JP4830223B2 - Method for producing high frequency dielectric ceramic composition - Google Patents

Method for producing high frequency dielectric ceramic composition Download PDF

Info

Publication number
JP4830223B2
JP4830223B2 JP2001212408A JP2001212408A JP4830223B2 JP 4830223 B2 JP4830223 B2 JP 4830223B2 JP 2001212408 A JP2001212408 A JP 2001212408A JP 2001212408 A JP2001212408 A JP 2001212408A JP 4830223 B2 JP4830223 B2 JP 4830223B2
Authority
JP
Japan
Prior art keywords
glass powder
dielectric ceramic
powder
mol
cordierite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001212408A
Other languages
Japanese (ja)
Other versions
JP2003026471A (en
Inventor
和樹 岩下
晃一 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2001212408A priority Critical patent/JP4830223B2/en
Publication of JP2003026471A publication Critical patent/JP2003026471A/en
Application granted granted Critical
Publication of JP4830223B2 publication Critical patent/JP4830223B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、比誘電率εrが7以下で、高周波領域でのQ値が大きく、さらに共振周波数f0の温度係数τfの調整が容易に実現できる高周波用誘電体磁器組成物に関する。
【0002】
【従来の技術】
近年、通信網の急激な発展に伴い、通信に使用する周波数が拡大すると同時に、マイクロ波領域やミリ波領域の高周波領域に及んでいる。一方、マイクロ波回路やミリ波回路の大きさは、比誘電率εrが大きくなるほど小型化が可能である。しかし、マイクロ波領域以上の高周波領域に関しては、比誘電率εrが大き過ぎると、回路が小さくなりすぎ加工精度が低下するため、比較的比誘電率εrが小さい材料が必要となる。
【0003】
この種の誘電体磁器組成物として、BaO−MgO−WO3系材料(特開平6−236708号公報)、Al23−TiO2−Ta25系材料(特開平9−52760号公報)などが提案されている。しかし、比誘電率εrが10以上であり、さらに低い誘電率を有する誘電体磁器組成物が求められている。
【0004】
一方、コージェライト(MgAlSi18)は、測定周波数10GHzで比誘電率εrが5.1、f×Q値が80000と良好な誘電特性を示すが、共振周波数の温度係数τfが−22ppm/℃であるため、用途が制限されている。また、コージェライトを固相反応焼結で製造する場合、合成温度及び焼結温度と、溶融分解開始温度との温度差が小さいため、焼結温度範囲が狭くなり、緻密なコージェライトを作製することは困難である。
【0005】
【発明が解決しようとする課題】
本発明の目的は、上記の問題を解消し、比誘電率εrが7以下で、f×Q値も大きく、さらに共振周波数f0の温度係数τfの絶対値が10ppm/℃以下で調製が容易な高周波用誘電体磁器組成物を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、コージェライト(MgAlSi18)組成のガラス粉末 70〜89重量部とコージェライト結晶相およびスピネル(MgAl)結晶相を析出可能なMgO−Al−SiO系ガラス粉末 4〜15重量部およびTiO粉末 7〜15重量部を配合してなる合計100重量部の混合粉末を焼成してなり、生成したコージェライト・スピネル結晶質母相中にTiO結晶が存在する高周波用誘電体磁器組成物に関するものである。
