは、モル比で、0.4≦a≦0.6、0.1≦b≦0.5、0.1≦c≦0.5、但し、a+b+c=1の範囲内にあることを特徴とする。
【0009】
本発明者は、誘電体材料(BaO−TiO系組成物)に少量の添加で焼成を促進させることのできるガラスを開発し、それとBを併用することで、銀(Ag)の融点未満の温度で焼成して、良好な焼結体が得られることを知得した。即ち、この誘電体磁器組成物の焼結体は、比誘電率εr=32〜46、Q=191〜993(測定周波数=6.0〜8.0GHZにおいて)の特性を有するとともに、吸水率0.1%未満の緻密な構造が得られる。この緻密な構造により、セラミックの強度が向上し、比誘電率εr、Q値等の誘電体特性のバラツキが減少して安定化する。また、誘電体磁器組成物と銀(Ag)電極を同時焼成できることにより、製造工程の短縮と製造コストの削減ができるという製造上のメリットがある。
【0010】
【発明の実施の形態】
以下、本発明に係る誘電体磁器組成物の実施形態について、表1、図1乃至図5を参照してさらに詳しく説明する。
【0011】
表1は、34件の試料についての組成と諸特性のデータをまとめたものである。試料の作製に当たり、ガラスとBの添加率を変えること、ガラスの組成を変えること、焼結助剤としてガラスとBの添加の有無、焼結温度などを変えている。ガラスの組成については、図1に示される。
【0012】
[実施例]
本発明の出発原料としてBaCO粉末とTiO粉末を用い、表1の組成になるように所定量の秤量をする。この秤量原料をボールミルで18時間湿式混合した後、乾燥させて混合粉を得る。この混合粉を大気中において焼結助剤なしでBaO−TiO系化合物を生成するような高温(例えば1250℃)にて焼成する。その後、ボールミルで24時間湿式粉砕して平均粒径0.5μmのBaO−TiO組成物粉末を得る。図4にこの粒径分布データを示す。図3に示すX線回折パターンにより、BaO−TiO系組成物であることを確認できる。なお、上記混合時間、高温焼成温度、平均粒径等は一例であり、X線回折パターンにより、組成物がBaO−TiO系組成物であることを確認できれば十分である。
【0013】
次に、Geを含むガラスを作製した。出発原料にGeO粉末とBaCO粉末とBi 粉末を用い、表1に示した試料組成になるように秤量する。この秤量原料を乳鉢・乳棒で10分間乾式混合する。混合した粉末をアルミナ質るつぼに入れ、1000℃の炉内で溶融させる。30分後、炉からるつぼを取り出し、室内で放冷してガラスを固化させる。るつぼからガラスを取り出し、自動乳鉢機で粗粉砕する。粗粉砕したガラス粉末をボールミルで湿式粉砕して平均粒径1μmのガラス粉末を得る(図5を参照)。図2に示すように、X線回折パターンにより、粉末が非晶質ガラスであることを確認できる。なお、この実施例ではガラスは溶融後室温で放冷して作製しているが、一般的な急冷水砕法、急冷ロール法等を用いるようにしても当然よい。いずれの方法でも、X線回折パターンにより、粉末が非晶質ガラスであることを確認できればよい。
【0014】
表1の組成になるように、所定成分のBaO−TiO組成物に対して、ガラス粉末とBを秤量する(Bは、HBOで秤量する)。それをボールミルで湿式混合した後、乾燥させて混合粉を得る。この混合粉にPVA水溶液を添加して造粒する。この造粒粉を金型に詰めて、一軸加圧で仮成形する。さらにその成形体に対して静水圧プレス機を使って等方加圧し成形する。その成形体を大気中において、銀(Ag)の融点(=961.93℃)未満の表1に示す低温焼成温度で、2時間焼成して焼結体を得た。なお、この実施例では粉末金型プレス法と静水圧プレス法を組み合わせて試料を作製しているが、他の成形方法、例えばグリーンシート法、鋳込み法(キャスティング法)、押し出し法等を用いるようにしてもよい。
【0015】
表1の各温度で2時間焼成した試料No.1〜試料No.31を直径9mm、高さ4.5mmに加工した。その後、マイクロ波用ファインセラミックの誘電特性の試験方法(JISR1627)に規定された両端短絡形誘電体共振器法で得られた焼結体の比誘電率εrとQを測定した。その測定データを表1に示す。なお同様の方法にて、試料No.32〜試料No.34の測定も行った。
【0016】
表1の試料No.1〜試料No.31の吸水率を、電気絶縁用セラミック材料試験方法(JISC2141)に規定された方法により求めた。吸水率が0.1%未満のものは、焼結が十分されているものと判断した。なお同様の方法にて、試料No.32〜試料No.34の測定も行った。
【0017】
表1の34件のうちの試料11件、即ち、試料No.3〜No.4、試料No.9〜No.10、試料No.12、試料No.16〜No.19、試料No.21、試料No.26は、α,a,b,c,x,yの値が本発明の好ましい組成の範囲内にある。即ち、一般式αBaO・(1−α)TiO(0.12≦α≦0.24モル)で表される組成物を主成分とする材料100重量部に対して、GeOを含むガラスをx重量部(10.0≦x≦17.5)、Bをy重量部(3.0≦y≦7.5)混合して焼成したもので、前記ガラスは、組成式=aGeO−bBaO−cBiで表され、ここに、a,b,cは、モル比で、0.4≦a≦0.6、0.1≦b≦0.5、0.1≦c≦0.5、但し、a+b+c=1の範囲内にある。
【0018】
試料No.3〜No.4、試料No.9〜No.10、試料No.12、試料No.21、試料No.26は、低温焼成温度が900℃であり、試料No.16〜No.19は、低温焼成温度が870℃である。これら試料11件については、低温焼成温度870〜900℃の範囲で、吸水率が0.1%未満で緻密な構造を有する誘電体磁器組成物が得られている。比誘電率εrについて、試料No.21が最高値(εr=46)を有し、試料No.10と試料No.12と試料No.16と試料No.19が最低値(εr=32)を有している。Q値については、試料No.16が最高値(Q=993[測定周波数=8GHzにおいて])を有し、試料No.9が最低値(Q=518[測定周波数=7〜8GHZにおいて])を有している。上述したように試料11件については、表1に示されているように焼結性、比誘電率、Qともに良好なデータが得られている。
【0019】
[比較例]
試料No.1は、Bの添加率が下限値3.0重量部より少ないので、900℃焼成では焼結が不十分で、構造が緻密化しない誘電体磁器組成物となる。一方、試料No.5と試料No.6と試料No.7は、Bの添加率が上限値7.5重量部を超えているので、Bの過剰な添加によるものと考えられる発泡現象が確認され、吸水率が高くなった。試料No.8のように、低温焼成温度が870℃より低い場合は、緻密な構造にならず吸水率も0.1%未満とならない。
【0020】
次に、ガラス組成が好ましい組成範囲外にある試料について説明する。試料No.28、試料No.30及び試料No.31は、吸水率が高くなり、緻密化しない。また、試料No.29は、緻密化するがQ<100で、マイクロ波用セラミックフィルタ特性を十分満足するものではない。
【0021】
次に、ガラス組成が好ましい組成範囲内にある、即ち、aGeO−bBaO−cBiで表され、ここに、a,b,cは、モル比で、0.4≦a≦0.6、0.1≦b≦0.5、0.1≦c≦0.5、但し、a+b+c=1の範囲内にある組成のガラスを用いた試料について説明する。試料No.15は、ガラス添加が10重量部より少ないため吸水率が0.1%未満に緻密化しない。また、試料No.13は、Bの添加を15重量部としてガラス添加を2重量部とした試料であるが、緻密化せず軽石のような構造となった。一方、試料No.20のように、ガラス添加が17.5重量部を超えると、過焼結により試料が破損した。
【0022】
一般式αBaO・(1−α)TiOのαが大きい試料No.23(α>0.24)は、過焼結が発生して破損した。一方、αが小さい試料No.22(α<0.12)は、吸水率<0.1%に緻密化しなかった。
【0023】
次に、ガラス及びBの添加のないBaO−TiO組成物について記述する。ガラスを添加しないで高温焼成温度=1200℃で焼成したものが試料No.32である。試料No.32は、焼結不十分であり、εr及びQの測定が出来なかった。一方、高温焼成温度=1250℃で焼成したものが試料No.33と試料No.34である。試料No.33と試料No.34は、緻密化してその電気特性としてεr≧38及びQ≧2780が得られている。従って、ガラス添加のないBaO−TiO組成物を焼結させるには焼成温度≧1250℃が必要である。
【0024】
表1は、34件の試料について組成と諸特性のデータをまとめて示したものである。
【表1】

Figure 0004097018
【0025】
ホウケイ酸ガラスは、焼結助剤として知られている。表2は、このガラスを用いて1250℃の高温焼成にて作製したBaO−TiO組成物を低温焼成温度930℃で焼成した5件の試料のデータを示したものである。表2に示すように吸水率が高く、焼結不十分のため、誘電体特性は測定不可能であった。
【表2】
Figure 0004097018
【0026】
これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。
【0027】
【発明の効果】
本発明によれば、一般式αBaO・(1−α)TiO(ただし、αはモル比で、0.12≦α≦0.24)で表される組成物を主成分とする材料に対して、焼結促進剤として少量のガラスとBを添加することで、比誘電率εr=32〜46、Q=191〜993(周波数=6.0〜8.0GHZにおいて)の特性を有する緻密な誘電体磁器組成物を銀(Ag)の融点未満の温度で焼成することができる。この緻密な構造により、セラミックの強度が向上し、比誘電率εr、Q値のバラツキが減少して誘電体特性が安定化するという性能面の改良がある。また、誘電体磁器組成物と銀(Ag)電極の同時焼成ができることにより、製造工程の短縮と製造コストの削減が達成できるという製造上のメリットがある。
【図面の簡単な説明】
【図1】本発明のガラスの3元組成図である。
【図2】ガラスが組成式=aGeO−bBaO−cBi(a=0.567、b=0.243、c=0.189)であることを示すX線回折パターン図である。
【図3】BaO−TiO組成物[αBaO・(1−α)TiO;α=0.174]であることを示すX線回折パターン図である。
【図4】BaO−TiO組成物の粒径データを示す図である。
【図5】GeOを含むガラスの粒径データを示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dielectric ceramic composition, and more particularly to a dielectric ceramic composition that has excellent high-frequency characteristics of a dielectric and can be fired at a low temperature.
[0002]
[Prior art]
In recent years, mobile communication devices represented by mobile phones have been reduced in size and weight, and parts used are also required to be reduced in size and weight. For example, in a ceramic filter for microwaves, for example, a silver (Ag) material is printed on a green sheet of a ceramic porcelain composition, and these sheets are stacked and fired to produce a multilayer part such as a multilayer filter. In this case, it is preferable to sinter the silver (Ag) and the ceramic porcelain composition at a temperature at which silver (Ag) does not melt (preferably around 900 ° C.).
