JP3560069B2 - Low-temperature sintering ceramic substrate, its material, and its manufacturing method - Google Patents

Low-temperature sintering ceramic substrate, its material, and its manufacturing method Download PDF

Info

Publication number
JP3560069B2
JP3560069B2 JP06568494A JP6568494A JP3560069B2 JP 3560069 B2 JP3560069 B2 JP 3560069B2 JP 06568494 A JP06568494 A JP 06568494A JP 6568494 A JP6568494 A JP 6568494A JP 3560069 B2 JP3560069 B2 JP 3560069B2
Authority
JP
Japan
Prior art keywords
low
ceramic substrate
alumina
weight
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06568494A
Other languages
Japanese (ja)
Other versions
JPH07249846A (en
Inventor
祥郎 黒光
誠司 豊田
明 中林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP06568494A priority Critical patent/JP3560069B2/en
Publication of JPH07249846A publication Critical patent/JPH07249846A/en
Application granted granted Critical
Publication of JP3560069B2 publication Critical patent/JP3560069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、曲げ強度を高めると同時に誘電率を低下させた低温焼結が可能なセラミックス基板、およびそのセラミックス基板用材料、ならびに、そのセラミックス基板の製造方法に関する。
【0002】
【従来の技術】
ガラス・セラミックス基板(低温焼成基板)は、内層の導体と基板とを同時焼成して形成される。配線用の導体としては、金(Au)、銀(Ag)、銀−パラジウム合金(Ag−Pd)、銅(Cu)等が使用される。したがって、その焼成温度は800〜1100℃程度である。このようなガラス・セラミックス基板としては、例えば特公昭57−19599号公報には、ホウケイ酸ガラス50重量%−アルミナ50重量%のものが記載されている。この基板の誘電率εは5.5程度であり、また、その曲げ強さは20kgf/mm程度である。
【0003】
【発明が解決しようとする課題】
しかしながら、このような従来のガラス・セラミックス基板にあっては、曲げ強度が低く、かつ、その収縮率のばらつきが大きいという課題を有していた。
【0004】
【課題解決のための知見】
そこで、本願発明者は、アルミナの焼結助剤に三酸化ビスマスを選ぶことによってアルミナの焼結性が高まり、さらに、アルミナの替わりにシリカコーティングされたアルミナ・シリカ複合粉末を用いることによってその焼結温度を1100℃まで下げることが可能であるという知見を得た。
【0005】
【発明の目的】
そこで、本発明は、曲げ強度が高く、かつ、誘電率が低い低温焼結セラミックス基板、および、その材料を提供することをその目的としている。また、本発明はそのセラミックス基板の製造方法を提供することをその目的としている。
【0006】
【課題を解決するための手段】
請求項1に記載した発明は、アルミナ粉末をシリコン酸化物でコーティングすることによりアルミナ・シリカ複合粉末を作製し、このアルミナ・シリカ複合粉末と三酸化ビスマス粉末とを混合し、それを所定のグリーンシートに成型した後、1100℃以下で焼結した低温焼結セラミックス基板の製造方法である。
【0007】
請求項2に記載した発明は、上記シリコン酸化物の添加量は、低温焼結セラミックス基板材料全体の2〜15重量%、三酸化ビスマスの添加量は、その12〜25重量%である請求項1に記載の低温焼結セラミックス基板の製造方法である。
【0008】
請求項3に記載の発明は、上記アルミナ・シリカ複合粉末はゾルゲル法で作製した請求項1または請求項2に記載の低温焼結セラミックス基板の製造方法である。
【0009】
請求項4に記載の発明は、上記アルミナ粉末の平均粒径は5.0μm以下である請求項1〜請求項3のいずれかに記載の低温焼結セラミックス基板の製造方法である。
【0010】
請求項5に記載の発明は、シリコン酸化物が2〜15重量%、ビスマス酸化物が12〜25重量%、残りがアルミナからなる低温焼結セラミックス基板用材料である。
【0011】
請求項6に記載した発明は、シリコン酸化物を2〜15重量%、ビスマス酸化物を12〜25重量%含み、残りがアルミナおよび不可避不純物からなる低温焼結セラミックス基板である。
【0012】
請求項7に記載した発明は、曲げ強度が25kgf/mm以上、かつ、誘電率が9.0以下である請求項6に記載の低温焼結セラミックス基板である。
【0013】
請求項8の発明は、2〜15重量%のシリカと、12〜25重量%の三酸化ビスマスとからなるマトリクス中に、平均粒径が0.1〜5.0μmのアルミナ粒子が析出してなる低温焼結セラミックス基板である。
【0014】
【作用】
本発明に係る低温焼結セラミックス基板の製造方法にあっては、例えば平均粒径が0.1〜5.0μmのアルミナ粉末の表面をシリコン酸化物で被覆することにより、アルミナ・シリカ複合粉末を作製する。この複合粉末とビスマス酸化物の粉末とを混合し、さらに、溶剤、バインダー、分散剤等を加えて混練し、ペースト状とする。そして、このペーストを、例えばドクターブレード法でグリーンシートに成形した後、1100℃以下の温度で焼結し、低温焼結セラミックス基板を得る。ここで、グリーンシート上に導体ペーストをスクリーン印刷した後、複数積層し、その積層体を焼成することによって多層配線基板を得ることができる。導体ペーストとしては例えば銀−パラジウムを用いることができる。
【0015】
また、低温焼結セラミックス基板にあっては、含まれるシリコン酸化物が2重量%未満の場合は、誘電率が低くならない。シリコン酸化物の含有率が15重量%を超えると、焼結温度が高くなる。さらに、ビスマス酸化物が12重量%未満では同様に焼結温度が高くなり、25重量%を超えると誘電率が上昇してしまうという不具合がある。さらに、アルミナの粉末の平均粒径が5.0μmを超えると焼結温度が高くなる。
【0016】
【実施例】
以下、本発明の実施例を説明する。表1に示す実施例1は、粒径が1.0μmのAl2O3粉末にSiO2層をコーティングしたAl2O3−SiO2複合粉末と、Bi2O3粉末とを、混合し、さらに、溶剤、バインダー、分散剤等のビヒクルと混練して、焼結したものである。ここで、Al2O3粉末にた対するSiO2コーティングについては、全てエチルシリケート、エタノールを含むアルコキシド溶液を用いたゾルゲル法により行っている。以下の組成についてそれぞれ曲げ強度、誘電率を測定した。
【0017】
【表1】

Figure 0003560069
【0018】
ただし、誘電率は1MHzで室温にて測定した。曲げ強度は3点曲げ測定である。さらに、焼結温度は気孔率が5%以下となる焼成温度(全て大気中で6時間焼成)の最小値として規定した。なお、曲げ強度は基板としての実用上、20kgf/mm以上は必要である。さらに、基板に要求される誘電率としてはアルミナの誘電率が9.2程度であるので、この値以下であることが望ましい。焼結温度は1100℃を超えると配線(Ag30Pd)が溶融してしまい、銀−パラジウム合金等を内部配線として使用することができない。
【0019】
実施例2としては、実施例1に示した組成(9SiO2−17Bi2O3−残りAl2O3)において、SiO2がコーティングされたSiO2−Al2O3複合粉末に代えて、Al2O3粉末、SiO2粉末を用いた。この場合、焼結温度が1300℃以上となり、銀−パラジウム合金等を内部配線とすることができない。
【0020】
表2は、本発明の実施例3を示している。この実施例では、組成(9SiO2−17Bi2O3−残りAl2O3)におけるAl2O3粉末の粒径を変化させた場合の焼結温度との関係を示している。この実施例に示すように、平均粒径が5.0μmを超えると焼結温度が上昇し、銀−パラジウム合金等を内部配線とすることができない。なお、この実施例に係るアルミナ粉末はこれにシリカを被覆した複合粉末である。
【0021】
【表2】
Figure 0003560069
【0022】
【発明の効果】
本発明によれば、曲げ強度が高く、かつ、低誘電率の低温焼結セラミックス基板を得ることができる。[0001]
[Industrial applications]
The present invention relates to a ceramic substrate that can be sintered at a low temperature while increasing the bending strength and reducing the dielectric constant, a material for the ceramic substrate, and a method for manufacturing the ceramic substrate.
[0002]
[Prior art]
A glass / ceramic substrate (low-temperature fired substrate) is formed by simultaneously firing an inner conductor and a substrate. As the conductor for wiring, gold (Au), silver (Ag), silver-palladium alloy (Ag-Pd), copper (Cu), or the like is used. Therefore, the firing temperature is about 800 to 1100 ° C. As such a glass / ceramic substrate, for example, Japanese Patent Publication No. 57-19599 describes a substrate made of borosilicate glass 50% by weight-alumina 50% by weight. The dielectric constant ε of this substrate is about 5.5, and its bending strength is about 20 kgf / mm 2 .
[0003]
[Problems to be solved by the invention]
However, such a conventional glass / ceramic substrate has a problem that the bending strength is low and the variation in the shrinkage ratio is large.
[0004]
[Knowledge to solve the problem]
Therefore, the inventor of the present application chose bismuth trioxide as a sintering aid for alumina to increase the sinterability of alumina, and furthermore, to use alumina-silica composite powder coated with silica in place of alumina for sintering. We have found that it is possible to lower the sintering temperature to 1100 ° C.
[0005]
[Object of the invention]
Therefore, an object of the present invention is to provide a low-temperature sintered ceramic substrate having high bending strength and low dielectric constant, and a material thereof. Another object of the present invention is to provide a method for manufacturing the ceramic substrate.
[0006]
[Means for Solving the Problems]
According to the first aspect of the present invention, an alumina-silica composite powder is prepared by coating alumina powder with silicon oxide, and the alumina-silica composite powder and bismuth trioxide powder are mixed, and then mixed with a predetermined green color. This is a method for producing a low-temperature sintered ceramic substrate formed into a sheet and sintered at 1100 ° C. or lower.
[0007]
According to a second aspect of the present invention, the addition amount of the silicon oxide is 2 to 15% by weight of the entire low-temperature sintered ceramic substrate material, and the addition amount of bismuth trioxide is 12 to 25% by weight. 2. A method for producing a low-temperature sintered ceramic substrate according to item 1.
[0008]
A third aspect of the present invention is the method for producing a low-temperature sintered ceramic substrate according to the first or second aspect, wherein the alumina-silica composite powder is produced by a sol-gel method.
[0009]
The invention according to claim 4 is the method for producing a low-temperature sintered ceramic substrate according to any one of claims 1 to 3, wherein the average particle diameter of the alumina powder is 5.0 μm or less.
[0010]
The invention according to claim 5 is a low-temperature sintered ceramic substrate material comprising 2 to 15% by weight of silicon oxide, 12 to 25% by weight of bismuth oxide, and the remainder being alumina.
[0011]
The invention described in claim 6 is a low-temperature sintered ceramics substrate containing 2 to 15% by weight of silicon oxide, 12 to 25% by weight of bismuth oxide, and the remainder consisting of alumina and unavoidable impurities.
[0012]
The invention according to claim 7 is the low-temperature sintered ceramic substrate according to claim 6, having a bending strength of 25 kgf / mm 2 or more and a dielectric constant of 9.0 or less.
[0013]
The invention according to claim 8 is characterized in that alumina particles having an average particle diameter of 0.1 to 5.0 μm are precipitated in a matrix composed of 2 to 15% by weight of silica and 12 to 25% by weight of bismuth trioxide. Low-temperature sintered ceramic substrate.
[0014]
[Action]
In the method for producing a low-temperature sintered ceramic substrate according to the present invention, for example, the alumina-silica composite powder is coated by coating the surface of alumina powder having an average particle diameter of 0.1 to 5.0 μm with silicon oxide. Make it. This composite powder and bismuth oxide powder are mixed, and a solvent, a binder, a dispersant and the like are added and kneaded to form a paste. Then, the paste is formed into a green sheet by, for example, a doctor blade method, and then sintered at a temperature of 1100 ° C. or less, to obtain a low-temperature sintered ceramic substrate. Here, after the conductor paste is screen-printed on the green sheet, a plurality of the pastes are laminated, and the laminate is fired to obtain a multilayer wiring board. For example, silver-palladium can be used as the conductor paste.
[0015]
In the low-temperature sintered ceramic substrate, when the silicon oxide content is less than 2% by weight, the dielectric constant does not decrease. If the silicon oxide content exceeds 15% by weight, the sintering temperature will increase. Further, if the bismuth oxide content is less than 12% by weight, the sintering temperature is similarly increased, and if it exceeds 25% by weight, the dielectric constant increases. Further, when the average particle size of the alumina powder exceeds 5.0 μm, the sintering temperature increases.
[0016]
【Example】
Hereinafter, examples of the present invention will be described. Example 1 shown in Table 1 was prepared by mixing an Al2O3-SiO2 composite powder obtained by coating a SiO2 layer on an Al2O3 powder having a particle size of 1.0 m and a Bi2O3 powder, and further mixing a vehicle such as a solvent, a binder, and a dispersant. And sintered. Here, the SiO2 coating on the Al2O3 powder is all performed by a sol-gel method using an alkoxide solution containing ethyl silicate and ethanol. The bending strength and the dielectric constant of each of the following compositions were measured.
[0017]
[Table 1]
Figure 0003560069
[0018]
However, the dielectric constant was measured at room temperature at 1 MHz. The bending strength is a three-point bending measurement. Furthermore, the sintering temperature was defined as the minimum value of the sintering temperature at which the porosity was 5% or less (all sintering in air for 6 hours). The bending strength is required to be 20 kgf / mm 2 or more for practical use as a substrate. Further, as the dielectric constant required for the substrate, since the dielectric constant of alumina is about 9.2, it is preferable that the dielectric constant is lower than this value. If the sintering temperature exceeds 1100 ° C., the wiring (Ag30Pd) is melted, and a silver-palladium alloy or the like cannot be used as the internal wiring.
[0019]
In Example 2, Al2O3 powder and SiO2 powder were used instead of the SiO2-Al2O3 composite powder coated with SiO2 in the composition shown in Example 1 (9SiO2-17Bi2O3-remaining Al2O3). In this case, the sintering temperature becomes 1300 ° C. or higher, and a silver-palladium alloy or the like cannot be used as the internal wiring.
[0020]
Table 2 shows Example 3 of the present invention. This example shows the relationship with the sintering temperature when the particle size of the Al2O3 powder in the composition (9SiO2-17Bi2O3-remaining Al2O3) is changed. As shown in this example, when the average particle size exceeds 5.0 μm, the sintering temperature increases, and a silver-palladium alloy or the like cannot be used as the internal wiring. The alumina powder according to this example is a composite powder in which silica is coated.
[0021]
[Table 2]
Figure 0003560069
[0022]
【The invention's effect】
According to the present invention, a low-temperature sintered ceramic substrate having high bending strength and low dielectric constant can be obtained.

Claims (8)

アルミナ粉末をシリコン酸化物でコーティングすることによりアルミナ・シリカ複合粉末を作製し、
このアルミナ・シリカ複合粉末と三酸化ビスマス粉末とを混合し、
それを所定のグリーンシートに成型した後、1100℃以下で焼結した低温焼結セラミックス基板の製造方法。
Alumina-silica composite powder is prepared by coating alumina powder with silicon oxide,
This alumina / silica composite powder and bismuth trioxide powder are mixed,
A method for manufacturing a low-temperature sintered ceramic substrate, which is formed into a predetermined green sheet and then sintered at 1100 ° C. or lower.
上記シリコン酸化物の添加量は、低温焼結セラミックス基板材料全体の2〜15重量%、三酸化ビスマスの添加量は、その12〜25重量%である請求項1に記載の低温焼結セラミックス基板の製造方法。2. The low-temperature sintered ceramic substrate according to claim 1, wherein the addition amount of the silicon oxide is 2 to 15% by weight of the entire low-temperature sintered ceramic substrate material, and the addition amount of bismuth trioxide is 12 to 25% by weight thereof. 3. Manufacturing method. 上記アルミナ・シリカ複合粉末はゾルゲル法で作製した請求項1または請求項2に記載の低温焼結セラミックス基板の製造方法。3. The method for producing a low-temperature sintered ceramic substrate according to claim 1, wherein the alumina / silica composite powder is produced by a sol-gel method. 上記アルミナ粉末の平均粒径は5.0μm以下である請求項1〜請求項3のいずれかに記載の低温焼結セラミックス基板の製造方法。The method for producing a low-temperature sintered ceramics substrate according to any one of claims 1 to 3, wherein the average particle size of the alumina powder is 5.0 µm or less. シリコン酸化物が2〜15重量%、ビスマス酸化物が12〜25重量%、残りがアルミナからなる低温焼結セラミックス基板用材料。A low-temperature sintered ceramic substrate material comprising 2 to 15% by weight of silicon oxide, 12 to 25% by weight of bismuth oxide, and the remainder being alumina. シリコン酸化物を2〜15重量%、ビスマス酸化物を12〜25重量%含み、残りがアルミナおよび不可避不純物からなる低温焼結セラミックス基板。A low-temperature sintering ceramic substrate containing 2 to 15% by weight of silicon oxide and 12 to 25% by weight of bismuth oxide, and the remainder consisting of alumina and inevitable impurities. 曲げ強度が25kgf/mm以上、かつ、誘電率が9.0以下である請求項6に記載の低温焼結セラミックス基板。Bending strength 25 kgf / mm 2 or more and the low-temperature sintering ceramic substrate according to claim 6 a dielectric constant of 9.0 or less. 2〜15重量%のシリカと、12〜25重量%の三酸化ビスマスとからなるマトリクス中に、平均粒径が0.1〜5.0μmのアルミナ粒子が析出してなる低温焼結セラミックス基板。A low-temperature sintering ceramic substrate in which alumina particles having an average particle diameter of 0.1 to 5.0 μm are precipitated in a matrix composed of 2 to 15% by weight of silica and 12 to 25% by weight of bismuth trioxide.
JP06568494A 1994-03-09 1994-03-09 Low-temperature sintering ceramic substrate, its material, and its manufacturing method Expired - Fee Related JP3560069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06568494A JP3560069B2 (en) 1994-03-09 1994-03-09 Low-temperature sintering ceramic substrate, its material, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06568494A JP3560069B2 (en) 1994-03-09 1994-03-09 Low-temperature sintering ceramic substrate, its material, and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH07249846A JPH07249846A (en) 1995-09-26
JP3560069B2 true JP3560069B2 (en) 2004-09-02

Family

ID=13294090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06568494A Expired - Fee Related JP3560069B2 (en) 1994-03-09 1994-03-09 Low-temperature sintering ceramic substrate, its material, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3560069B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015040949A1 (en) * 2013-09-20 2017-03-02 株式会社村田製作所 Alumina ceramic wiring board and manufacturing method thereof

Also Published As

Publication number Publication date
JPH07249846A (en) 1995-09-26

Similar Documents

Publication Publication Date Title
JP3240271B2 (en) Ceramic substrate
US3977887A (en) High dielectric constant ceramics which can be sintered at low temperatures
EP0125730B1 (en) Copper metallization for dielectric materials
US5518969A (en) Process for producing low shrink ceramic composition
EP0428880B1 (en) Ceramic compositions and their use
JPH107435A (en) Glass ceramic wiring substrate and its production
JP3042441B2 (en) Low temperature fired glass-ceramic substrate and its manufacturing method
JP4228344B2 (en) Glass powder, glass ceramic dielectric material, sintered body, and circuit member for high frequency
JP4569000B2 (en) Low-frequency sintered dielectric material for high frequency and its sintered body
WO1989001461A1 (en) Co-sinterable metal-ceramic packages and materials therefor
JPH07242845A (en) Electrically-conductive coating compound for electrode and its production
JP3560069B2 (en) Low-temperature sintering ceramic substrate, its material, and its manufacturing method
JP2001010858A (en) Composition for ceramic substrate and ceramic circuit part
JP4852778B2 (en) Composition for ceramic substrate and ceramic circuit component
JPH1051088A (en) Ceramic wiring board, and its manufacture
JP4587758B2 (en) Glass ceramic substrate
WO2000076938A1 (en) Glass ceramics composition and electronic parts and multilayered lc multiple component using the same
JP4288656B2 (en) Glass ceramic dielectric material
JP2003095740A (en) Glass ceramic dielectric material, and sintered compact
JP3366479B2 (en) Metallized composition and method for producing wiring board
WO1993006053A1 (en) Low dielectric constant substrate and method of making
JP3359513B2 (en) Glass ceramic sintered body and method for producing the same
JP3030558B2 (en) Dielectric porcelain material
JP3236759B2 (en) Insulating porcelain and multilayer wiring board using the same
JPH02221162A (en) Production of aluminum nitride-based sintered body

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080604

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090604

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100604

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110604

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees