JP4100929B2 - Dielectric ceramic composition and manufacturing method thereof - Google Patents

Dielectric ceramic composition and manufacturing method thereof Download PDF

Info

Publication number
JP4100929B2
JP4100929B2 JP2002043408A JP2002043408A JP4100929B2 JP 4100929 B2 JP4100929 B2 JP 4100929B2 JP 2002043408 A JP2002043408 A JP 2002043408A JP 2002043408 A JP2002043408 A JP 2002043408A JP 4100929 B2 JP4100929 B2 JP 4100929B2
Authority
JP
Japan
Prior art keywords
powder
glass
dielectric ceramic
ceramic composition
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002043408A
Other languages
Japanese (ja)
Other versions
JP2003238243A (en
JP2003238243A5 (en
Inventor
裕志 篠崎
寛 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Original Assignee
Koa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp filed Critical Koa Corp
Priority to JP2002043408A priority Critical patent/JP4100929B2/en
Publication of JP2003238243A publication Critical patent/JP2003238243A/en
Publication of JP2003238243A5 publication Critical patent/JP2003238243A5/ja
Application granted granted Critical
Publication of JP4100929B2 publication Critical patent/JP4100929B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、誘電体磁器組成物に係り、特に、鉛(Pb)を含有せずに、高周波特性が優れ、且つ比較的低温で焼成が可能な誘電体磁器組成物及びその製造方法に関する。
【0002】
【従来の技術】
近年、銀(Ag)電極と同時焼成することができる誘電体磁器組成物が求められている。例えば、セラミック・グリーンシートと銀(Ag)電極の積層体を890〜920℃の温度範囲にて同時焼成できる誘電体磁器組成物である。一般式CaTiOで表されるペロブスカイト型結晶相を主結晶とする材料は、1300〜1400℃の高温で焼成され、緻密であり、比誘電率εr=170,Q=1800(周波数=2GHzにおいて)と高周波帯域で優れた特性が得られる。しかしながら、1300℃以下の焼成温度では緻密化せず、その特性が劣るという問題がある。
【0003】
890〜920℃程度の比較的低温で焼成するためには、焼成助剤を多用することが必要である。しかし、これは、その特性を大きく変化させて高周波帯域において優れた高誘電率、高Q値の特性が得られなくなってしまう。従来の材料でも、900℃程度で焼成され高誘電率、高Q値の特性を満足するものがある。しかし、それは、鉛(Pb)を含んだものしか確認されていない。
【0004】
そこで、人体に有害な鉛(Pb)を含んでいない誘電体磁器組成物の開発が、多くのユーザから要求されている。また、環境保全の立場から各方面の関係者からもその開発が待たれている。
【0005】
【発明が解決しようとする課題】
本発明は上述した事情に鑑みて為されたもので、鉛(Pb)を含有せずに、高周波数帯域で優れた誘電特性を有し、比較的低温で銀電極などと同時に加熱焼成が可能な緻密な誘電体磁器組成物およびその製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記の課題を解決するために、本発明の誘電体磁器組成物は、一般式 CaTiO で表されるペロブスカイト型結晶相を主結晶とする材料の100重量部に対して、ガラスをx重量部(2.5≦x≦15.0)、B をy重量部(1.0≦y≦15.0)を混合して、890〜920℃で加熱焼成したことを特徴とする。
【0007】
前記ガラスは、組成式=aGeO-bBaO-cBiで表され、
ここに、 a、b、cは、モル比で、0.4≦a≦0.6、0.1≦b≦0.5、0.1≦c≦0.5、但し、a+b+c=1の範囲内にあることを特徴としている。
【0008】