[0003]
A dielectric ceramic composition having a BaO—TiO 2 composition is suitable for the chip substrate of the ceramic filter for microwaves, and its characteristics are as high as a relative dielectric constant of 30 to 40, and a resonance frequency (hereinbelow, a measurement frequency). ) Is known to be useful because of its small temperature coefficient. However, this composition has a firing temperature as high as about 1300 ° C., and does not sinter at a temperature lower than this temperature, and the dielectric properties are significantly reduced.
[0004]
When an attempt is made to sinter a BaO—TiO 2 composition at a temperature of about 900 ° C. using an appropriate sintering aid, good sintering at this temperature is difficult. Since the dielectric characteristics of the composition change greatly, it is impossible to obtain excellent high dielectric constant and high Q characteristics in the high frequency band.
[0005]
In general, it is known to use borosilicate glass as a sintering aid for firing a dielectric ceramic composition at a low temperature. Table 2 shows data of five samples obtained by firing a BaO—TiO 2 composition at 930 ° C. using this glass. In firing using borosilicate glass as a sintering aid, as shown in the data in Table 2, it is difficult to satisfactorily sinter the BaO—TiO 2 composition at a temperature below the melting point of silver (Ag). is there. Therefore, a generally known method using a sintering aid can be co-fired with silver (Ag) and, for example, a dielectric ceramic composition that sufficiently satisfies the dielectric properties required by a microwave ceramic filter. There was a problem that could not be created.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned circumstances, and has a dielectric property and a dielectric ceramic composition that can be fired simultaneously with a silver electrode or the like at a relatively low temperature to obtain a dense sintered body. The purpose is to provide.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the dielectric ceramic composition of the present invention is represented by the general formula αBaO · (1-α) TiO 2 (α is a molar ratio, 0.12 ≦ α ≦ 0.24). X 100 parts by weight of glass containing GeO 2 (10 ≦ x ≦ 17.5) and y 2 parts by weight of B 2 O 3 (3.0 ≦ 3 ) with respect to 100 parts by weight of the material having the composition as a main component. y ≦ 7.5) Added and baked.
[0008]
The glass is represented by a composition formula = aGeO 2 —bBaO—cBi 2 O 3 , where a, b, and c are molar ratios of 0.4 ≦ a ≦ 0.6, 0.1 ≦ b ≦. 0.5, 0.1 ≦ c ≦ 0.5, provided that a + b + c = 1.
[0009]
The present inventor has developed a glass that can accelerate firing with a small amount of addition to a dielectric material (BaO—TiO 2 composition), and by using it together with B 2 O 3 , silver (Ag) It was learned that a good sintered body can be obtained by firing at a temperature lower than the melting point. That is, the sintered body of this dielectric ceramic composition has characteristics of relative dielectric constant εr = 32 to 46, Q = 191 to 993 (measurement frequency = 6.0 to 8.0 GHz), and water absorption of 0 A dense structure of less than 1% is obtained. This dense structure improves the strength of the ceramic, and reduces and stabilizes variations in dielectric properties such as relative dielectric constant εr and Q value. Further, since the dielectric ceramic composition and the silver (Ag) electrode can be simultaneously fired, there is a manufacturing merit that the manufacturing process can be shortened and the manufacturing cost can be reduced.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the dielectric ceramic composition according to the present invention will be described in more detail with reference to Table 1 and FIGS. 1 to 5.
[0011]
Table 1 summarizes the composition and properties data for 34 samples. In preparing the sample, the addition ratio of glass and B 2 O 3 is changed, the composition of the glass is changed, the presence or absence of addition of glass and B 2 O 3 as a sintering aid, and the sintering temperature are changed. The composition of the glass is shown in FIG.
[0012]
[Example]
BaCO 3 powder and TiO 2 powder are used as starting materials of the present invention, and a predetermined amount is weighed so as to have the composition shown in Table 1. This weighed raw material is wet mixed in a ball mill for 18 hours and then dried to obtain a mixed powder. The mixed powder is fired in the air at a high temperature (for example, 1250 ° C.) that produces a BaO—TiO 2 compound without a sintering aid. Thereafter, the powder is wet-ground by a ball mill for 24 hours to obtain a BaO—TiO 2 composition powder having an average particle size of 0.5 μm. FIG. 4 shows the particle size distribution data. From the X-ray diffraction pattern shown in FIG. 3, it can be confirmed that the composition is a BaO—TiO 2 composition. The mixing time, high-temperature firing temperature, average particle size, and the like are examples, and it is sufficient if the composition can be confirmed to be a BaO—TiO 2 composition by an X-ray diffraction pattern.
[0013]
Next, a glass containing Ge was produced. Using GeO 2 powder, BaCO 3 powder, and Bi 2 O 3 powder as starting materials, the sample composition shown in Table 1 is weighed. This weighing material is dry mixed for 10 minutes with a mortar and pestle. The mixed powder is put into an alumina crucible and melted in a furnace at 1000 ° C. After 30 minutes, the crucible is removed from the furnace and allowed to cool indoors to solidify the glass. Remove the glass from the crucible and coarsely grind it with an automatic mortar machine. The coarsely pulverized glass powder is wet pulverized by a ball mill to obtain a glass powder having an average particle diameter of 1 μm (see FIG. 5). As shown in FIG. 2, it can be confirmed from the X-ray diffraction pattern that the powder is amorphous glass. In this embodiment, the glass is produced by allowing it to cool at room temperature after melting, but it is also possible to use a general rapid water granulation method, a rapid cooling roll method, or the like. In any method, it is only necessary to confirm that the powder is amorphous glass by the X-ray diffraction pattern.
[0014]
The glass powder and B 2 O 3 are weighed with respect to the predetermined composition BaO—TiO 2 composition so as to have the composition shown in Table 1 (B 2 O 3 is weighed with H 3 BO 3 ). It is wet-mixed with a ball mill and then dried to obtain a mixed powder. An aqueous PVA solution is added to the mixed powder and granulated. The granulated powder is packed in a mold and temporarily formed by uniaxial pressing. Further, the molded body is isostatically pressed using a hydrostatic pressure press. The compact was fired in air for 2 hours at the low temperature firing temperature shown in Table 1 below the melting point of silver (Ag) (= 961.93 ° C.) to obtain a sintered body. In this example, the sample is prepared by combining the powder mold pressing method and the isostatic pressing method, but other forming methods such as a green sheet method, a casting method (casting method), an extrusion method, etc. are used. It may be.
[0015]
Sample No. baked at each temperature in Table 1 for 2 hours. 1 to Sample No. 31 was processed into a diameter of 9 mm and a height of 4.5 mm. Thereafter, the relative dielectric constants εr and Q of the sintered body obtained by the both-end short-circuited dielectric resonator method defined in the test method for dielectric properties of microwave fine ceramics (JIS R1627) were measured. The measurement data is shown in Table 1. In the same manner, the sample No. 32 to Sample No. 34 measurements were also made.
[0016]
Sample No. in Table 1 1 to Sample No. The water absorption of 31 was determined by the method specified in the electrical insulation ceramic material test method (JISC2141). Those having a water absorption of less than 0.1% were judged to be sufficiently sintered. In the same manner, the sample No. 32 to Sample No. 34 measurements were also made.
[0017]
Among the 34 cases in Table 1, 11 samples, ie, sample No. 3-No. 4, Sample No. 9-No. 10, Sample No. 12, Sample No. 16-No. 19, Sample No. 21, Sample No. No. 26 has values of α, a, b, c, x, and y within the preferred composition range of the present invention. That is, a glass containing GeO 2 is used with respect to 100 parts by weight of a material whose main component is a composition represented by the general formula αBaO · (1-α) TiO 2 (0.12 ≦ α ≦ 0.24 mol). x parts by weight (10.0 ≦ x ≦ 17.5) and y parts by weight (3.0 ≦ y ≦ 7.5) of B 2 O 3 were mixed and fired. The glass has a composition formula = aGeO 2- bBaO-cBi 2 O 3 , where a, b, and c are molar ratios of 0.4 ≦ a ≦ 0.6, 0.1 ≦ b ≦ 0.5, 0.1 ≦ c ≦ 0.5, provided that a + b + c = 1.
[0018]
Sample No. 3-No. 4, Sample No. 9-No. 10, Sample No. 12, Sample No. 21, Sample No. No. 26 has a low-temperature firing temperature of 900 ° C. 16-No. No. 19 has a low-temperature firing temperature of 870 ° C. For these 11 samples, a dielectric ceramic composition having a dense structure with a water absorption rate of less than 0.1% in the range of a low-temperature firing temperature of 870 to 900 ° C. has been obtained. Regarding the relative dielectric constant εr, the sample No. 21 has the highest value (εr = 46). 10 and sample no. 12 and sample no. 16 and sample no. 19 has the lowest value (εr = 32). Regarding the Q value, the sample No. 16 has the highest value (Q = 993 [at measurement frequency = 8 GHz]). 9 has the lowest value (Q = 518 [measurement frequency = 7 to 8 GHz)]. As described above, for 11 samples, good data on sinterability, relative permittivity, and Q are obtained as shown in Table 1.
[0019]
[Comparative example]
Sample No. No. 1 is a dielectric ceramic composition in which the addition rate of B 2 O 3 is less than the lower limit value of 3.0 parts by weight, so that sintering at 900 ° C. is insufficiently sintered and the structure is not densified. On the other hand, sample No. 5 and Sample No. 6 and sample no. In No. 7, since the addition rate of B 2 O 3 exceeded the upper limit of 7.5 parts by weight, the foaming phenomenon considered to be due to excessive addition of B 2 O 3 was confirmed, and the water absorption rate increased. Sample No. When the low-temperature firing temperature is lower than 870 ° C. as in FIG.
[0020]
Next, a sample whose glass composition is outside the preferred composition range will be described. Sample No. 28, Sample No. 30 and sample no. 31 has a high water absorption rate and is not densified. Sample No. 29 is densified, but Q <100, and does not sufficiently satisfy the ceramic filter characteristics for microwaves.
[0021]
Next, the glass composition is within a preferable composition range, that is, represented by aGeO 2 -bBaO-cBi 2 O 3 , where a, b, and c are molar ratios of 0.4 ≦ a ≦ 0.0. 6, 0.1 ≦ b ≦ 0.5, 0.1 ≦ c ≦ 0.5, where a sample using glass having a composition in the range of a + b + c = 1 is described. Sample No. No. 15 is not densified to less than 0.1% because the glass addition is less than 10 parts by weight. Sample No. No. 13 was a sample in which the addition of B 2 O 3 was 15 parts by weight and the addition of glass was 2 parts by weight, but it was not densified and had a pumice-like structure. On the other hand, sample No. As in 20, when the glass addition exceeded 17.5 parts by weight, the sample was damaged by oversintering.
[0022]
Sample No. with a large α in the general formula αBaO · (1-α) TiO 2 . No. 23 (α> 0.24) was damaged due to oversintering. On the other hand, sample no. 22 (α <0.12) was not densified to a water absorption <0.1%.
[0023]
Next, a BaO—TiO 2 composition without addition of glass and B 2 O 3 will be described. Sample No. 1 was fired at a high temperature firing temperature of 1200 ° C. without adding glass. 32. Sample No. No. 32 was insufficiently sintered, and εr and Q could not be measured. On the other hand, the sample fired at a high temperature firing temperature = 1250 ° C. 33 and Sample No. 34. Sample No. 33 and Sample No. No. 34 is densified, and εr ≧ 38 and Q ≧ 2780 are obtained as its electrical characteristics. Therefore, a sintering temperature ≧ 1250 ° C. is necessary to sinter a BaO—TiO 2 composition without glass addition.
[0024]
Table 1 summarizes the composition and characteristics data for 34 samples.
[Table 1]
Figure 0004097018
[0025]
Borosilicate glass is known as a sintering aid. Table 2 shows data of five samples obtained by firing a BaO—TiO 2 composition produced by high-temperature firing at 1250 ° C. using this glass at a low-temperature firing temperature of 930 ° C. As shown in Table 2, the dielectric properties were not measurable due to high water absorption and insufficient sintering.
[Table 2]
Figure 0004097018
[0026]
Although one embodiment of the present invention has been described so far, it is needless to say that the present invention is not limited to the above-described embodiment, and may be implemented in various forms within the scope of the technical idea.
[0027]
【The invention's effect】
According to the present invention, for a material whose main component is a composition represented by the general formula αBaO · (1-α) TiO 2 (where α is a molar ratio, 0.12 ≦ α ≦ 0.24). By adding a small amount of glass and B 2 O 3 as a sintering accelerator, the specific dielectric constant εr = 32 to 46, Q = 191 to 993 (frequency = 6.0 to 8.0 GHz) can be obtained. The dense dielectric ceramic composition can be fired at a temperature below the melting point of silver (Ag). Due to this dense structure, the strength of the ceramic is improved, the variation in relative dielectric constant εr and Q value is reduced, and there is an improvement in performance in that the dielectric characteristics are stabilized. In addition, since the dielectric ceramic composition and the silver (Ag) electrode can be fired simultaneously, there is a manufacturing advantage that the manufacturing process can be shortened and the manufacturing cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a ternary composition diagram of the glass of the present invention.
FIG. 2 is an X-ray diffraction pattern diagram showing that the glass has a composition formula = aGeO 2 −bBaO—cBi 2 O 3 (a = 0.567, b = 0.243, c = 0.189).
FIG. 3 is an X-ray diffraction pattern diagram showing a BaO—TiO 2 composition [αBaO · (1-α) TiO 2 ; α = 0.174].
FIG. 4 is a graph showing particle size data of a BaO—TiO 2 composition.
FIG. 5 is a graph showing particle size data of glass containing GeO 2 .

Claims (2)

一般式αBaO・(1−α)TiO(ただし、αはモル比で、0.12≦α≦0.24)で表される組成物を主成分とする材料100重量部に対して、GeOを含むガラスをx重量部(10.0≦x≦17.5)と、Bをy重量部(3.0≦y≦7.5)添加し
前記ガラスは、組成式=aGeO −bBaO−cBi で表され、ここに、a,b,cは、モル比で、0 . 4≦a≦0 . 6、0 . 1≦b≦0 . 5、0 . 1≦c≦0 . 5、但し、a+b+c=1の範囲内にあるものを焼成したことを特徴とする誘電体磁器組成物。
With respect to 100 parts by weight of a material mainly composed of a composition represented by the general formula αBaO · (1-α) TiO 2 (where α is a molar ratio, 0.12 ≦ α ≦ 0.24), GeO 2 parts by weight of glass containing 2 (10.0 ≦ x ≦ 17.5) and y part by weight of B 2 O 3 (3.0 ≦ y ≦ 7.5) ,
The glass is expressed by a composition formula = aGeO 2 -bBaO-cBi 2 O 3, here, a, b, c are, in molar ratio, 0. 4 ≦ a ≦ 0 . 6,0. 1 ≦ b ≦ 0. 5,0. 1 ≦ c ≦ 0. 5, provided that the dielectric ceramic composition characterized in that by firing to be within the scope of a + b + c = 1.
焼成する温度が、銀(Ag)の融点未満の温度であることを特徴とする請求項1記載の誘電体磁器組成物。  The dielectric ceramic composition according to claim 1, wherein the firing temperature is a temperature lower than the melting point of silver (Ag).
JP2002186627A 2002-06-26 2002-06-26 Dielectric porcelain composition Expired - Fee Related JP4097018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002186627A JP4097018B2 (en) 2002-06-26 2002-06-26 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002186627A JP4097018B2 (en) 2002-06-26 2002-06-26 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JP2004026588A JP2004026588A (en) 2004-01-29
JP4097018B2 true JP4097018B2 (en) 2008-06-04

Family

ID=31181924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002186627A Expired - Fee Related JP4097018B2 (en) 2002-06-26 2002-06-26 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP4097018B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5455610B2 (en) * 2009-12-24 2014-03-26 京セラ株式会社 Ceramic circuit board for probe card and probe card using the same
CN103553599B (en) * 2013-09-27 2015-03-11 广东风华高新科技股份有限公司 ZNT-BRT composite microwave dielectric ceramic and its preparation method

Also Published As

Publication number Publication date
JP2004026588A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
JP2613722B2 (en) Method for producing dielectric ceramic composition for low-temperature firing
CN103232235B (en) Low-temperature sintered composite microwave dielectric ceramic material and preparation method thereof
JP4506802B2 (en) Dielectric porcelain composition
JP2002193662A (en) Dielectric ceramic and its manufacturing method
JP3737774B2 (en) Dielectric ceramic composition
KR100557853B1 (en) Phosphate Ceramic Compositions with Low Dielectric Constant
JP4097018B2 (en) Dielectric porcelain composition
JP2781500B2 (en) Dielectric ceramic composition for low temperature firing
JP4368136B2 (en) Dielectric porcelain composition
JP3909366B2 (en) Low dielectric constant porcelain composition and method for producing substrate for electronic circuit using the porcelain composition
JP2000086337A (en) Dielectric porcelain composition for low-temperature firing
JP4097019B2 (en) Dielectric porcelain composition
JP5422329B2 (en) Dielectric porcelain composition
JP3375450B2 (en) Dielectric porcelain composition
JP2781501B2 (en) Dielectric ceramic composition for low temperature firing
JP4100929B2 (en) Dielectric ceramic composition and manufacturing method thereof
JPH06116022A (en) Dielectric porcelain composition for low temp. firing and dielectric resonator or dielectric filter obtained by using the same and production thereof
US7314841B2 (en) Porcelain composition
JP4100932B2 (en) Dielectric ceramic composition and manufacturing method thereof
KR100478127B1 (en) Dielectric Ceramic Composition
JP2781502B2 (en) Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them
JP2002326865A (en) Dielectric porcelain composition and dielectric device
JP4484297B2 (en) Dielectric porcelain composition
JP3839868B2 (en) Dielectric ceramic composition and electronic component
JP2009227483A (en) Dielectric ceramic composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080304

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140321

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313632

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees