JPH1160266A - Glass and glass ceramic material - Google Patents

Glass and glass ceramic material

Info

Publication number
JPH1160266A
JPH1160266A JP21277997A JP21277997A JPH1160266A JP H1160266 A JPH1160266 A JP H1160266A JP 21277997 A JP21277997 A JP 21277997A JP 21277997 A JP21277997 A JP 21277997A JP H1160266 A JPH1160266 A JP H1160266A
Authority
JP
Japan
Prior art keywords
glass
powder
ceramic
ceramic material
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21277997A
Other languages
Japanese (ja)
Inventor
Shigeo Furukawa
成男 古川
Masahiro Hiraga
将浩 平賀
Hidenori Katsumura
英則 勝村
Ryuichi Saito
隆一 斉藤
Ryo Kimura
涼 木村
Yoshio Mayahara
芳夫 馬屋原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Panasonic Holdings Corp
Original Assignee
Nippon Electric Glass Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP21277997A priority Critical patent/JPH1160266A/en
Publication of JPH1160266A publication Critical patent/JPH1160266A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a ceramic material with low dielectric constant and sufficient mechanical strength by mixing a ceramic with a glass comprising SiO2 , BaO, La2 O3 , B2 O3 , Al2 O3 and K2 O in specified weight proportions. SOLUTION: This glass ceramic material, a glass/ceramic sintered compact, is obtained by mixing a specified amount of a ceramic of a ceramic powder with glass powder comprising 40-50 wt.% of SiO2 , 30-40 wt.% of BaO, 7-13 wt.% of La2 O3 , 3-8 wt.% of B2 O3 , 3-8 wt.% of Al2 O3 and 1.5-2.5 wt.% of K2 O followed by kneading together with a solvent such as polyvinyl butyral resin, dibutyl phthalate or vinyl acetate and a binder, conducting molding and then sintering. When the ceramic powder is alumina powder, the average particle size is <=2.0 μm and the amount to be mixed is 25-40 pts.wt. based on 100 pts.wt. of the composition, while for forsterite powder, the average particle size is <=2.5 μm and the amount to be mixed is 30-45 pts.wt. The glass powder to be used is <=3.5 μm in average particle size.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はガラス及びガラスセ
ラミック材料に関し、特にセラミックスとの同時焼成時
に低温でも前記セラミックスとの十分な濡れ性が得られ
るガラス及び低誘電率で十分な機械的強度を有し、かつ
低温焼成可能なガラスセラミック材料に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass and a glass-ceramic material, and more particularly to a glass capable of obtaining a sufficient wettability with a ceramic at the time of co-firing with a ceramic even at a low temperature, and having a low dielectric constant and a sufficient mechanical strength. And a glass ceramic material that can be fired at a low temperature.

【0002】[0002]

【従来の技術】近年、通信分野に使用される周波数の高
周波化が進むに伴って、通信機器内部に用いられる電子
部品にも高周波化への対応が要求されている。また、通
信機器の小型化要求に対応するために、電子部品にも小
型化が求められている。
2. Description of the Related Art In recent years, as the frequency used in the communication field has been increased, the electronic components used in communication equipment have been required to cope with the higher frequency. Further, in order to respond to the demand for miniaturization of communication equipment, miniaturization of electronic components is also required.

【0003】従来、高周波用部品の基板材料としては比
誘電率が低いアルミナが広く用いられてきたが、アルミ
ナは焼成温度が高く、導体材料と同時焼成できない。一
方、電子部品の小型化のためには複数の導体層と基板材
料層からなる多層構造が有利であるが、前記の理由か
ら、アルミナを用いて高周波用電子部品を実現すること
は困難であった。
Conventionally, alumina having a low relative dielectric constant has been widely used as a substrate material for high-frequency components. However, alumina has a high firing temperature and cannot be fired simultaneously with a conductor material. On the other hand, a multilayer structure composed of a plurality of conductor layers and a substrate material layer is advantageous for miniaturization of electronic components, but it is difficult to realize high-frequency electronic components using alumina for the above-described reasons. Was.

【0004】そこで、比誘電率が低くなおかつ導体材料
と同時焼成できる基板用材料として、ガラスセラミック
材料が用いられつつある。例えば特開平1−20324
2号公報に記載の低温焼成基板では、結晶化ガラス系材
料中に極微細気孔を均一に存在させることにより低誘電
率基板を実現しており、また、特開平2−26864号
公報に記載の低温焼成基板の製造方法ではガラス粉末と
アルミナ粉末を混合したガラスセラミック複合材により
低誘電率かつ低温焼成可能な材料を実現している。
Therefore, glass ceramic materials are being used as substrate materials which have a low relative dielectric constant and can be co-fired with a conductor material. For example, Japanese Unexamined Patent Publication No.
In the low-temperature sintering substrate described in Japanese Patent Application Laid-Open No. 2-26864, a low dielectric constant substrate is realized by uniformly providing ultrafine pores in a crystallized glass-based material. In the method for manufacturing a low-temperature fired substrate, a material that has a low dielectric constant and can be fired at low temperature is realized by a glass ceramic composite material in which glass powder and alumina powder are mixed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前者に
おいては基板の機械的強度が1100kgf/cm2と小さ
く、また後者においてはガラス材料として酸化鉛を用い
ており、環境問題の点から問題があった。
However, in the former case, the mechanical strength of the substrate is as small as 1100 kgf / cm 2, and in the latter case, lead oxide is used as a glass material, which is problematic in terms of environmental problems. .

【0006】本発明は上記課題を解決するためのもので
あり、セラミックスとの同時焼成時に低温でも前記セラ
ミックスとの十分な濡れ性が得られるガラス及び低誘電
率で十分な機械的強度を有し、かつ導体材料との同時焼
成可能な低温でも十分な焼結性が得られるガラスセラミ
ック材料を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has a glass capable of obtaining a sufficient wettability with the ceramic even at a low temperature at the time of co-firing with the ceramic, and having a low dielectric constant and sufficient mechanical strength. It is another object of the present invention to provide a glass-ceramic material having sufficient sinterability even at a low temperature that can be co-fired with a conductor material.

【0007】[0007]

【課題を解決するための手段】本発明はガラスにおい
て、その構成成分が重量百分率でSiO2=40〜50
%,BaO=30〜40%,La23=7〜13%,B
23=3〜8%,Al23=3〜8%,K2O=1.5
〜2.5%の組成から成ることを特徴とする。
According to the present invention, there is provided a glass wherein the constituents are SiO 2 = 40 to 50 by weight percentage.
%, BaO = 30~40%, La 2 O 3 = 7~13%, B
2 O 3 = 3 to 8%, Al 2 O 3 = 3 to 8%, K 2 O = 1.5
~ 2.5% of the composition.

【0008】また、ガラスセラミック材料において、そ
の構成成分が前記ガラス粉体とセラミック粉体の混合物
から成ることを特徴とする。
The glass ceramic material is characterized in that its constituent components are a mixture of the glass powder and the ceramic powder.

【0009】この構成によれば、ガラス及びガラスセラ
ミック材料の組成を最適化することにより、セラミック
スとの同時焼成時に低温でも前記セラミックスとの十分
な濡れ性が得られるガラス及び低誘電率で十分な機械的
強度を有し、かつ導体材料との同時焼成可能な低温でも
十分な焼結性が得られるガラスセラミック材料を得るこ
とができる。
According to this structure, by optimizing the composition of the glass and the glass-ceramic material, the glass which can obtain sufficient wettability with the ceramic even at a low temperature during the simultaneous firing with the ceramic, and the low dielectric constant sufficient It is possible to obtain a glass-ceramic material having mechanical strength and sufficient sinterability even at a low temperature at which co-firing with the conductor material is possible.

【0010】[0010]

【発明の実施の形態】本発明の請求項1に記載の発明
は、ガラスが重量百分率でSiO2=40〜50%,B
aO=30〜40%,La23=7〜13%,B23
3〜8%,Al 23=3〜8%,K2O=1.5〜2.
5%の組成から成ることを特徴としたものであり、これ
により前記ガラスはセラミックスとの同時焼成時に低温
でも前記セラミックスとの十分な濡れ性を得ることがで
きる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention
Means that the glass is SiO 2 in weight percentTwo= 40-50%, B
aO = 30-40%, LaTwoOThree= 7-13%, BTwoOThree=
3-8%, Al TwoOThree= 3-8%, KTwoO = 1.5-2.
It is characterized by having a composition of 5%.
The glass is kept at a low temperature during simultaneous firing with ceramics
However, sufficient wettability with the ceramics can be obtained.
Wear.

【0011】請求項2に記載の発明は、ガラスセラミッ
ク材料が前記ガラス粉体とセラミック粉体の混合物から
成ることを特徴としたものであり、これにより前記ガラ
スセラミック材料焼成体は低誘電率であると同時に十分
な機械的強度を有し、かつ導体材料との同時焼成可能な
低温での焼成においても十分な焼結性を得ることができ
る。
The invention according to claim 2 is characterized in that the glass-ceramic material comprises a mixture of the glass powder and the ceramic powder, whereby the fired body of the glass-ceramic material has a low dielectric constant. At the same time, it has sufficient mechanical strength and can obtain sufficient sinterability even at a low temperature where it can be co-fired with the conductor material.

【0012】請求項3に記載の発明は、前記セラミック
粉体はアルミナであることを特徴としたものであり、こ
れにより更に機械的強度を向上させることができる。
[0012] The invention according to claim 3 is characterized in that the ceramic powder is alumina, whereby the mechanical strength can be further improved.

【0013】請求項4に記載の発明は、前記セラミック
粉体はフォルステライトであることを特徴としたもので
あり、これにより更に低誘電率化及び焼成温度の低温化
が可能となる。
[0013] The invention described in claim 4 is characterized in that the ceramic powder is forsterite, whereby the dielectric constant and the firing temperature can be further reduced.

【0014】請求項5に記載の発明は、前記混合物中1
00重量部中におけるアルミナの含有量は25重量部以
上40重量部未満であることを特徴としたものであり、
これにより更に機械的強度を向上させ、焼成温度の低温
化が可能となる。
[0014] The invention according to claim 5 is characterized in that:
The content of alumina in 00 parts by weight is not less than 25 parts by weight and less than 40 parts by weight,
Thereby, the mechanical strength is further improved, and the firing temperature can be lowered.

【0015】請求項6に記載の発明は、前記混合物中1
00重量部中におけるフォルステライトの含有量は30
重量部以上45重量部未満であることを特徴としたもの
であり、これにより更に低誘電率化及び焼成温度の低温
化が可能となる。
[0015] The invention according to claim 6 is a method according to claim 6, wherein
Forsterite content in 00 parts by weight is 30
The amount is not less than 45 parts by weight and not more than 45 parts by weight, whereby the dielectric constant and the firing temperature can be further reduced.

【0016】請求項7に記載の発明は前記ガラス粉体の
平均粒径は3.5μm以下であることを特徴としたもの
であり、これにより更に焼成温度の低温化及び機械的強
度の向上が可能となる。
The invention according to claim 7 is characterized in that the average particle diameter of the glass powder is 3.5 μm or less, whereby the firing temperature can be lowered and the mechanical strength can be further improved. It becomes possible.

【0017】請求項8に記載の発明は前記アルミナの平
均粒径は2.0μm以下であることを特徴としたもので
あり、これにより更に焼成温度の低温化及び機械的強度
の向上が可能となる。
The invention according to claim 8 is characterized in that the average particle size of the alumina is 2.0 μm or less, which makes it possible to further reduce the firing temperature and improve the mechanical strength. Become.

【0018】請求項9に記載の発明は前記フォルステラ
イトの平均粒径は2.5μm以下であることを特徴とし
たものであり、これにより更に焼成温度の低温化及び機
械的強度の向上が可能となる。
According to a ninth aspect of the present invention, the average particle size of the forsterite is 2.5 μm or less, whereby the firing temperature can be lowered and the mechanical strength can be further improved. Becomes

【0019】以下、本発明の一実施の形態を説明する。
セラミック基板材料のグリーンシートの作製は次のよう
に行った。
Hereinafter, an embodiment of the present invention will be described.
Preparation of a green sheet of a ceramic substrate material was performed as follows.

【0020】ガラスはガラス中の構成成分の酸化物、炭
酸塩などを用い、白金るつぼ中で溶融したものを粉砕し
て作製した。また、セラミック粉体として、アルミナ粉
体、ジルコニア粉体、マグネシア粉体及びフォルステラ
イト粉体(純度96%,平均粒径0.8〜3.0μm)
を用いた。前記ガラスとセラミック粉体を混合したもの
をガラスセラミック材料とした。
The glass was prepared by crushing a glass melt in a platinum crucible using oxides, carbonates and the like of the constituent components in the glass. Further, as the ceramic powder, alumina powder, zirconia powder, magnesia powder and forsterite powder (purity 96%, average particle size 0.8 to 3.0 μm)
Was used. A mixture of the glass and ceramic powder was used as a glass ceramic material.

【0021】ガラスセラミック材料の500gを酢酸ブ
チル300g中にジブチルフタレート25g,ポリビニ
ルブチラール樹脂50gを溶かした溶液中に加え、ボー
ルミルで24時間混合した。得られたスラリーから公知
のドクターブレード法により、厚さ100μmのグリー
ンシートを作製した。
500 g of the glass ceramic material was added to a solution of 25 g of dibutyl phthalate and 50 g of polyvinyl butyral resin in 300 g of butyl acetate, and mixed with a ball mill for 24 hours. A green sheet having a thickness of 100 μm was prepared from the obtained slurry by a known doctor blade method.

【0022】前記グリーンシートを積層し、80℃で熱
圧着することにより厚さ2mmのグリーンシート積層体を
作製し、その後900℃ないし950℃の温度にて焼成
した。
The green sheets were laminated and thermocompression-bonded at 80 ° C. to produce a green sheet laminate having a thickness of 2 mm, and then fired at a temperature of 900 ° C. to 950 ° C.

【0023】[0023]

【実施例】以下に具体的な実施例について述べる。Embodiments Specific embodiments will be described below.

【0024】上述した実施の形態におけるガラスセラミ
ック材料組成に用いたガラスとして、その成分が重量百
分率で、SiO2=40〜50%,BaO=30〜40
%,La23=7〜13%,B23=3〜8%,Al2
3=3〜8%,K2O=1.5〜2.5%の組成から成
るものを用いた。また、該ガラスとアルミナ粉体、ジル
コニア粉体、マグネシア粉体及びフォルステライト粉体
をそれぞれ種々の混合比で混合してガラスセラミック材
料とした。前記のガラス粉体及びセラミック粉体の粒径
を(株)島津製作所製レーザー回折式粒度分布計SAL
D−2000Aで測定した。
The glass used in the glass-ceramic material composition in the above-mentioned embodiment is such that the components are SiO 2 = 40 to 50% and BaO = 30 to 40 by weight percentage.
%, La 2 O 3 = 7 to 13%, B 2 O 3 = 3 to 8%, Al 2
A composition having a composition of O 3 = 3 to 8% and K 2 O = 1.5 to 2.5% was used. The glass and the alumina powder, the zirconia powder, the magnesia powder, and the forsterite powder were mixed at various mixing ratios to obtain a glass ceramic material. The particle size of the above glass powder and ceramic powder was measured using a laser diffraction particle size distribution analyzer SAL manufactured by Shimadzu Corporation.
It measured with D-2000A.

【0025】前記ガラスセラミック材料を用いて作製し
た焼成体基板について、ガラス粉体とセラミック粉体の
濡れ性を評価するために、ガラスセラミック材料焼成体
基板の破断面のSEM(走査型電子顕微鏡)観察を行っ
た。
In order to evaluate the wettability between the glass powder and the ceramic powder of the fired body substrate manufactured using the above glass ceramic material, an SEM (scanning electron microscope) of the fracture surface of the fired glass ceramic material substrate was used. Observations were made.

【0026】また、前記ガラスセラミック材料を用いて
作製した焼成体基板についてその曲げ強度を測定した。
測定には(株)島津製作所製オートグラフAG−E形を
用いた。
Further, the bending strength of the fired substrate manufactured using the above glass ceramic material was measured.
An Autograph AG-E type manufactured by Shimadzu Corporation was used for the measurement.

【0027】また、ガラスセラミック材料の焼成温度を
把握するために示差熱分析(DTA)測定を行った。測
定にはセイコー電子工業製示差熱熱重量同時測定装置T
G/DTA320を用いた。
Further, in order to grasp the firing temperature of the glass ceramic material, differential thermal analysis (DTA) was performed. For measurement, Seiko Denshi Kogyo Co., Ltd.
G / DTA320 was used.

【0028】また、ガラスセラミック材料焼成体基板の
比誘電率及び損失(tanδ)を測定した。測定にはヒ
ューレットパッカード社製マテリアルアナライザHP4
291Aを用いた。
The relative permittivity and loss (tan δ) of the fired glass ceramic material substrate were measured. Hewlett-Packard Material Analyzer HP4 for measurement
291A was used.

【0029】更に、ガラスセラミック材料焼成体基板の
表面粗さをFeinpruef Perthen Gm
bH製表面計測器Perthometer S8Pによ
り測定した。
Further, the surface roughness of the glass-ceramic material fired body substrate was determined by Feinpreff Perthen Gm.
It was measured with a bH surface meter Perthometer S8P.

【0030】ガラス及びガラスセラミック材料焼成体基
板の評価結果を(表1)〜(表8)及び図1(a),
(b)に示す。なお、(表1)〜(表8)において*印
を付したものは本発明の範囲外であり、それ以外はすべ
てこの発明の範囲内のものである。なお、(表1)〜
(表8)及び図1(a),(b)の結果は次の基準に従
って判定した。
The evaluation results of the fired glass and glass ceramic material substrates are shown in Tables 1 to 8 and FIGS.
(B). In Tables 1 to 8, those marked with * are out of the scope of the present invention, and all others are within the scope of the present invention. (Table 1)-
The results in Table 8 and FIGS. 1A and 1B were determined according to the following criteria.

【0031】 焼成温度:950℃以下 比誘電率:1GHzの条件で8.0以下 tanδ:20×10-4以下 曲げ強度:1500kgf/cm2以上Sintering temperature: 950 ° C. or less Relative permittivity: 8.0 or less under the condition of 1 GHz tan δ: 20 × 10 −4 or less Bending strength: 1500 kgf / cm 2 or more

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【表4】 [Table 4]

【0036】[0036]

【表5】 [Table 5]

【0037】(表1)〜(表5)はガラス粉体とセラミ
ック粉体の混合比を重量百分率で65:35に保ち、そ
れぞれの粒径を一定に保ったままで前記ガラスの組成を
変化させた場合の焼成体基板特性を表したものである。
Tables 1 to 5 show that the mixing ratio of the glass powder and the ceramic powder was maintained at 65:35 by weight percentage, and the composition of the glass was changed while keeping the respective particle diameters constant. FIG. 9 shows the characteristics of the fired body substrate in the case of FIG.

【0038】本発明のガラスセラミック材料に含まれる
ガラス組成を上記のように限定したのは次の理由による
ものである。
The glass composition contained in the glass ceramic material of the present invention is limited as described above for the following reasons.

【0039】SiO2はガラスの主成分である。SiO2
の含量が40%以下の場合にはガラス化せず、50%以
上の場合にはセラミック粉体との濡れ性が悪くなるた
め、いずれの場合にも緻密なガラスセラミック焼成体を
得ることはできない。
SiO 2 is a main component of glass. SiO 2
If the content is 40% or less, vitrification does not occur, and if the content is 50% or more, the wettability with the ceramic powder deteriorates, so that in any case, a dense glass ceramic fired body cannot be obtained. .

【0040】BaOは低温焼成時にセラミック粉体との
濡れ性を向上させる成分であるが、その含量が30%以
下の場合には前記濡れ性向上の効果が無く、40%以上
の場合にはガラス成形時に失透しやすくなる。従ってい
ずれの場合にも緻密なガラスセラミック焼成体を得るこ
とはできない。
BaO is a component that improves the wettability with ceramic powder during low-temperature firing. When the content is less than 30%, the effect of improving the wettability is not obtained. Devitrification easily occurs during molding. Therefore, in any case, a dense glass ceramic fired body cannot be obtained.

【0041】La23は低温焼成時のガラスの粘度を調
節する成分である。その含量が7%以下の場合には低温
焼成時に粘度が下がらず、セラミックス粉体との濡れ性
が悪くなり、緻密な焼成体が得られない。またその含量
が13%以上の場合には粘度が下がりすぎ、強度が低下
したり、セッターに付着するなどの不具合が起こるので
好ましくない。
La 2 O 3 is a component for adjusting the viscosity of the glass at the time of firing at a low temperature. When the content is 7% or less, the viscosity does not decrease at the time of low-temperature firing, the wettability with the ceramic powder is deteriorated, and a dense fired body cannot be obtained. On the other hand, when the content is 13% or more, the viscosity is too low, and the strength is lowered, and disadvantages such as adhesion to a setter occur.

【0042】B23はフラックス成分として、溶融時の
溶解性を向上させる作用を有する。その含量が3%以下
の場合にはその効果がなく、8%以上の場合には耐熱性
や強度が低下するので好ましくない。
B 2 O 3 has a function as a flux component to improve the solubility at the time of melting. When the content is 3% or less, the effect is not obtained, and when the content is 8% or more, heat resistance and strength are undesirably reduced.

【0043】Al23は耐熱性を向上させる成分であ
る。その含量が3%以下の場合には耐熱性が不足し、8
%以上の場合にはガラス成形時に失透しやすくなるた
め、緻密なガラスセラミック焼成体を得ることはできな
くなる。
Al 2 O 3 is a component for improving heat resistance. When the content is 3% or less, heat resistance is insufficient, and 8%
% Or more, the glass tends to be devitrified at the time of forming the glass, so that it is impossible to obtain a dense fired glass ceramic body.

【0044】K2Oはフラックス成分として、溶融時の
溶解性を向上させる作用を有する。その含量が1.5%
以下の場合にはその効果がなく、2.5%以上の場合に
は耐熱性が低下する。
K 2 O, as a flux component, has the effect of improving the solubility during melting. Its content is 1.5%
In the following cases, the effect is not obtained, and when it is 2.5% or more, the heat resistance decreases.

【0045】[0045]

【表6】 [Table 6]

【0046】[0046]

【表7】 [Table 7]

【0047】[0047]

【表8】 [Table 8]

【0048】(表6)〜(表8)はガラス組成を一定に
し、ガラス及びセラミック粉体それぞれの粒径を一定に
保ったままで両者の混合比を変化させた場合のガラスセ
ラミック焼成体の特性を表したものである。
Tables 6 to 8 show the characteristics of the glass-ceramic fired body when the glass composition is kept constant and the mixing ratio of the glass and the ceramic powder is kept constant while the particle size of each of them is kept constant. Is represented.

【0049】セラミック粉体としてアルミナを用いた場
合、その含有量がガラスセラミック材料中の重量百分率
で25%以下の場合には強度が不足する。また、40%
以上の場合には焼成温度が高くなる。
When alumina is used as the ceramic powder, if the content is 25% or less by weight in the glass ceramic material, the strength is insufficient. Also, 40%
In the above case, the firing temperature becomes high.

【0050】セラミック粉体としてフォルステライトを
用いた場合、その含有量がガラスセラミック材料中の重
量百分率で30%以下の場合には強度が不足する。ま
た、45%以上の場合には焼成温度が高くなる。
When forsterite is used as the ceramic powder, if the content is 30% or less by weight in the glass ceramic material, the strength is insufficient. When the content is 45% or more, the firing temperature becomes high.

【0051】セラミック粉体としてジルコニアを用いた
場合、ガラスセラミック焼成体の比誘電率が高くなり高
周波部品用基板材料としては好ましくない。
When zirconia is used as the ceramic powder, the relative dielectric constant of the fired glass ceramic becomes high, which is not preferable as a substrate material for high frequency components.

【0052】セラミック粉体としてマグネシアを用いた
場合、緻密なガラスセラミック焼成体を得ることができ
ない。またtanδが大きくなるので、高周波回路基板
用材料としては好ましくない。
When magnesia is used as the ceramic powder, a dense sintered glass ceramic cannot be obtained. In addition, tan δ increases, which is not preferable as a material for a high-frequency circuit board.

【0053】図1(a),(b)はガラス組成を一定に
し、ガラス粉体とセラミック粉体の混合比を一定に保っ
た上で、ガラス粉体及びセラミック粉体の粒径を変化さ
せた場合のガラスセラミック焼成体の特性を表したもの
である。ただし、ガラス粉体の粒径を変化させた場合の
セラミック粉体はアルミナとし、その平均粒径が1.0
μmのものを用いた。また、アルミナ粉体及びフォルス
テライト粉体の平均粒径を変化させた場合にはガラス粉
体として平均粒径3.0μmのものを用いた。
FIGS. 1 (a) and 1 (b) show that the glass composition is kept constant, the mixing ratio of the glass powder and the ceramic powder is kept constant, and the particle diameters of the glass powder and the ceramic powder are changed. It shows the characteristics of the glass ceramic fired body in the case of the above. However, when the particle diameter of the glass powder was changed, the ceramic powder was alumina, and the average particle diameter was 1.0.
μm was used. When the average particle size of the alumina powder and the forsterite powder was changed, a glass powder having an average particle size of 3.0 μm was used.

【0054】ガラス粉体の平均粒径が3.5μm以上の
場合にガラスセラミック焼成体の表面粗さが粗くなる。
また、アルミナの平均粒径が2.0μm以上あるいはフ
ォルステライトの平均粒径が2.5μm以上の場合には
ガラスセラミック焼成体の表面粗さが粗くなるのに加え
緻密な焼成体を得ることができず、前記焼成体の曲げ強
度が低下する。
When the average particle diameter of the glass powder is 3.5 μm or more, the surface roughness of the fired glass ceramic becomes rough.
When the average particle size of alumina is 2.0 μm or more or the average particle size of forsterite is 2.5 μm or more, it is possible to obtain a dense fired body in addition to a rough surface roughness of the glass ceramic fired body. No, the bending strength of the fired body is reduced.

【0055】一方、特開平1−203242号公報に記
載の低温焼成基板においては比誘電率が3(1MHz)
と低いものの、基板の曲げ強度が1100kgf/cm2であ
り、基板として十分な強度を備えているとは言い難い。
On the other hand, the low-temperature fired substrate described in JP-A-1-203242 has a relative dielectric constant of 3 (1 MHz).
However, the bending strength of the substrate is 1100 kgf / cm 2 , and it cannot be said that the substrate has sufficient strength.

【0056】また、特開平1−308867号公報に記
載の低温焼成基板の製造方法では基板材料としてガラス
粉末とムライト粉末の混合物から成るガラスセラミック
材料を用いており、基板の比誘電率が6以下と低いもの
の、ガラス材料組成中に重量%で40〜70%の酸化鉛
を含んでおり、地球環境問題保護の観点から今後はその
製造に課題が多いものと思われる。
Further, in the method for manufacturing a low-temperature fired substrate described in Japanese Patent Application Laid-Open No. 1-308867, a glass ceramic material composed of a mixture of glass powder and mullite powder is used as the substrate material, and the relative dielectric constant of the substrate is 6 or less. Although it is low, the glass material composition contains 40 to 70% by weight of lead oxide, and it is considered that there will be many problems in the production thereof from the viewpoint of protection of global environmental problems.

【0057】更に、特開平1−197359号公報に記
載の多層基板用低温焼成磁器組成物においては基板の比
誘電率が6〜8であり、さらに曲げ強度も1500kgf/
cm2以上と十分な値を示しているが、焼成温度が950
〜1020℃と高く、銀導体との同時焼成に適している
とは言い難い。
Further, in the low-temperature fired porcelain composition for a multilayer substrate described in JP-A-1-197359, the relative dielectric constant of the substrate is 6 to 8, and the bending strength is also 1500 kgf /.
cm 2 or more and is shown a sufficient value, the firing temperature is 950
It is as high as 1020 ° C., and it is hard to say that it is suitable for simultaneous firing with a silver conductor.

【0058】従って本実施例においては96%アルミナ
基板の比誘電率10に対して比誘電率が6〜8と低く、
1500kgf/cm2の十分な機械的強度を有し、かつ95
0℃以下で十分な焼結性が得られ、したがって銀をはじ
めとする導体材料との同時焼成可能なガラスセラミック
材料を得ることができる。更に、ガラス材料中に酸化鉛
成分を含まないので、従来多く用いられてきた酸化鉛を
含むガラスとセラミック粉体の混合物から成るガラスセ
ラミック材料と異なり、その製造において環境に与える
悪影響を小さくできる。
Therefore, in this embodiment, the relative dielectric constant is as low as 6 to 8 with respect to the relative dielectric constant of 10 of the 96% alumina substrate.
With sufficient mechanical strength of 1500 kgf / cm 2 and 95
Sufficient sinterability is obtained at 0 ° C. or lower, so that a glass ceramic material that can be co-fired with a conductive material such as silver can be obtained. Further, since the glass material does not contain a lead oxide component, unlike the glass ceramic material composed of a mixture of glass and ceramic powder containing lead oxide which has been widely used in the past, the adverse effect on the environment in the production can be reduced.

【0059】なお、本発明は本実施例に限定されるもの
ではなく、ガラス中の他の構成成分としては酸化物とし
てアルカリ金属酸化物、アルカリ土類金属酸化物、Sn
2,P25などを挙げることができる。また本発明で
述べた、ガラス材料は基板用のガラスセラミック材料と
してだけではなく、ペースト化して基板のオーバーコー
ト用材料としても有効であることは言うまでもない。
The present invention is not limited to the present embodiment. Other constituents in the glass include alkali metal oxides, alkaline earth metal oxides, and Sn as oxides.
O 2 and P 2 O 5 can be exemplified. Further, it goes without saying that the glass material described in the present invention is effective not only as a glass ceramic material for a substrate, but also as a material for overcoating a substrate by making it into a paste.

【0060】[0060]

【発明の効果】以上の説明から明らかなように本発明に
よれば、セラミックスとの同時焼成時に低温でも前記セ
ラミックスと十分な濡れ性が得られるガラス及び低誘電
率で十分な機械的強度を有し、かつ導体材料との同時焼
成可能な低温でも十分な焼結性が得られるガラスセラミ
ック材料を得ることができる。
As is apparent from the above description, according to the present invention, a glass which can obtain sufficient wettability with the ceramic at the time of co-firing with the ceramic even at a low temperature, and which has a low dielectric constant and sufficient mechanical strength. In addition, it is possible to obtain a glass-ceramic material having sufficient sinterability even at a low temperature at which simultaneous firing with the conductor material is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)本発明の一実施の形態におけるガラス粉
体、アルミナ粉体及びフォルステライト粉体の平均粒径
とガラスセラミック材料焼成体の表面粗さの関係を示し
た特性図 (b)同実施の形態におけるガラス粉体、アルミナ粉体
及びフォルステライト粉体の平均粒径とガラスセラミッ
ク材料焼成体の曲げ強度の関係を示した特性図
FIG. 1 (a) is a characteristic diagram showing the relationship between the average particle size of glass powder, alumina powder, and forsterite powder and the surface roughness of a sintered body of a glass ceramic material in one embodiment of the present invention. Characteristic diagram showing the relationship between the average particle size of the glass powder, alumina powder, and forsterite powder and the bending strength of the glass ceramic material fired body in the same embodiment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 勝村 英則 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 斉藤 隆一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 木村 涼 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 馬屋原 芳夫 滋賀県大津市晴嵐二丁目7番1号 日本電 気硝子株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hidenori Katsumura 1006 Kazuma Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. 72) Inventor Ryo Kimura 1006 Kazuma Kadoma, Kadoma, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Inventor Yoshio Miyahara 2-7-1 Hararashi, Otsu, Shiga Prefecture Nippon Electric Glass Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 重量百分率で、SiO2=40〜50
%,BaO=30〜40%,La23=7〜13%,B
23=3〜8%,Al23=3〜8%,K2O=1.5
〜2.5%の組成から成るガラス。
1. SiO 2 = 40 to 50 by weight.
%, BaO = 30~40%, La 2 O 3 = 7~13%, B
2 O 3 = 3 to 8%, Al 2 O 3 = 3 to 8%, K 2 O = 1.5
Glass with a composition of ~ 2.5%.
【請求項2】 請求項1記載のガラス粉体とセラミック
粉体の混合物から成ることを特徴とするガラスセラミッ
ク材料。
2. A glass-ceramic material comprising a mixture of the glass powder and the ceramic powder according to claim 1.
【請求項3】 セラミック粉体はアルミナであることを
特徴とする請求項2記載のガラスセラミック材料。
3. The glass-ceramic material according to claim 2, wherein the ceramic powder is alumina.
【請求項4】 セラミック粉体はフォルステライトであ
ることを特徴とする請求項2記載のガラスセラミック材
料。
4. The glass-ceramic material according to claim 2, wherein the ceramic powder is forsterite.
【請求項5】 混合物中100重量部中におけるアルミ
ナの含有量は25重量部以上40重量部未満であること
を特徴とする請求項3記載のガラスセラミック材料。
5. The glass ceramic material according to claim 3, wherein the content of alumina in 100 parts by weight of the mixture is at least 25 parts by weight and less than 40 parts by weight.
【請求項6】 混合物中100重量部中におけるフォル
ステライトの含有量は30重量部以上45重量部未満で
あることを特徴とする請求項4記載のガラスセラミック
材料。
6. The glass-ceramic material according to claim 4, wherein the content of forsterite in 100 parts by weight of the mixture is at least 30 parts by weight and less than 45 parts by weight.
【請求項7】 ガラス粉体の平均粒径は3.5μm以下
であることを特徴とする請求項2記載のガラスセラミッ
ク材料。
7. The glass-ceramic material according to claim 2, wherein the average particle size of the glass powder is 3.5 μm or less.
【請求項8】 アルミナの平均粒径は2.0μm以下で
あることを特徴とする請求項3記載のガラスセラミック
材料。
8. The glass-ceramic material according to claim 3, wherein the average particle size of the alumina is 2.0 μm or less.
【請求項9】 フォルステライトの平均粒径は2.5μ
m以下であることを特徴とする請求項4記載のガラスセ
ラミック材料。
9. The average particle size of forsterite is 2.5 μm.
5. The glass-ceramic material according to claim 4, wherein m is equal to or less than m.
JP21277997A 1997-08-07 1997-08-07 Glass and glass ceramic material Pending JPH1160266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21277997A JPH1160266A (en) 1997-08-07 1997-08-07 Glass and glass ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21277997A JPH1160266A (en) 1997-08-07 1997-08-07 Glass and glass ceramic material

Publications (1)

Publication Number Publication Date
JPH1160266A true JPH1160266A (en) 1999-03-02

Family

ID=16628261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21277997A Pending JPH1160266A (en) 1997-08-07 1997-08-07 Glass and glass ceramic material

Country Status (1)

Country Link
JP (1) JPH1160266A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1041051A2 (en) * 1999-03-31 2000-10-04 TDK Corporation Ceramics composition
WO2002016278A1 (en) * 2000-08-23 2002-02-28 Norsk Hydro Asa Barium lanthanum silicate glass-ceramics
US6623845B1 (en) * 1998-03-17 2003-09-23 Matsushita Electric Industrial Co., Ltd. Glass-ceramic composition, and electronic component and multilayer LC composite component using the same
EP1130003A4 (en) * 1999-06-16 2004-04-21 Matsushita Electric Ind Co Ltd Glass ceramics composition and electronic parts and multilayered lc multiple component using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6623845B1 (en) * 1998-03-17 2003-09-23 Matsushita Electric Industrial Co., Ltd. Glass-ceramic composition, and electronic component and multilayer LC composite component using the same
EP1041051A2 (en) * 1999-03-31 2000-10-04 TDK Corporation Ceramics composition
EP1041051A3 (en) * 1999-03-31 2000-10-18 TDK Corporation Ceramics composition
US6407020B1 (en) 1999-03-31 2002-06-18 Tdk Corporation Ceramics composition
EP1130003A4 (en) * 1999-06-16 2004-04-21 Matsushita Electric Ind Co Ltd Glass ceramics composition and electronic parts and multilayered lc multiple component using the same
WO2002016278A1 (en) * 2000-08-23 2002-02-28 Norsk Hydro Asa Barium lanthanum silicate glass-ceramics
US7189668B2 (en) 2000-08-23 2007-03-13 Norsk Hydro Asa Barium lanthanum silicate glass-ceramics

Similar Documents

Publication Publication Date Title
JP3240271B2 (en) Ceramic substrate
JP6458863B2 (en) Low temperature sintered ceramic materials, ceramic sintered bodies and ceramic electronic components
JPWO2008018408A1 (en) Glass ceramic composition, glass ceramic sintered body, and multilayer ceramic electronic component
JP2001222912A (en) Conductive paste and ceramic electronic part
KR20030091042A (en) Glass ceramic composition, glass ceramic sintered material and ceramic multilayer substrate
US6372676B1 (en) Ceramic substrate composition and ceramic circuit component
JP3042441B2 (en) Low temperature fired glass-ceramic substrate and its manufacturing method
JP2001287984A (en) Glass ceramic composition
JP3678260B2 (en) Glass ceramic composition
JP2001010858A (en) Composition for ceramic substrate and ceramic circuit part
JPH1160266A (en) Glass and glass ceramic material
JP7491377B2 (en) Glass, glass ceramics and multilayer ceramic electronic components
JP2002187768A (en) Low temperature sintering dielectric material for high frequency and sintered body of the same
JP2006256956A (en) Glass ceramic sintered compact and circuit member for microwave
JP4407199B2 (en) Crystallized lead-free glass, glass ceramic composition, green sheet and electronic circuit board
JP2000128628A (en) Glass ceramics composition
EP1130003A1 (en) Glass ceramics composition and electronic parts and multilayered lc multiple component using the same
JP2001010868A (en) Composition for ceramic substrate and ceramic circuit part
WO2009119433A1 (en) Lead-free glass and composition for lead-free glass ceramics
JP4166012B2 (en) Composition for high dielectric constant material
JPH0517211A (en) Substrate material and circuit substrate
JP4373198B2 (en) Lead-free glass ceramic composition for low-temperature fired substrates
JP2003095740A (en) Glass ceramic dielectric material, and sintered compact
JP4442077B2 (en) Porcelain composition for high frequency components
JP2002211971A (en) Glass-ceramics dielectric material, sintered body and circuit member for microwave