MgO−Al−SiO系ガラスは、SiOを30〜65mol%、Alを10〜30mol%、MgOを10〜40mol%含むことが好ましい。さらに、前記MgO−Al−SiO系ガラスは、ZnO、B、P、TiO、GeOのうち少なくとも1つの成分を10mol%以下含むことが好ましい。
【0007】
また、本発明は、緻密な焼結体を得る方法として熱処理によりコージェライトを析出可能なガラス粉末と、コージェライト結晶相及びスピネル結晶相を析出可能なガラス粉末を原料として用いることを特徴とする高周波用誘電体磁器組成物の製造方法に関する。詳しくは、コージェライト(MgAlSi18)組成のガラス粉末 70〜89重量部と、コージェライト結晶相およびスピネル(MgAl)を析出可能なMgO−Al−SiO系ガラス粉末 4〜15重量部と、TiO粉末 7〜15重量部とを混合して合計100重量部ガラス混合粉末を得、1000〜1400℃で焼成することを特徴とする高周波用誘電体磁器組成物の製造方法に関する。
【0008】
【発明の実施の形態】
コージェライト(MgAlSi18)は、測定周波数10GHzで比誘電率εrが5.1、f×Q値が80000と良好な誘電特性を示すが、共振周波数の温度係数τfが−22ppm/℃であるためこのままでは実用的でない。そこで、TiO粉末を添加して、共振周波数の温度係数τfをプラス側にシフトすることができるが、TiO粉末の添加は、通常、コージェライト組成のガラスの焼結性を妨げる。また、焼結性を増すために、他のガラス成分を添加すると、f×Q値を犠牲にしてしまう。本発明では、コージェライト結晶相およびスピネル(MgAl)結晶相を析出可能なMgO−Al−SiO系ガラス粉末を添加することによって、焼結性を増し、かつ、良好な誘電特性を示す高周波用誘電体磁器組成物を提供することを可能とした。
【0009】
本発明の高周波用誘電体磁器組成物は、図1のX線回折図が示すようにコージェライト・スピネル結晶質母相中にTiO結晶が存在することを特徴とする。特に、コージェライト・スピネル結晶質母相中にTiO粒子が分散して存在することが好ましい。前記誘電体磁器組成物は、コージェライト(MgAlSi18)組成のガラス粉末(以後ガラス粉末Aと記す) 70〜89重量部とコージェライト結晶相およびスピネル(MgAl)結晶相を析出可能なMgO−Al−SiO系ガラス粉末(以後ガラス粉末Bと記す) 4〜15重量部およびTiO粉末 7〜15重量部を配合してなる合計100重量部の混合粉末を焼成することによって得られる。
【0010】
特に、コージェライト結晶相およびスピネル(MgAl)結晶相を析出可能なMgO−Al−SiO系ガラス粉末を使用することによって、焼成時に軟化しやすくなり、焼結性が向上し、f×Q値などの特性の優れた誘電体磁器組成物を得ることができる。
【0011】
原料となるコージェライト組成のガラス粉末Aは、加熱時にコージェライト結晶相を生成し、それ以外の結晶相及び非晶質相が存在しないか、極めて少なくなるようなガラス粉末であればよい。例えば、SiO 55.6mol%−Al 22.2mol%−MgO 22.2mol%などが挙げられる。このようなガラス粉末は公知のガラス化手法によって調製され得るものである。例えば、各原料成分を所定の割合で配合してなる混合物を溶融せしめ、その溶融物を急冷却してガラス化し、そしてそれを粉砕することによって得られる。また、ゾル−ゲル法などの液相合成法によって合成されるアモルファス粉末であってもよい。
【0012】
また、前記MgO−Al−SiO系ガラス粉末Bとしては、その組成は特に限定されず、加熱時にコージェライト結晶相およびスピネル(MgAl)結晶相を析出可能な組成であればよい。本発明においては、SiO 30〜65mol%−Al 10〜30mol%−MgO 10〜40mol%を含む組成のガラス粉末が好ましい。SiO、Al、MgOを前記の組成範囲内にすることにより焼結体の緻密化が効果的に行われるとともに、所望の結晶相が得られる。このようなガラス粉末は公知のガラス化手法によって調製され得るものである。例えば、各原料成分を所定の割合で配合してなる混合物を溶融せしめ、その溶融物を急冷却してガラス化し、そしてそれを粉砕することによって得られる。また、ゾル−ゲル法などの液相合成法によって合成されるアモルファス粉末であってもよい。
【0013】
前記MgO−Al−SiO系ガラスは、ZnO、B、P、TiO、GeOのうち少なくとも1つの成分を10mol%以下含むと焼結温度を下げることができ焼結性が増すので好ましい。これらの成分が10mol%を超えると、他の結晶が析出したり、吸水性が現れるものもあり、好ましくない。
【0014】
本発明における、混合ガラス粉末のコージェライト(MgAlSi18)組成のガラス粉末Aと、コージェライト結晶相およびスピネル(MgAl)結晶相を析出可能なMgO−Al−SiO系ガラス粉末BおよびTiO粉末の混合割合は、前記の通りであるが、その限定理由は以下の通りである。ガラス粉末Aが70wt%より少ないとf×Q値が小さくなり、89wt%より多くなると焼結体密度が小さくなるため好ましくない。また、ガラス粉末Bが4wt%より少ないと焼結体密度が小さくなり、15wt%より多くなるとf×Q値が小さくなるので好ましくない。TiOが7wt%より少なくなるか、若しくは15wt%より多くなると共振周波数fの温度係数τの絶対値が10ppm/℃より大きくなるので好ましくない。
【0015】
本発明の高周波用誘電体磁器組成物の好適な製造方法の一例を次に示す。コージェライト組成のガラス粉末A、コージェライト結晶相およびスピネル結晶相を析出可能なガラス粉末B、および酸化チタンから構成される出発原料を所定量ずつ、水、アルコール等の溶媒と共に湿式混合する。続いて、水、アルコールを除去した後、粉砕する。続いて、このようにして得られた粉末にポリビニルアルコールの如き有機バインダーを混合して均質にし、乾燥、粉砕、加圧成形(圧力100〜1000kg/cm2程度)する。得られた成型物を空気の如き酸素含有ガス雰囲気下にて1000〜1400℃で焼成することによりコージェライト・スピネル結晶質母相中にTiO粒子が分散して存在する誘電体磁器組成物が得られる。焼成温度が1000℃より低いとコージェライト等の結晶化が起こりにくく、1400℃を超えるとTiOが反応して存在しなくなる。焼成温度1100〜1200℃では、緻密な焼結体が得られ、また十分な特性が得られるため、特に好ましい。
【0016】
このようにして得られた誘電体磁器組成物は、必要により適当な形状、およびサイズに加工、あるいはドクターブレード法等によるシート成形、およびシートと電極による積層化を行うことにより、誘電体共振器、誘電体基板、積層素子等の材料として利用できる。
【0017】
なお、チタンの原料としては、TiO2の他に、焼成時に酸化物となる硝酸塩、炭酸塩、水酸化物、塩化物、有機金属化合物等を使用することができる。
【0018】
原料のコージェライト(MgAlSi18)組成のガラス粉末の代わりに、コージェライトの結晶粒子を用い、また、コージェライト結晶相およびスピネル(MgAl)結晶相を析出可能なMgO−Al−SiO系ガラス粉末の代わりにこれらの結晶粒子を用いることも可能であるが、焼結しにくい傾向がある。
【0019】
また、前記ガラス粉末Bとしてスピネル結晶相のみを析出する組成とした場合、即ち、最終組成の量の、コージェライト組成のガラス粉末または結晶粉末と、スピネル組成のガラス粉末または結晶粉末と、TiO粉末とを混合し焼成した場合、焼結性が悪くなる。
【実施例】
実施例1
下記の組成からなるコージェライト結晶相を析出可能なガラス粉末Aと、コージェライト結晶相およびスピネル結晶相を析出可能なガラス粉末Bとを準備した。
【0020】
ガラス粉末AはSiO 55.6mol%、Al 22.2mol%、MgO 22.2mol%の組成からなり、ガラス粉末BはSiO 58.8mol%、Al 19.0mol%、MgO 16.8mol%、ZnO 5.4mol%の組成からなる。
そして、ガラス粉末Aが81.2wt%、ガラス粉末Bが11.8wt%、TiOが7.0wt%で構成される原料粉をエタノール、ZrOボールと共にボールミルに入れ、24時間湿式混合した。溶媒を脱媒後、粉砕し、引き続き、この粉砕物に適量のポリビニルアルコール溶液を加えて乾燥後、直径20mm、厚み6mmのペレットに成形し、空気雰囲気下において、1150℃にて4時間焼成した。
【0021】
こうして得られた実施例1の磁器組成物を直径16mm、厚み4mmの大きさに加工した後、誘電共振法によって測定し、共振周波数9〜11GHzにおけるf×Q値、比誘電率εr、および共振周波数の温度係数τfを求めた。その結果を表2に示す。
【0022】
得られた誘電体磁器組成物についてX線回折を行ったところ、MgAlSi18(α−コージェライト)、TiO(ルチル)、MgAl(スピネル)が、生成していることがわかった。図1にそのX線回折図を示す。
【0023】
実施例2〜11
実施例1で使用したものと同組成のガラス粉末A、ガラス粉末BおよびTiOを表1に示した配合量で混合後、実施例1と同一条件で成形し、空気雰囲気下において、表1に示した温度で4時間焼成して誘電体セラミックスを作製し、実施例1と同様な方法で特性を評価した。その結果を表2に示す。
【0024】
比較例1〜6
実施例1で使用したものと同組成のガラス粉末A、ガラス粉末BおよびTiOを表1に示した配合量と同一条件で誘電体セラミックスを作製し、実施例1と同様な方法で特性を評価した。その結果を表2に示す。
【0025】
【表1】

Figure 0004830223
【0026】
【表2】
Figure 0004830223
【0027】
【発明の効果】
本発明によれば、比誘電率εrが7以下で、高周波領域でのQ値が大きく、さらに共振周波数f。の温度係数τfの調整が容易に実現できる高周波用誘電体磁器組成物を提供することができる。
【図面の簡単な説明】
【図1】本発明の誘電体磁器組成物のX線回折図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-frequency dielectric ceramic composition that has a relative dielectric constant ε r of 7 or less, has a large Q value in a high frequency region, and can easily adjust the temperature coefficient τ f of a resonance frequency f 0 .
[0002]
[Prior art]
In recent years, with the rapid development of communication networks, the frequency used for communication has expanded, and at the same time, has reached the high frequency region of the microwave region and the millimeter wave region. On the other hand, the size of the microwave circuit and the millimeter wave circuit can be reduced as the relative dielectric constant ε r increases. However, in the high frequency region above the microwave region, if the relative permittivity ε r is too large, the circuit becomes too small and the processing accuracy decreases, so a material having a relatively small relative permittivity ε r is required.
[0003]
As this kind of dielectric ceramic composition, BaO—MgO—WO 3 type material (Japanese Patent Laid-Open No. 6-236708), Al 2 O 3 —TiO 2 —Ta 2 O 5 type material (Japanese Patent Laid-Open No. 9-52760). ) Etc. have been proposed. However, there is a demand for a dielectric ceramic composition having a relative dielectric constant ε r of 10 or more and a lower dielectric constant.
[0004]
On the other hand, cordierite (Mg 2 Al 4 Si 5 O 18 ) exhibits a good dielectric property with a measurement frequency of 10 GHz, a relative dielectric constant ε r of 5.1, and an f 0 × Q value of 80000. The application is limited because the coefficient τ f is −22 ppm / ° C. Also, when cordierite is produced by solid phase reaction sintering, the temperature difference between the synthesis temperature and sintering temperature and the melting decomposition start temperature is small, so the sintering temperature range is narrowed, and dense cordierite is produced. It is difficult.
[0005]
[Problems to be solved by the invention]
The object of the present invention is to solve the above-mentioned problems, the relative dielectric constant ε r is 7 or less, the f 0 × Q value is large, and the absolute value of the temperature coefficient τ f of the resonance frequency f 0 is 10 ppm / ° C. or less. An object of the present invention is to provide a dielectric ceramic composition for high frequency that can be easily prepared.
[0006]
[Means for Solving the Problems]
The present invention relates to MgO—Al 2 O 3 capable of precipitating 70 to 89 parts by weight of a glass powder having a cordierite (Mg 2 Al 4 Si 5 O 18 ) composition, a cordierite crystal phase and a spinel (MgAl 2 O 4 ) crystal phase. it by firing the mixed powder of 100 parts by weight total of -SiO 2 based glass powder 4-15 parts by weight by blending the TiO 2 powder 7-15 parts by weight, the resulting cordierite to write spinel crystalline matrix phase The present invention relates to a high frequency dielectric ceramic composition in which a TiO 2 crystal is present.
The MgO—Al 2 O 3 —SiO 2 glass preferably contains 30 to 65 mol% of SiO 2 , 10 to 30 mol% of Al 2 O 3 , and 10 to 40 mol% of MgO. Further, the MgO—Al 2 O 3 —SiO 2 glass preferably contains 10 mol% or less of at least one component of ZnO, B 2 O 3 , P 2 O 5 , TiO 2 , and GeO 2 .
[0007]
Further, the present invention is characterized in that as a method for obtaining a dense sintered body, glass powder capable of precipitating cordierite by heat treatment and glass powder capable of precipitating cordierite crystal phase and spinel crystal phase are used as raw materials. The present invention relates to a method for producing a high frequency dielectric ceramic composition. Specifically, 70 to 89 parts by weight of a glass powder having a cordierite (Mg 2 Al 4 Si 5 O 18 ) composition, and a MgO—Al 2 O 3 —SiO capable of precipitating a cordierite crystal phase and spinel (MgAl 2 O 4 ). 4 to 15 parts by weight of 2 glass powder and 7 to 15 parts by weight of TiO 2 powder are mixed to obtain a total of 100 parts by weight of glass mixed powder, which is fired at 1000 to 1400 ° C. The present invention relates to a method for producing a porcelain composition.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Cordierite (Mg 2 Al 4 Si 5 O 18 ) shows a good dielectric characteristic with a measurement frequency of 10 GHz, a relative dielectric constant ε r of 5.1, and an f 0 × Q value of 80000, but has a temperature coefficient τ of the resonance frequency. Since f is −22 ppm / ° C., it is not practical as it is. Thus, TiO 2 powder can be added to shift the temperature coefficient τ f of the resonance frequency to the plus side. However, the addition of TiO 2 powder usually hinders the sinterability of glass with a cordierite composition. Further, when other glass components are added to increase the sinterability, the f 0 × Q value is sacrificed. In the present invention, by adding MgO—Al 2 O 3 —SiO 2 glass powder capable of precipitating a cordierite crystal phase and a spinel (MgAl 2 O 4 ) crystal phase, the sinterability is increased, and good It was possible to provide a high frequency dielectric ceramic composition exhibiting dielectric characteristics.
[0009]
The high frequency dielectric ceramic composition of the present invention is characterized in that TiO 2 crystals are present in the cordierite-spinel crystalline matrix as shown in the X-ray diffraction diagram of FIG. In particular, it is preferable that TiO 2 particles are present dispersed in the cordierite / spinel crystalline matrix. The dielectric ceramic composition is composed of 70 to 89 parts by weight of a cordierite (Mg 2 Al 4 Si 5 O 18 ) glass powder (hereinafter referred to as glass powder A), cordierite crystal phase and spinel (MgAl 2 O 4 ). MgO—Al 2 O 3 —SiO 2 glass powder capable of precipitating a crystalline phase (hereinafter referred to as glass powder B) 4 to 15 parts by weight and TiO 2 powder 7 to 15 parts by weight It is obtained by firing the mixed powder.
[0010]
In particular, by using MgO-Al 2 O 3 —SiO 2 glass powder capable of precipitating cordierite crystal phase and spinel (MgAl 2 O 4 ) crystal phase, it becomes easy to soften during firing and sinterability is improved. In addition, a dielectric ceramic composition having excellent characteristics such as f 0 × Q value can be obtained.
[0011]
The glass powder A having a cordierite composition as a raw material may be a glass powder that generates a cordierite crystal phase upon heating and has no or very little other crystal phase and amorphous phase. For example, such SiO 2 55.6mol% -Al 2 O 3 22.2mol% -MgO 22.2mol% and the like. Such a glass powder can be prepared by a known vitrification technique. For example, it is obtained by melting a mixture obtained by blending each raw material component in a predetermined ratio, rapidly cooling the melt to vitrify it, and pulverizing it. Further, it may be an amorphous powder synthesized by a liquid phase synthesis method such as a sol-gel method.
[0012]
Further, the composition of the MgO—Al 2 O 3 —SiO 2 glass powder B is not particularly limited, and may be a composition capable of precipitating a cordierite crystal phase and a spinel (MgAl 2 O 4 ) crystal phase upon heating. That's fine. In the present invention, the glass powder having a composition including SiO 2 30~65mol% -Al 2 O 3 10~30mol% -MgO 10~40mol% is preferred. By making SiO 2 , Al 2 O 3 , and MgO within the above composition range, the sintered body can be effectively densified and a desired crystal phase can be obtained. Such a glass powder can be prepared by a known vitrification technique. For example, it is obtained by melting a mixture obtained by blending each raw material component in a predetermined ratio, rapidly cooling the melt to vitrify it, and pulverizing it. Further, it may be an amorphous powder synthesized by a liquid phase synthesis method such as a sol-gel method.
[0013]
If the MgO—Al 2 O 3 —SiO 2 glass contains 10 mol% or less of at least one component of ZnO, B 2 O 3 , P 2 O 5 , TiO 2 and GeO 2 , the sintering temperature may be lowered. This is preferable because sinterability increases. When these components exceed 10 mol%, other crystals may precipitate or water absorption may occur, which is not preferable.
[0014]
MgO-Al 2 O capable of precipitating a glass powder A of a mixed glass powder cordierite (Mg 2 Al 4 Si 5 O 18 ) composition, a cordierite crystal phase and a spinel (MgAl 2 O 4 ) crystal phase in the present invention. The mixing ratio of the 3- SiO 2 -based glass powder B and the TiO 2 powder is as described above, and the reasons for limitation are as follows. If the glass powder A is less than 70 wt%, the f 0 × Q value decreases, and if it exceeds 89 wt%, the sintered body density decreases, which is not preferable. Further, if the glass powder B is less than 4 wt%, the sintered body density is decreased, and if it exceeds 15 wt%, the f 0 × Q value is decreased, which is not preferable. If TiO 2 is less than 7 wt% or more than 15 wt%, the absolute value of the temperature coefficient τ f of the resonance frequency f 0 is greater than 10 ppm / ° C., which is not preferable.
[0015]
An example of a preferred method for producing the high frequency dielectric ceramic composition of the present invention is shown below. A predetermined amount of a starting material composed of glass powder A having a cordierite composition, glass powder B capable of precipitating a cordierite crystal phase and a spinel crystal phase, and titanium oxide is wet mixed with a solvent such as water and alcohol. Subsequently, water and alcohol are removed and then pulverized. Subsequently, an organic binder such as polyvinyl alcohol is mixed with the powder thus obtained, and the mixture is homogenized, dried, pulverized, and pressure-molded (pressure of about 100 to 1000 kg / cm 2 ). The obtained molded product is fired at 1000 to 1400 ° C. in an oxygen-containing gas atmosphere such as air to obtain a dielectric ceramic composition in which TiO 2 particles are dispersed in the cordierite / spinel crystalline matrix. can get. When the firing temperature is lower than 1000 ° C., crystallization of cordierite or the like is difficult to occur, and when it exceeds 1400 ° C., TiO 2 does not react and does not exist. A firing temperature of 1100 to 1200 ° C. is particularly preferable because a dense sintered body can be obtained and sufficient characteristics can be obtained.
[0016]
The dielectric ceramic composition thus obtained is processed into an appropriate shape and size if necessary, or is formed by a doctor blade method or the like, and is laminated by a sheet and an electrode, whereby a dielectric resonator is obtained. It can be used as a material for dielectric substrates and laminated elements.
[0017]
As a raw material of titanium, in addition to TiO 2 , nitrates, carbonates, hydroxides, chlorides, organometallic compounds and the like that become oxides during firing can be used.
[0018]
Cordierite crystal particles can be used instead of the raw material cordierite (Mg 2 Al 4 Si 5 O 18 ) glass powder, and the cordierite crystal phase and spinel (MgAl 2 O 4 ) crystal phase can be precipitated. These crystal particles can be used in place of the MgO—Al 2 O 3 —SiO 2 glass powder, but tend to be difficult to sinter.
[0019]
In addition, when using the composition to precipitate only the spinel crystal phase, as the glass powder B, that is, the amount of the final composition, the glass powder or crystalline powder cordierite composition, glass powder or crystalline powder of the spinel composition, TiO 2 When the powder is mixed and fired, the sinterability deteriorates.
【Example】
Example 1
A glass powder A capable of precipitating a cordierite crystal phase having the following composition and a glass powder B capable of precipitating a cordierite crystal phase and a spinel crystal phase were prepared.
[0020]
Glass powder A has a composition of SiO 2 55.6 mol%, Al 2 O 3 22.2 mol%, MgO 22.2 mol%, and glass powder B has SiO 2 58.8 mol%, Al 2 O 3 19.0 mol%, It has a composition of 16.8 mol% MgO and 5.4 mol% ZnO.
A raw material powder composed of 81.2 wt% of glass powder A, 11.8 wt% of glass powder B, and 7.0 wt% of TiO 2 was placed in a ball mill together with ethanol and ZrO 2 balls, and wet mixed for 24 hours. After removing the solvent, the mixture was pulverized. Subsequently, an appropriate amount of a polyvinyl alcohol solution was added to the pulverized product, dried, and then formed into pellets having a diameter of 20 mm and a thickness of 6 mm. .
[0021]
The porcelain composition of Example 1 thus obtained was processed into a size of 16 mm in diameter and 4 mm in thickness, and then measured by a dielectric resonance method to obtain an f 0 × Q value at a resonance frequency of 9 to 11 GHz, a relative dielectric constant ε r , And the temperature coefficient τ f of the resonance frequency. The results are shown in Table 2.
[0022]
When X-ray diffraction was performed on the obtained dielectric ceramic composition, Mg 2 Al 4 Si 5 O 18 (α-cordierite), TiO 2 (rutile), and MgAl 2 O 4 (spinel) were produced. I found out. FIG. 1 shows the X-ray diffraction pattern.
[0023]
Examples 2-11
Glass powder A, glass powder B and TiO 2 having the same composition as those used in Example 1 were mixed at the blending amounts shown in Table 1, and then molded under the same conditions as in Example 1. Table 1 A dielectric ceramic was produced by firing at the temperature shown in 4 for 4 hours, and the characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 2.
[0024]
Comparative Examples 1-6
Dielectric ceramics were produced under the same conditions as the blending amounts shown in Table 1 for glass powder A, glass powder B, and TiO 2 having the same composition as those used in Example 1, and characteristics were obtained in the same manner as in Example 1. evaluated. The results are shown in Table 2.
[0025]
[Table 1]
Figure 0004830223
[0026]
[Table 2]
Figure 0004830223
[0027]
【The invention's effect】
According to the present invention, the relative dielectric constant ε r is 7 or less, the Q value in the high frequency region is large, and the resonance frequency f. It is possible to provide a high-frequency dielectric ceramic composition that can easily adjust the temperature coefficient τ f of.
[Brief description of the drawings]
FIG. 1 is an X-ray diffraction pattern of a dielectric ceramic composition of the present invention.

Claims (5)

コージェライト(MgAlSi18)組成のガラス粉末70〜89重量部と、コージェライト結晶相およびスピネル(MgAl)結晶相を析出可能なMgO−Al−SiO系ガラス粉末4〜15重量部と、TiO粉末7〜15重量部とをそれぞれ準備する工程と、
前記ガラス粉末Aと、前記ガラス粉末Bと、前記TiO 粉末とを混合して合計100重量部ガラス混合粉末を得る工程と、
前記ガラス混合粉末を1000〜1400℃で焼成する工程とを特徴とする高周波用誘電体磁器組成物の製造方法。
70 to 89 parts by weight of a glass powder A having a cordierite (Mg 2 Al 4 Si 5 O 18 ) composition, and a MgO—Al 2 O 3 —SiO capable of precipitating a cordierite crystal phase and a spinel (MgAl 2 O 4 ) crystal phase A step of preparing 4 to 15 parts by weight of 2 glass powder B and 7 to 15 parts by weight of TiO 2 powder ,
And the glass powder A, and the glass powder B, a step Ru give a total of 100 parts by weight of glass powder mixture by mixing said TiO 2 powder,
A method for producing a dielectric ceramic composition for high frequency , comprising a step of firing the glass mixed powder at 1000 to 1400 ° C.
前記ガラス粉末Aは、SiOThe glass powder A is made of SiO. 2 55.6mol%−Al 55.6 mol% -Al 2 O 3 22.2mol%−MgO 22.2mol%であることを特徴とする請求項1記載の高周波用誘電体磁器組成物の製造方法。2. The method for producing a dielectric ceramic composition for high frequency according to claim 1, wherein 22.2 mol% -MgO is 22.2 mol%. 前記ガラス粉末Bは、SiOを30〜65mol%、Alを10〜30mol%、MgOを10〜40mol%含むことを特徴とする請求項1又は2記載の高周波用誘電体磁器組成物の製造方法。The glass powder B has a SiO 2 30~65mol%, Al 2 O 3 and 10 to 30 mol%, according to claim 1 or 2 high frequency dielectric ceramic composition according to comprising 10 to 40 mol% of MgO Manufacturing method. 前記ガラス粉末Bは、ZnO、B、P、TiO、GeOのうち少なくとも1つの成分を10mol%以下含むことを特徴とする請求項1乃至3いずれか記載の高周波用誘電体磁器組成物の製造方法。The glass powder B is, ZnO, B 2 O 3, P 2 O 5, TiO 2, for high frequency according to any one of claims 1 to 3 at least one component of the GeO 2, characterized in that it comprises the following 10 mol% A method for producing a dielectric ceramic composition. 前記ガラス粉末Bは、ZnOを10mol%以下含むことを特徴とする請求項1乃至3いずれか記載の高周波用誘電体磁器組成物の製造方法。The said glass powder B contains 10 mol% or less of ZnO, The manufacturing method of the dielectric ceramic composition for high frequencies in any one of the Claims 1 thru | or 3 characterized by the above-mentioned.
JP2001212408A 2001-07-12 2001-07-12 Method for producing high frequency dielectric ceramic composition Expired - Lifetime JP4830223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001212408A JP4830223B2 (en) 2001-07-12 2001-07-12 Method for producing high frequency dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001212408A JP4830223B2 (en) 2001-07-12 2001-07-12 Method for producing high frequency dielectric ceramic composition

Publications (2)

Publication Number Publication Date
JP2003026471A JP2003026471A (en) 2003-01-29
JP4830223B2 true JP4830223B2 (en) 2011-12-07

Family

ID=19047572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001212408A Expired - Lifetime JP4830223B2 (en) 2001-07-12 2001-07-12 Method for producing high frequency dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JP4830223B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7417001B2 (en) 2004-03-01 2008-08-26 Murata Manufacturing Co., Ltd Glass ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
US7368408B2 (en) 2004-03-01 2008-05-06 Murata Manufacturing Co., Ltd. Glass-ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
US7439202B2 (en) 2004-03-01 2008-10-21 Murata Manufacturing Co., Ltd. Glass ceramic composition, glass-ceramic sintered body, and monolithic ceramic electronic component
US7351674B2 (en) 2004-03-01 2008-04-01 Murata Manufacturing Co., Ltd. Insulating ceramic composition, insulating ceramic sintered body, and mulitlayer ceramic electronic component
CN108249906A (en) * 2018-04-20 2018-07-06 电子科技大学 A kind of high-quality factor microwave medium ceramic material and preparation method
CN112194376B (en) * 2020-09-29 2021-12-21 华南理工大学 Red light emitting glass ceramic, preparation method thereof and LED/LD light emitting device
CN113105230A (en) * 2021-03-18 2021-07-13 摩比天线技术(深圳)有限公司 Microwave dielectric ceramic material for 5G base station and preparation method thereof
CN115141006B (en) * 2022-07-04 2023-02-28 杭州电子科技大学 Microwave dielectric ceramic material, composite material, preparation method and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2778815B2 (en) * 1990-07-25 1998-07-23 日本碍子株式会社 Dielectric porcelain composition, method for producing the same, and wiring board using the same
JP3393775B2 (en) * 1996-12-24 2003-04-07 京セラ株式会社 Dielectric ceramic composition and dielectric resonator
JPH11100258A (en) * 1997-09-26 1999-04-13 Kyocera Corp Wiring substrate for high frequency application
JP3011703B1 (en) * 1998-02-26 2000-02-21 株式会社オハラ High-rigidity glass ceramic substrate for information magnetic storage media
JP3556475B2 (en) * 1998-07-09 2004-08-18 京セラ株式会社 High frequency porcelain composition and method for producing high frequency porcelain
JP2001035417A (en) * 1999-07-21 2001-02-09 Ohara Inc Glass ceramics for cathode-ray tube(crt)

Also Published As

Publication number Publication date
JP2003026471A (en) 2003-01-29

Similar Documents

Publication Publication Date Title
TWI453176B (en) Dielectric ceramic materials and associated methods
JP4632534B2 (en) Dielectric porcelain and manufacturing method thereof
JP4830223B2 (en) Method for producing high frequency dielectric ceramic composition
JP2010024082A (en) Dielectric ceramic composition for high frequency and method for manufacturing the same
JP4096822B2 (en) Dielectric ceramic composition and multilayer ceramic component using the same
CN112608144B (en) Lithium-based microwave dielectric ceramic material, preparation method thereof and lithium-based microwave dielectric ceramic
JP4828692B2 (en) Method for producing dielectric powder
JPH08259319A (en) Low-temperature-baked dielectric porcelain and its production
JP2002173367A (en) Low temperature firing porcelain composition, manufacturing method thereof and printed wiring board using the same
JP3375450B2 (en) Dielectric porcelain composition
JP4368136B2 (en) Dielectric porcelain composition
JP4100932B2 (en) Dielectric ceramic composition and manufacturing method thereof
JP4238554B2 (en) High frequency dielectric ceramic composition
JP4100929B2 (en) Dielectric ceramic composition and manufacturing method thereof
JP4097018B2 (en) Dielectric porcelain composition
JP3948244B2 (en) High frequency dielectric ceramic composition
JP2010241682A (en) Dielectric powder, sintered compact, and condenser using thereof
JP3074194B2 (en) Dielectric porcelain composition
JP2002265266A (en) Dielectric porcelain composition and dielectric device
JP4097019B2 (en) Dielectric porcelain composition
JP4714983B2 (en) High frequency dielectric ceramic composition
JP2001151569A (en) Microwave dielectric porcelain composition
JP2003238241A (en) Method of producing glass ceramics
JP3340019B2 (en) High frequency dielectric ceramic composition
JP3858395B2 (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040325

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

R150 Certificate of patent or registration of utility model

Ref document number: 4830223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term