本発明者は、少量の添加で加熱焼成を促進させることのできるガラスを開発し、それとBを併用することで、比誘電率εr=80〜130,Q=100〜300(周波数=4.5〜5.8GHzにおいて)の特性を有する緻密な誘電体磁器組成物を890〜920℃の範囲で加熱焼成することができることを見いだした。この緻密な構造により、セラミックの強度が向上し、比誘電率εr,Q値の好ましい特性が得られ、バラツキが減少して安定化するという性能面の改良がある。誘電体磁器組成物と銀(Ag)電極の同時に加熱焼成ができることにより、製造工程の短縮と製造コストの削減が達成できるという製造上のメリットがある。また、この誘電体磁器組成物は、人体に有害な鉛(Pb)を含んでいない点が環境保全から観たメリットである。
【0009】
【発明の実施の形態】
以下、本発明に係る誘電体磁器組成物の実施形態について、表1、図1乃至図3を参照してさらに詳しく説明する。
【0010】
表1は、27件の試料についての組成と諸特性のデータをまとめたものである。試料の作製に当たり、ガラスとBの添加率を変えること、ガラスの組成を変えること、焼結助剤としてガラスとBの添加の有無、及び加熱焼成温度などを考慮した。ガラスの組成については、図1に示される。
【0011】
(実施例)
本発明の出発原料にCaCO粉末とTiO粉末を用い、CaとTiのモル比が0.95(Ca/Ti=0.95)になるように所定量秤量する。この秤量原料をボールミルで18時間湿式混合した後、乾燥させて混合粉末を得る。この混合粉末を大気中において1200℃で仮焼した後、ボールミルで24時間湿式粉砕して平均粒径0.5μmのCaTiO粉末を得る。X線回折パターンにより、その粉末がCaTiOであることを同定した。(図2を参照。)
【0012】
次に、ガラスを作製した。出発原料にGeO粉末とBaCO粉末とBi 粉末を用い、表1に示した試料組成になるように秤量する。この秤量原料を乳鉢・乳棒で10分間乾式混合する。混合した粉末をアルミナ質るつぼに入れ、1000℃の炉内で30分溶融させる。30分後、炉からるつぼを取り出し、室内で放冷してガラスを固化させる。るつぼからガラスだけを取り出し、自動乳鉢機で1時間粗粉砕する。粗粉砕したガラス粉末をボールミルで8時間湿式粉砕して平均粒径1μmのガラス 粉末を得る。X線回折パターンにより、その粉末が非晶質ガラスであることを同定した。(図3を参照。)
【0013】
CaTiO粉末に表1の試料の組成になるようにガラス粉末とBを秤量する。(Bは、HBOで秤量する)。それをボールミルで3時間湿式混合した後、乾燥させて混合粉を得る。この混合粉にバインダー水溶液を添加して造粒する。この造粒粉をφ(直径)16.5mmの金型に詰めて、750kgf/cm以下の一軸加圧する。さらにその成形体に対して冷間等方プレス(Cold isostatic press)を使って1000kgf/cmの力で2分間等方加圧し成形する。それを空気中において、890〜920℃の温度で2時間加熱焼成し、焼結体を得る。
【0014】
両端短絡形誘電体共振器法を使って得られた焼結体の比誘電率εrとQの測定データを表1に示す。
【0015】
表1の27件にうち試料15件、即ち、試料1〜7、試料9、試料11、試料13、試料15,試料18〜21は、a,b,c,x,yの値が本発明の範囲にある。即ち、一般式CaTiOで表されるペロブスカイト型結晶相を主結晶とする材料100重量部に対して、ガラスをx重量部(2.5≦x≦15.0)、Bをy重量部(1.0≦y≦15.0)を混合して加熱焼成したもので、前記ガラスは、組成式=aGeO-bBaO-cBiで表され、ここに、 a、b、cは、モル比で、0.4≦a≦0.6、0.1≦b≦0.5、0.1≦c≦0.5、但し、a+b+c=1の範囲内にある。
【0016】
試料1〜3、は、加熱焼成温度が907℃であり、試料4〜7,9、11、13は、加熱焼成温度が917℃であり、試料15は,891℃であり、試料18〜21は、加熱焼成温度が917℃である。これら試料15件については、加熱焼成温度891〜917℃の範囲で緻密な構造を有する誘電体磁器組成物が得られている。比誘電率εrについて、試料19が最高値(εr=130.1)を有し、試料3が最低値(εr=80.6)を有している。Q値については、試料1が最高値(Q=287[周波数=5.39GHzにおいて])を有し、試料19が最低値(Q=102[周波数=4.53GHzにおいて])を有している。試料15件については、表1に示されているように焼結性、比誘電率、Qともに良好なデータが得られている。
【0017】
(比較例)
試料8は、Bの添加率が下限値1.0重量部より少ないので917℃における加熱焼成では焼結が不十分で構造が緻密化しない誘電体磁器組成物となる。試料10は、ガラスを17.5重量部添加しているがBの添加率が下限値1.0重量部より少ないので917℃における加熱焼成では焼結が不十分で構造が緻密化しない。試料12と試料14は、Bの添加率が上限値15.0重量部を超えているので過焼結を起こし緻密な構造にならない。試料17は、焼結温度が高すぎると過焼結を起こして試料全体に発泡した跡が残り緻密な構造にならない。試料22は、b=0(<0.1)であり、試料24は、c=0(<0.1)であり、試料25は、a=0.3(<0.4)である。即ち、試料22と試料24と試料25は、ガラスの組成が最適範囲外であるので、917℃における焼成では焼結が不十分となり緻密な構造とならない。試料26と試料27は、前記ガラスとBの添加がない試料である。緻密な構造を得て、比誘電率εr≧170,Q≧1800の特性を得るには1300℃の焼成温度が必要である。
【0018】
表1は、27件の試料について組成と諸特性のデータをまとめて示したものである。
【表1】

Figure 0004100929
【0019】
なお、本発明の誘電体磁器組成物は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0020】
【発明の効果】
本発明の誘電体磁器組成物によれば、比誘電率εr=80〜130,Q=100〜300(周波数=4.5〜5.8GHzにおいて)の特性を有する緻密な誘電体磁器組成物を890〜920℃の範囲で加熱焼成することができる。この緻密な構造により、セラミックの強度が向上し、比誘電率εr,Q値のバラツキが減少して安定化する。また、誘電体磁器組成物と銀(Ag)電極の同時焼成ができることにより、製造工程の短縮と製造コストの削減が達成できる。また、この誘電体磁器組成物は、人体に有害な鉛(Pb)を含んでいないので、環境保全上、有用である。
【図面の簡単な説明】
【図1】図1は、本発明のガラスの3元組成図である。
【図2】図2は、粉末がCaTiOであることを示すX線回折パターン図である。
【図3】図3は、粉末が非晶質ガラスであることを示すX線回折パターン図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dielectric ceramic composition, and more particularly to a dielectric ceramic composition that does not contain lead (Pb), has excellent high-frequency characteristics, and can be fired at a relatively low temperature, and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, there has been a demand for a dielectric ceramic composition that can be fired simultaneously with a silver (Ag) electrode. For example, it is a dielectric ceramic composition capable of simultaneously firing a laminate of a ceramic green sheet and a silver (Ag) electrode in a temperature range of 890 to 920 ° C. A material whose main crystal is a perovskite type crystal phase represented by the general formula CaTiO 3 is fired at a high temperature of 1300 to 1400 ° C. and dense, and has a relative dielectric constant εr = 170, Q = 1800 (at frequency = 2 GHz). Excellent characteristics can be obtained in the high frequency band. However, there is a problem that densification is not achieved at a firing temperature of 1300 ° C. or lower, and the characteristics are poor.
[0003]
In order to bake at a relatively low temperature of about 890 to 920 ° C., it is necessary to use a lot of baking aids. However, this greatly changes the characteristics, and an excellent high dielectric constant and high Q value characteristic cannot be obtained in the high frequency band. Some conventional materials are fired at about 900 ° C. and satisfy the characteristics of high dielectric constant and high Q value. However, only those containing lead (Pb) have been confirmed.
[0004]
Therefore, development of dielectric ceramic compositions that do not contain lead (Pb) that is harmful to the human body is required by many users. In addition, from the standpoint of environmental conservation, the development is also awaited from the various parties concerned.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described circumstances. It does not contain lead (Pb), has excellent dielectric properties in a high frequency band, and can be fired at the same time as a silver electrode at a relatively low temperature. It is an object to provide a dense dielectric ceramic composition and a method for producing the same.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the dielectric ceramic composition of the present invention comprises x parts by weight of glass with respect to 100 parts by weight of a material having a perovskite crystal phase represented by the general formula CaTiO 3 as a main crystal. (2.5 ≦ x ≦ 15.0), B 2 O 3 and y parts by weight (1. 0 ≦ y ≦ 15.0 ) were mixed, characterized in that the firing at eight hundred ninety to nine hundred twenty ° C..
[0007]
The glass is represented by a composition formula = aGeO 2 -bBaO-cBi 2 O 3 ,
Here, a, b and c are molar ratios of 0.4 ≦ a ≦ 0.6, 0.1 ≦ b ≦ 0.5, 0.1 ≦ c ≦ 0.5, provided that a + b + c = 1. It is characterized by being within range.
[0008]
The present inventor has developed a glass capable of promoting heating and baking with a small amount of addition, and using it together with B 2 O 3 , the relative dielectric constant εr = 80 to 130, Q = 100 to 300 (frequency = It has been found that a dense dielectric ceramic composition having the characteristics of 4.5 to 5.8 GHz can be heated and fired in the range of 890 to 920 ° C. Due to this dense structure, the strength of the ceramic is improved, and preferable characteristics such as relative dielectric constant εr, Q value are obtained, and there is an improvement in performance such that variation is reduced and stabilization is achieved. Since the dielectric ceramic composition and the silver (Ag) electrode can be heated and fired at the same time, there is a manufacturing merit that the manufacturing process can be shortened and the manufacturing cost can be reduced. Moreover, this dielectric ceramic composition is advantageous from the viewpoint of environmental conservation in that it does not contain lead (Pb) harmful to the human body.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the dielectric ceramic composition according to the present invention will be described in more detail with reference to Table 1 and FIGS. 1 to 3.
[0010]
Table 1 summarizes the composition and characteristics data for 27 samples. In preparing the sample, the addition ratio of glass and B 2 O 3 was changed, the composition of the glass was changed, the presence or absence of addition of glass and B 2 O 3 as a sintering aid, and the firing temperature were considered. The composition of the glass is shown in FIG.
[0011]
(Example)
CaCO 3 powder and TiO 2 powder are used as starting materials of the present invention, and a predetermined amount is weighed so that the molar ratio of Ca to Ti is 0.95 (Ca / Ti = 0.95). This weighed raw material is wet mixed in a ball mill for 18 hours and then dried to obtain a mixed powder. This mixed powder is calcined at 1200 ° C. in the air and then wet-ground by a ball mill for 24 hours to obtain CaTiO 3 powder having an average particle size of 0.5 μm. The powder was identified as CaTiO 3 by the X-ray diffraction pattern. (See Figure 2)
[0012]
Next, glass was produced. Using GeO 2 powder, BaCO 3 powder, and Bi 2 O 3 powder as starting materials, the sample composition shown in Table 1 is weighed. This weighing material is dry mixed for 10 minutes with a mortar and pestle. The mixed powder is put into an alumina crucible and melted in a 1000 ° C. furnace for 30 minutes. After 30 minutes, the crucible is removed from the furnace and allowed to cool indoors to solidify the glass. Remove only the glass from the crucible and coarsely grind in an automatic mortar machine for 1 hour. The coarsely pulverized glass powder is wet pulverized for 8 hours by a ball mill to obtain glass powder having an average particle diameter of 1 μm. An X-ray diffraction pattern identified the powder as amorphous glass. (See Figure 3)
[0013]
The glass powder and B 2 O 3 are weighed so that the CaTiO 3 powder has the composition of the sample shown in Table 1. (B 2 O 3 is weighed with H 3 BO 3 ). It is wet mixed with a ball mill for 3 hours and then dried to obtain a mixed powder. An aqueous binder solution is added to the mixed powder and granulated. This granulated powder is packed in a mold having a φ (diameter) of 16.5 mm and uniaxially pressed at 750 kgf / cm 2 or less. Further, the molded body is subjected to isostatic pressing for 2 minutes with a force of 1000 kgf / cm 2 using a cold isostatic press. It is heated and fired in air at a temperature of 890 to 920 ° C. for 2 hours to obtain a sintered body.
[0014]
Table 1 shows measurement data of the relative permittivity εr and Q of the sintered body obtained by using the both-end short-circuited dielectric resonator method.
[0015]
Of the 27 samples in Table 1, 15 samples, ie, samples 1 to 7, sample 9, sample 11, sample 13, sample 15, and samples 18 to 21, have values of a, b, c, x, and y according to the present invention. It is in the range. That is, with respect to 100 parts by weight of a material having a perovskite type crystal phase represented by the general formula CaTiO 3 as a main crystal, x parts by weight of glass (2.5 ≦ x ≦ 15.0) and B 2 O 3 by y in which the firing was mixed parts by weight of (1. 0 ≦ y ≦ 15.0 ), the glass is expressed by a composition formula = aGeO 2 -bBaO-cBi 2 O 3, here, a, b, c is a molar ratio of 0.4.ltoreq.a.ltoreq.0.6, 0.1.ltoreq.b.ltoreq.0.5, 0.1.ltoreq.c.ltoreq.0.5, provided that a + b + c = 1.
[0016]
Samples 1 to 3 have a heating and firing temperature of 907 ° C., Samples 4 to 7, 9, 11, and 13 have a heating and firing temperature of 917 ° C., Sample 15 has 891 ° C., and Samples 18 to 21 Has a heating and baking temperature of 917 ° C. For these 15 samples, a dielectric ceramic composition having a dense structure at a heating and firing temperature of 891 to 917 ° C. has been obtained. Regarding the relative dielectric constant εr, the sample 19 has the highest value (εr = 130.1), and the sample 3 has the lowest value (εr = 80.6). Regarding the Q value, the sample 1 has the highest value (Q = 287 [at frequency = 5.39 GHz]), and the sample 19 has the lowest value (Q = 102 [at frequency = 4.53 GHz]). . For 15 samples, as shown in Table 1, good data on sinterability, relative permittivity, and Q are obtained.
[0017]
(Comparative example)
Sample 8 is a dielectric ceramic composition in which the sintering is insufficient and the structure is not densified by heating and baking at 917 ° C. because the addition ratio of B 2 O 3 is less than the lower limit of 1.0 part by weight. In sample 10, 17.5 parts by weight of glass was added, but the addition rate of B 2 O 3 was less than the lower limit of 1.0 part by weight. do not do. In Samples 12 and 14, the addition rate of B 2 O 3 exceeds the upper limit of 15.0 parts by weight, so oversintering occurs and a dense structure is not obtained. When the sintering temperature of the sample 17 is too high, oversintering is caused and a trace of foaming remains in the entire sample, so that a dense structure is not formed. Sample 22 has b = 0 (<0.1), sample 24 has c = 0 (<0.1), and sample 25 has a = 0.3 (<0.4). That is, since the glass composition of the sample 22, the sample 24, and the sample 25 is outside the optimum range, sintering at 917 ° C. is insufficient and does not have a dense structure. Samples 26 and 27 are samples in which the glass and B 2 O 3 are not added. A firing temperature of 1300 ° C. is necessary in order to obtain a dense structure and to obtain characteristics of relative dielectric constant εr ≧ 170 and Q ≧ 1800.
[0018]
Table 1 summarizes the composition and characteristics data for 27 samples.
[Table 1]
Figure 0004100929
[0019]
It should be noted that the dielectric ceramic composition of the present invention is not limited to the illustrated examples described above, and it is needless to say that various modifications can be made without departing from the gist of the present invention.
[0020]
【The invention's effect】
According to the dielectric ceramic composition of the present invention, a dense dielectric ceramic composition having characteristics of relative dielectric constant εr = 80 to 130, Q = 100 to 300 (at frequency = 4.5 to 5.8 GHz) is obtained. Heat baking can be performed in the range of 890 to 920 ° C. With this dense structure, the strength of the ceramic is improved, and variations in the relative permittivity εr and Q value are reduced and stabilized. In addition, since the dielectric ceramic composition and the silver (Ag) electrode can be fired simultaneously, the manufacturing process can be shortened and the manufacturing cost can be reduced. Moreover, since this dielectric ceramic composition does not contain lead (Pb) harmful to the human body, it is useful for environmental protection.
[Brief description of the drawings]
FIG. 1 is a ternary composition diagram of the glass of the present invention.
FIG. 2 is an X-ray diffraction pattern diagram showing that the powder is CaTiO 3 .
FIG. 3 is an X-ray diffraction pattern showing that the powder is amorphous glass.

Claims (4)

一般式CaTiOで表されるペロブスカイト型結晶相を主結晶とする材料の100重量部に対して、ガラスをx重量部(2.5≦x≦15.0)、Bをy重量部(1.0≦y≦15.0)を混合して加熱焼成した誘電体磁器組成物であって、
前記ガラスは、組成式=aGeO - bBaO - cBi で表され、ここに、 a、b、cは、モル比で、
. 4≦a≦0 . 6、0 . 1≦b≦0 . 5、0 . 1≦c≦0 . 5、
但し、a+b+c=1
の範囲内にあり、
加熱焼成する温度が、890〜920℃の範囲にあることを特徴とする誘電体磁器組成物。
For 100 parts by weight of a material having a perovskite crystal phase represented by the general formula CaTiO 3 as the main crystal, x parts by weight of glass (2.5 ≦ x ≦ 15.0) and y parts by weight of B 2 O 3 Parts (1.0 ≦ y ≦ 15.0) mixed and heated and fired ,
The glass composition formula = aGeO 2 - bBaO - represented by CBI 2 O 3, here, a, b, c are, in a molar ratio,
0. 4 ≦ a ≦ 0. 6,0. 1 ≦ b ≦ 0. 5,0. 1 ≦ c ≦ 0. 5,
However, a + b + c = 1
In the range of
A dielectric ceramic composition characterized in that the temperature for heating and firing is in the range of 890 to 920 ° C.
一般式CaTiOで表されるペロブスカイト型結晶相を主結晶とする誘電体磁器組成物の製造方法であって、
CaTiO粉末の100重量部に対してガラス粉末をx重量部(2 . 5≦x≦15 . 0)とB粉末をy重量部(1.0≦y≦15 . 0)とを秤量して、
前記ガラス粉末は、組成式=aGeO - bBaO - cBi で表され、ここに、a、b、cは、モル比で、
. 4≦a≦0 . 6、0 . 1≦b≦0 . 5、0 . 1≦c≦0 . 5、
但し、a+b+c=1
の範囲内にあり、
それらを湿式混合して、乾燥させて混合粉末を得て、該混合粉末にバインダー水溶液を添加し造粒して、該造粒粉末を金型に充填して一軸加圧で適当な大きさに仮成形して、さらに該仮成形体に対して等方加圧し成形して、該成形体を空気中において890〜920℃の範囲の温度で加熱焼成することを特徴とする誘電体磁器組成物の製造方法。
A method for producing a dielectric ceramic composition having a perovskite crystal phase represented by a general formula CaTiO 3 as a main crystal,
CaTiO 3 x parts by weight of glass powder with respect to 100 parts by weight of the powder (2. 5 ≦ x ≦ 15 . 0) and B 2 O 3 powder y parts by weight (1.0 ≦ y ≦ 15. 0 ) and the Weigh and
The glass powder composition formula = aGeO 2 - bBaO - represented by CBI 2 O 3, here, a, b, c are, in a molar ratio,
0. 4 ≦ a ≦ 0. 6,0. 1 ≦ b ≦ 0. 5,0. 1 ≦ c ≦ 0. 5,
However, a + b + c = 1
In the range of
They are wet-mixed and dried to obtain a mixed powder, and an aqueous binder solution is added to the mixed powder and granulated. The granulated powder is filled in a mold and uniaxially pressed to an appropriate size. The dielectric ceramic composition is characterized in that it is temporarily molded, isotropically pressed against the temporary molded body and molded, and the molded body is heated and fired at a temperature in the range of 890 to 920 ° C. in air. Manufacturing method.
前記CaTiO粉末は、出発原料にCaCO粉末とTiO粉末を用い、CaとTiのモル比が0.95(Ca/Ti=0.95)になるように所定量秤量し、該秤量原料を湿式混合した後に乾燥させて混合粉末を得て、該混合粉末を大気中において仮焼した後に湿式粉砕して得られることを特徴とする請求項に記載の誘電体磁器組成物の製造方法。The CaTiO 3 powder uses a CaCO 3 powder and a TiO 2 powder as starting materials, and weighs a predetermined amount so that the molar ratio of Ca to Ti is 0.95 (Ca / Ti = 0.95). 3. The method for producing a dielectric ceramic composition according to claim 2 , wherein the mixed powder is dried after being wet mixed to obtain a mixed powder, the mixed powder is calcined in the air and then wet pulverized. . 前記ガラス粉末は、出発原料にGeO粉末とBaCO粉末とBi粉末を用い、それぞれを秤量して、該秤量原料を乾式混合し、該混合した粉末を溶融させて、常温で放冷してガラスを固化させて、該ガラスだけを取り出し粗粉砕して、該粗粉砕したガラス粉末を湿式粉砕して得られることを特徴とする請求項に記載の誘電体磁器組成物の製造方法。The glass powder uses GeO 2 powder, BaCO 3 powder and Bi 2 O 3 powder as starting materials, weighs each, dry mixes the weighed materials, melts the mixed powder, and releases it at room temperature. The dielectric ceramic composition according to claim 2 , wherein the dielectric ceramic composition is obtained by solidifying glass by cooling, taking out only the glass, coarsely pulverizing, and wet-pulverizing the coarsely pulverized glass powder. Method.
JP2002043408A 2002-02-20 2002-02-20 Dielectric ceramic composition and manufacturing method thereof Expired - Fee Related JP4100929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002043408A JP4100929B2 (en) 2002-02-20 2002-02-20 Dielectric ceramic composition and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002043408A JP4100929B2 (en) 2002-02-20 2002-02-20 Dielectric ceramic composition and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2003238243A JP2003238243A (en) 2003-08-27
JP2003238243A5 JP2003238243A5 (en) 2005-06-23
JP4100929B2 true JP4100929B2 (en) 2008-06-11

Family

ID=27783210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002043408A Expired - Fee Related JP4100929B2 (en) 2002-02-20 2002-02-20 Dielectric ceramic composition and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4100929B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9090479B2 (en) 2008-09-05 2015-07-28 Sumitomo Electric Industries, Ltd. Ceramic powder, dielectric composite material containing the ceramic powder, and dielectric antenna

Also Published As

Publication number Publication date
JP2003238243A (en) 2003-08-27

Similar Documents

Publication Publication Date Title
JP2613722B2 (en) Method for producing dielectric ceramic composition for low-temperature firing
CN103232235B (en) Low-temperature sintered composite microwave dielectric ceramic material and preparation method thereof
JP3737773B2 (en) Dielectric ceramic composition
JP3737774B2 (en) Dielectric ceramic composition
JP4830223B2 (en) Method for producing high frequency dielectric ceramic composition
JP4100929B2 (en) Dielectric ceramic composition and manufacturing method thereof
JPH1072258A (en) Dielectric ceramic composition
JP4100932B2 (en) Dielectric ceramic composition and manufacturing method thereof
JP4097018B2 (en) Dielectric porcelain composition
JP4368136B2 (en) Dielectric porcelain composition
JP3375450B2 (en) Dielectric porcelain composition
JP3909366B2 (en) Low dielectric constant porcelain composition and method for producing substrate for electronic circuit using the porcelain composition
JP2781501B2 (en) Dielectric ceramic composition for low temperature firing
JPH06116022A (en) Dielectric porcelain composition for low temp. firing and dielectric resonator or dielectric filter obtained by using the same and production thereof
JP4097019B2 (en) Dielectric porcelain composition
JP7315902B2 (en) Dielectric porcelain composition and electronic parts
JP2781502B2 (en) Dielectric porcelain composition for low-temperature firing, dielectric resonator or dielectric filter obtained using the same, and methods for producing them
JP2865925B2 (en) Method for producing dielectric porcelain composition
JP2000063182A (en) Production of ceramic raw material capable of being sintered at low temperature
JP2004026591A (en) Dielectric porcelain composition
JP2004026590A (en) Dielectric porcelain composition
JP2879864B2 (en) Method for producing dielectric porcelain composition
JP3858395B2 (en) Dielectric porcelain composition
JP2006290646A (en) Dielectric ceramic composition and dielectric laminated device obtained by using the same
JPH05290626A (en) Manufacture of high frequency dielectric sintered body

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041004

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313632

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees