JPH0416563A - Ceramics composite material - Google Patents
Ceramics composite materialInfo
- Publication number
- JPH0416563A JPH0416563A JP2119774A JP11977490A JPH0416563A JP H0416563 A JPH0416563 A JP H0416563A JP 2119774 A JP2119774 A JP 2119774A JP 11977490 A JP11977490 A JP 11977490A JP H0416563 A JPH0416563 A JP H0416563A
- Authority
- JP
- Japan
- Prior art keywords
- thermal conductivity
- dielectric constant
- composite material
- boron nitride
- hexagonal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 26
- 239000002131 composite material Substances 0.000 title claims abstract description 22
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 27
- 229910052582 BN Inorganic materials 0.000 claims description 17
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 15
- 239000000843 powder Substances 0.000 abstract description 12
- 239000011148 porous material Substances 0.000 abstract description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 3
- 239000002612 dispersion medium Substances 0.000 abstract description 2
- 239000007788 liquid Substances 0.000 abstract description 2
- 239000011159 matrix material Substances 0.000 abstract description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 abstract 3
- 238000000465 moulding Methods 0.000 abstract 2
- 239000000463 material Substances 0.000 description 14
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000010453 quartz Substances 0.000 description 4
- 229910052594 sapphire Inorganic materials 0.000 description 4
- 239000010980 sapphire Substances 0.000 description 4
- 238000005336 cracking Methods 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- -1 steatite Substances 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 238000001947 vapour-phase growth Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000001272 pressureless sintering Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明はセラミックス複合材料に関し、特にエレクトロ
ニクス用の進行波管支持体材料に用いられるセラミック
ス複合材料に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a ceramic composite material, and particularly to a ceramic composite material used as a traveling wave tube support material for electronics.
[従来の技術]
エレクトロニクスにあける構造体としての用途である進
行波管のWヤMOの金属らせんの支持体(サポートロフ
ト)としては、従来の技術として石英、ステアタイト、
サファイヤ、ベリリアが検討されてきた(丸首(株)出
版の日本電信電話公社電気通信研究新編で小山次部著「
進行波管」207ペーシ)。[Prior art] Conventional technologies include quartz, steatite,
Sapphire and beryllia have been studied (written by Tsugube Koyama in the new edition of Nippon Telegraph and Telephone Corporation Telecommunications Research published by Marukubi Co., Ltd.).
"Traveling Wave Tube" p. 207).
一方、近年では通信衛星や放送衛星用の進行波管におい
て、高周波数化のため支持体に対して従来材料よりも優
れた高周波特性としての低誘電率か重要になってきた。On the other hand, in recent years, in traveling wave tubes for communication satellites and broadcasting satellites, in order to increase the frequency, it has become important to have a low dielectric constant for the support material as a high frequency property superior to that of conventional materials.
ざらに電子ビームの流入や加熱による高周波損失を防ぐ
ためには、支持体には熱放散のために高熱伝導性も要求
される。従来の支持体材料である石英ガラス、石英、ス
テアタイト、サファイヤ、ベリリアでは各々の空温の誘
電率はそれぞれ3.6. 4.3. 6.0. 9.6
. 6.9であり、また各々の熱伝導率は2,7,3.
40゜26゛OW/ m −Kてあって、低誘電率を実
現しつつ高熱伝導性を保持することか困難であった。一
方、最近では六方晶窒化ホウ素(hBN)が低誘電率と
高熱伝導率を兼ね備えた材料として注目されつつある。In order to prevent high frequency loss due to the inflow of electron beams and heating, the support is also required to have high thermal conductivity for heat dissipation. Conventional support materials such as quartz glass, quartz, steatite, sapphire, and beryllia each have a dielectric constant of 3.6 at air temperature. 4.3. 6.0. 9.6
.. 6.9, and their respective thermal conductivities are 2, 7, 3.
40°26°OW/m-K, it was difficult to maintain high thermal conductivity while achieving a low dielectric constant. On the other hand, recently, hexagonal boron nitride (hBN) has been attracting attention as a material that has both low dielectric constant and high thermal conductivity.
[発明か解決しようとする課題]
六方晶窒化ホウ素(hBN>は、黒鉛と同じく六角網面
の積層構造を有し、層内のa軸方向か共有結合性であり
、積層面に垂直なC軸方向はファンデエアワールス結合
による結晶構造のため誘電率や熱伝導率に顕著な異方性
を示す。すなわち、hBNのa軸方向の誘電率と熱伝導
率は各々5.1と62W/i−にであり、C軸方向では
3.5と2W/1Il−にとの報告がある。[Problem to be solved by the invention] Hexagonal boron nitride (hBN) has a laminated structure of hexagonal net planes like graphite, and has a covalent bond in the a-axis direction within the layer, and C perpendicular to the laminated plane. In the axial direction, the dielectric constant and thermal conductivity exhibit remarkable anisotropy due to the crystal structure due to Van der Waals bonding.In other words, the dielectric constant and thermal conductivity of hBN in the a-axis direction are 5.1 and 62 W/i, respectively. -, and in the C-axis direction it is reported to be 3.5 and 2W/1Il-.
また現在、進行波管支持体材料として、例えば気相成長
法による熱分解窒化ホウ素(PBN)であるユニオン・
カーバイド(Union Carbide)社の商品名
BORALLOYが検討され、一部実用もされている。At present, Union, which is pyrolytic boron nitride (PBN) produced by vapor phase growth, is currently being used as a traveling wave tube support material.
BORALLOY, a trade name manufactured by Union Carbide, has been studied and some have been put into practical use.
しかしながらBORALLOYは、黒鉛などの基板上に
気相成長法により成膜するため配向性が高く、材料の面
内方向と厚み方向では前述したように誘電率や熱伝導率
か顕著に異なる高異方性を示すため、低誘電率と高熱伝
導率を同時に発揮できない。すなわち、低誘電率(3,
5)を利用するためにC軸方向を支持体の使用方向とし
た場合には熱伝導率は約2W/m・にと従来の石英、ス
テアタイト、サファイヤ、ベリリアよりもかなり小ざく
、放熱性に問題があった。また熱放散のため熱伝導性の
良いa軸方向(62W、−’ m・に)を支持体の使用
方向とした場合には、誘電率が5.1と高周波化のため
の低誘電率の要求としては十分ではなかった。またBO
RALLOYは六方晶窒化ホウ素の本質的な性質である
積層構造に基づいたa軸とa軸の異方性を有する配向構
造のため、層間でしばしば剥離および亀裂を生ずるなど
構造体としての信頼性にも問題が多くあった。ざらに熱
分解窒化ホウ素は気相成長法による製造方法で作られて
いるため、大型で厚い製品が多量に生産できないうえ、
コストが高いなどの工業的問題点も存在していた。However, BORALLOY has a high degree of orientation because it is formed on a substrate such as graphite by vapor phase growth, and as mentioned above, it has high anisotropy, with dielectric constant and thermal conductivity significantly different between the in-plane direction and the thickness direction of the material. Therefore, it cannot exhibit low dielectric constant and high thermal conductivity at the same time. That is, low dielectric constant (3,
5) When the C-axis direction is used as the support direction, the thermal conductivity is approximately 2 W/m, which is much lower than conventional quartz, steatite, sapphire, and beryllia, and has good heat dissipation. There was a problem. In addition, when the support is used in the a-axis direction (62W, -'m), which has good thermal conductivity for heat dissipation, the dielectric constant is 5.1, which is a low dielectric constant for high frequency. It wasn't enough to meet the requirements. Also BO
Because RALLOY has an oriented structure with anisotropy between the a-axis and the a-axis based on the layered structure, which is an essential property of hexagonal boron nitride, it often suffers from delamination and cracks between layers, resulting in poor reliability as a structure. There were also many problems. Since pyrolytic boron nitride is manufactured using a vapor phase growth method, large and thick products cannot be produced in large quantities.
There were also industrial problems such as high cost.
本発明者はこのような点に対処して鋭意研究を進めた結
果、六方晶窒化ホウ素と窒化アルミニウムから構成され
たセラミックス複合材料か低誘電率と高熱伝導率を兼ね
備え、構造上の信頼性にも優れるため進行波管の支持体
として最適であることを見い出し、本発明を完成するに
至った。As a result of intensive research to address these issues, the inventors of the present invention have developed a ceramic composite material composed of hexagonal boron nitride and aluminum nitride that has both low dielectric constant and high thermal conductivity, and has excellent structural reliability. The present inventors have discovered that this material is ideal as a support for traveling wave tubes due to its excellent properties, and have completed the present invention.
[課題を解決するための手段]
本発明は、六方晶窒化ホウ素セラミックス内部に窒化ア
ルミニウム相が0.1〜50重量%を分散され含有する
ことを特徴とするセラミックス複合材料である。[Means for Solving the Problems] The present invention is a ceramic composite material characterized by containing 0.1 to 50% by weight of an aluminum nitride phase dispersed within a hexagonal boron nitride ceramic.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
窒化アルミニウム(Ai!N>は室温では150〜32
0W、/’ m・にの高熱伝導性と8.9の誘電率を有
する優れた材料である。しかしながら、窒化アルミニウ
ムは一般的な六方晶窒化ホウ素の3〜6倍の高熱伝導率
を有する長所を示すか、誘電率は六方晶窒化ホウ素の2
〜3倍も大きく、高熱伝導率と低誘電率か両立すること
の要求には充分ではない。そこで本発明者は窒化ホウ素
の低誘電率と、窒化アルミニウムの高熱伝導率とを兼ね
備えたセラミックス複合材料を鋭意研究の結果、本発明
を完成するに至った。Aluminum nitride (Ai!N> is 150-32 at room temperature
It is an excellent material with a high thermal conductivity of 0 W,/'m· and a dielectric constant of 8.9. However, aluminum nitride exhibits the advantage of having a high thermal conductivity that is 3 to 6 times that of general hexagonal boron nitride, and the dielectric constant is 2 times that of hexagonal boron nitride.
It is ~3 times larger, which is not sufficient to meet the requirements for both high thermal conductivity and low dielectric constant. Therefore, the present inventor has completed the present invention as a result of intensive research into a ceramic composite material that combines the low dielectric constant of boron nitride and the high thermal conductivity of aluminum nitride.
第1図は、本発明のセラミックス複合材料1の構造を模
式的に示したもので、六方晶窒化ホウ素(hBN)2を
主成分としたマトリックスの内部である多結晶粒子の粒
界や表面ヤ空孔部にhBNよりも高熱伝導性を有する窒
化アルミニウム(ARN>3か存在して、空隙部を減少
させた構造を有することにより、高熱伝導性と低誘電率
を兼ね備えたものとなる。Figure 1 schematically shows the structure of the ceramic composite material 1 of the present invention, showing the grain boundaries and surface areas of polycrystalline grains inside a matrix mainly composed of hexagonal boron nitride (hBN)2. By having aluminum nitride (ARN>3), which has a higher thermal conductivity than hBN, in the pores and having a structure in which the pores are reduced, it has both high thermal conductivity and a low dielectric constant.
一般的には窒化アルミニウムを0.1〜50重墨%、好
ましくは1〜30重量%の範囲で含有する。Generally, aluminum nitride is contained in a range of 0.1 to 50% by weight, preferably 1 to 30% by weight.
本発明のセラミックス複合材料に含有される窒化アルミ
ニウムは0.1重量%未満では熱伝導率の増大は小さく
、また50重量%を越えると誘電率か5以上に大きくな
る場合があり、不適当である。If the aluminum nitride contained in the ceramic composite material of the present invention is less than 0.1% by weight, the increase in thermal conductivity will be small, and if it exceeds 50% by weight, the dielectric constant may increase to 5 or more, which is inappropriate. be.
その結果、窒化アルミニウム量を0.1〜50重量%、
好ましくは1〜30重量%の範囲で含有することにより
高熱伝導率と低誘電率を実現できる。As a result, the amount of aluminum nitride was 0.1 to 50% by weight,
Preferably, by containing it in the range of 1 to 30% by weight, high thermal conductivity and low dielectric constant can be achieved.
また、気孔4を存在させることが高熱伝導率と低誘電率
の実現のために望ましい。特に、最大50%程度の気孔
を含有することは誘電率を低下させるために有効である
が、気孔率が50%を越えると、機械的強度や熱伝導率
の著しい低下となる問題がある。Furthermore, it is desirable to have pores 4 in order to achieve high thermal conductivity and low dielectric constant. In particular, containing pores of up to 50% is effective for lowering the dielectric constant, but if the porosity exceeds 50%, there is a problem in that mechanical strength and thermal conductivity are significantly reduced.
また本発明のセラミックス複合材料を製造する方法は特
に限定されず、種々の方法か可能である。Further, the method for producing the ceramic composite material of the present invention is not particularly limited, and various methods are possible.
−例を示せば、次のような方法によって製造できる。- For example, it can be manufactured by the following method.
窒化ホウ素粉末と窒化アルミニウム粉末を所定の組成比
に配合した後、ホールミル等で混合し、成形した後、非
酸化性雰囲気において、1500〜2200℃程度の温
度で加熱しながら10〜500Kg/cm2の機械的圧
力下、もしくは無加圧の条件下で焼結することにより、
本発明のセラミックス複合材料を製造することかできる
。非酸化性雰囲気としては窒素、アルゴン、真空雰囲気
などが便利である。After blending boron nitride powder and aluminum nitride powder to a predetermined composition ratio, they are mixed in a hole mill etc., molded, and then heated at a temperature of about 1500 to 2200°C in a non-oxidizing atmosphere at a rate of 10 to 500 kg/cm2. By sintering under mechanical pressure or under non-pressure conditions,
The ceramic composite material of the present invention can also be manufactured. Convenient non-oxidizing atmospheres include nitrogen, argon, and vacuum atmospheres.
本発明の六方晶窒化ホウ素と窒化アルミニウムから構成
されるセラミック複合体は、室温での誘電率が3.5〜
5(周波数1MH2)で、熱伝導率か50 W/ m・
に以上であるという優れた特性以外に、従来の進行波管
支持体材料でおる熱分解窒化ホウ素(PBN>より優れ
た圧縮強度等の機械的特性を有する。すなわち、PBN
の室温ての圧縮強度が2340 KJ、/cm2である
のに対して、本発明のセラミック複合体は1000〜7
000 N!9/Cm2の優れた圧縮強度を有する。こ
のため、PBNのように剥離および亀裂を生ずるなどの
問題もない。The ceramic composite composed of hexagonal boron nitride and aluminum nitride of the present invention has a dielectric constant of 3.5 to 3.5 at room temperature.
5 (frequency 1MH2), thermal conductivity is 50 W/m・
In addition to its excellent properties such as higher compressive strength than the conventional traveling wave tube support material, pyrolytic boron nitride (PBN) has superior mechanical properties such as compressive strength.
The compressive strength of the ceramic composite at room temperature is 2340 KJ/cm2, whereas the ceramic composite of the present invention has a compressive strength of
000 N! It has an excellent compressive strength of 9/Cm2. Therefore, there are no problems such as peeling and cracking that occur with PBN.
また普通工具で切削加工できる長所もある。さらに常圧
焼結法で製造した場合、大型で厚い製品を低コストで製
造できるなどの数多くの利点かある。Another advantage is that it can be cut using ordinary tools. Furthermore, when manufactured using the pressureless sintering method, there are many advantages such as the ability to manufacture large and thick products at low cost.
本発明を更に具体的に説明するため次に実施例を挙げて
説明するが、本発明はこれらの実施例に限定されるもの
ではない。EXAMPLES In order to explain the present invention more specifically, Examples will be given below, but the present invention is not limited to these Examples.
[実施例]
実施例1
平均粒径5即、純度99%の窒化ホウ素粉末80重量%
と、平均粒径0.2柳、純度99%の窒化アルミニウム
粉末20重量%とを配合した粉末を用い、エタノールを
液体分散媒としてボールミルで混合した。この混合粉末
を20ONff/cm2の機械的圧力でプレスしながら
、2000 ’C1常圧窒素カス雰囲気、1時間の条件
でホットプレスした。[Example] Example 1 80% by weight of boron nitride powder with an average particle size of 5 and a purity of 99%
and 20% by weight of aluminum nitride powder with an average particle size of 0.2 and a purity of 99% were mixed in a ball mill using ethanol as a liquid dispersion medium. This mixed powder was hot-pressed for 1 hour in a 2000' C1 normal pressure nitrogen scum atmosphere while pressing with a mechanical pressure of 20 ONff/cm2.
得られたセラミック複合体の気孔率は10%でおり、室
温での誘電率は4.1(周波数IMH7)、熱伝導率は
150W、−’ m−に、圧縮強度は3000Kg 、
/’ C…2てあり、進行波管支持体材料として優れた
特性を有していた。The porosity of the obtained ceramic composite was 10%, the dielectric constant at room temperature was 4.1 (frequency IMH7), the thermal conductivity was 150 W, -' m-, and the compressive strength was 3000 Kg.
/' C...2, and had excellent properties as a traveling wave tube support material.
このセラミック複合体を切断加工後、0.25 xO,
5x 100mmの長い直方体状の進行波管支持体を作
製して進行波管に実装した。第2図(a)はその断面図
、第2図(b)は(a)にあけるA−A−による断面図
である。タングステンコイル6は3本の支持体5で3方
向からステンレス保護管9により圧縮保持されている。After cutting this ceramic composite, 0.25 xO,
A traveling wave tube support in the shape of a long rectangular parallelepiped measuring 5 x 100 mm was prepared and mounted on a traveling wave tube. FIG. 2(a) is a sectional view thereof, and FIG. 2(b) is a sectional view taken along line AA- in FIG. 2(a). The tungsten coil 6 is compressed and held by a stainless steel protection tube 9 from three directions by three supports 5.
7はカソード、8はコレクターである。支持体5はタン
グステンコイル6とステンレス保護管9の内壁の3点か
ら圧縮およびせん断の応力を受けているが、熱分解窒化
ホウ素で生じる剥離や亀裂は発生しなかった。7 is a cathode, and 8 is a collector. Although the support 5 was subjected to compressive and shear stress from three points: the tungsten coil 6 and the inner wall of the stainless steel protective tube 9, no peeling or cracking caused by pyrolytic boron nitride occurred.
実施例2
平均粒径2μs、純度99.5%の窒化ホウ素粉末と、
平均粒径1卯、純度99%の窒化アルミニウム粉末を第
1表に示す割合で配合して実施例1と同様に混合した粉
末を第1表に示す条件で加熱処理したところ、第1表に
示すような特性を有する低誘電率と高熱伝導率を共に備
えたセラミックス複合材料が実現された。これらの特性
は進行波管の支持体材料として良好な値である。Example 2 Boron nitride powder with an average particle size of 2 μs and a purity of 99.5%,
When aluminum nitride powder with an average particle size of 1 μm and a purity of 99% was blended in the proportions shown in Table 1 and mixed in the same manner as in Example 1, the powder was heat-treated under the conditions shown in Table 1. A ceramic composite material with both low dielectric constant and high thermal conductivity has been realized. These properties are good values for a support material for traveling wave tubes.
比較例1
平均粒径5IIIn、純度99%の窒化ホウ素粉末のみ
を実施例1と同様な条件である200に’j/Cm2の
機械的圧力でプレスしなから2000℃、常圧窒素カス
雰囲気、1時間の条件でホットプレスした。Comparative Example 1 Only boron nitride powder with an average particle size of 5IIIn and a purity of 99% was pressed under the same conditions as in Example 1, at a mechanical pressure of 200'j/Cm2, at 2000°C, in a nitrogen gas atmosphere at normal pressure, Hot pressing was carried out for 1 hour.
得られた窒化ホウ素セラミックスは気孔率20%であり
、室温ての誘電率3.5、熱伝導率は50W/m−K、
圧縮強度は60ONy/cm2てあり、進行波管支持体
としては不十分な特性であった。The obtained boron nitride ceramic has a porosity of 20%, a dielectric constant of 3.5 at room temperature, a thermal conductivity of 50 W/mK,
The compressive strength was 60 ONy/cm2, which was insufficient as a support for a traveling wave tube.
(以下余白)
[発明の効果]
以上説明したように、本発明のセラミックス複合材料は
、進行波管支持体として従来の支持体材料である石英、
ステアタイト、サファイヤ、へりリア、熱分解窒化ホウ
素より優れた低誘電率と高熱伝導率を兼ね備えた材料で
あり、熱分解窒化ホウ素にみられるような特性の異方性
も少なく、しかも剥離や亀裂などの発生の問題もない。(The following is a blank space) [Effects of the Invention] As explained above, the ceramic composite material of the present invention can be used as a traveling wave tube support using conventional support materials such as quartz,
It is a material that has a low dielectric constant and high thermal conductivity superior to steatite, sapphire, herria, and pyrolytic boron nitride, and has less anisotropy in properties as seen in pyrolytic boron nitride, and is resistant to peeling and cracking. There are no problems such as this occurring.
ざらに熱分解窒化ホウ素では困難な、大型で厚い製品を
多事に低コストで製造可能であることなど、工業的に多
くの利点を有するものである。It has many industrial advantages, including the ability to manufacture large, thick products at low cost, which is difficult to do with pyrolytic boron nitride.
また本発明の方法によるセラミックス複合材料は、進行
波管の支持体以外の用途である電子部品、絶縁基板、高
温炉治具などにも利用できる効果もある。Furthermore, the ceramic composite material produced by the method of the present invention can also be used for electronic components, insulating substrates, high-temperature furnace jigs, etc. other than as supports for traveling wave tubes.
第1図は本発明のセラミックス複合材料の構造を模式的
に示す断面図、第2図は進行波管の断面図(a)および
(a)のA−A−線による断面図(b)である。
1・・・セラミックス複合材料
2・・・六方晶窒化ホウ素
3・・・窒化アルミニウム
4・・・気孔
5−・・支持体
6・・・タングステンコイル
7・・・カソード
8・・・コレクター
9・・・ステンレス保護管FIG. 1 is a cross-sectional view schematically showing the structure of the ceramic composite material of the present invention, and FIG. 2 is a cross-sectional view of a traveling wave tube (a) and a cross-sectional view taken along line A-A in (a) (b). be. 1 Ceramic composite material 2 Hexagonal boron nitride 3 Aluminum nitride 4 Pore 5 Support 6 Tungsten coil 7 Cathode 8 Collector 9・・Stainless steel protection tube
Claims (1)
ニウム相が0.1〜50重量%を分散され含有すること
を特徴とするセラミックス複合材料。(1) A ceramic composite material characterized by containing 0.1 to 50% by weight of an aluminum nitride phase dispersed within a hexagonal boron nitride ceramic.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2119774A JPH0416563A (en) | 1990-05-11 | 1990-05-11 | Ceramics composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2119774A JPH0416563A (en) | 1990-05-11 | 1990-05-11 | Ceramics composite material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0416563A true JPH0416563A (en) | 1992-01-21 |
Family
ID=14769883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2119774A Pending JPH0416563A (en) | 1990-05-11 | 1990-05-11 | Ceramics composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0416563A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004250264A (en) * | 2003-02-19 | 2004-09-09 | Rikogaku Shinkokai | High strength boron nitride sintered compact and method of manufacturing the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01131069A (en) * | 1987-11-14 | 1989-05-23 | Denki Kagaku Kogyo Kk | Complex compact calcined under ordinary pressure |
JPH01261279A (en) * | 1988-04-08 | 1989-10-18 | Nippon Steel Corp | Production of bn-aln-based composite sintered form |
JPH01305862A (en) * | 1988-06-03 | 1989-12-11 | Nippon Steel Corp | Bn-aln type sintered body having anisotropy and its production |
JPH02192467A (en) * | 1989-01-19 | 1990-07-30 | Nippon Steel Corp | Production of sintered material of aluminum nitride-hexagonal boron nitride system |
JPH03242377A (en) * | 1990-02-16 | 1991-10-29 | Nippon Steel Corp | Production of bn-aln-based sintered body having anisotropy |
-
1990
- 1990-05-11 JP JP2119774A patent/JPH0416563A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01131069A (en) * | 1987-11-14 | 1989-05-23 | Denki Kagaku Kogyo Kk | Complex compact calcined under ordinary pressure |
JPH01261279A (en) * | 1988-04-08 | 1989-10-18 | Nippon Steel Corp | Production of bn-aln-based composite sintered form |
JPH01305862A (en) * | 1988-06-03 | 1989-12-11 | Nippon Steel Corp | Bn-aln type sintered body having anisotropy and its production |
JPH02192467A (en) * | 1989-01-19 | 1990-07-30 | Nippon Steel Corp | Production of sintered material of aluminum nitride-hexagonal boron nitride system |
JPH03242377A (en) * | 1990-02-16 | 1991-10-29 | Nippon Steel Corp | Production of bn-aln-based sintered body having anisotropy |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004250264A (en) * | 2003-02-19 | 2004-09-09 | Rikogaku Shinkokai | High strength boron nitride sintered compact and method of manufacturing the same |
JP4542747B2 (en) * | 2003-02-19 | 2010-09-15 | 国立大学法人東京工業大学 | Manufacturing method of high strength hexagonal boron nitride sintered body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20140113364A (en) | Dense composite material, method for producing the same, and component for semiconductor production equipment | |
JP2882575B2 (en) | High thermal conductive silicon nitride ceramics and method for producing the same | |
CN113563085B (en) | AlN electronic ceramic material with high dielectric property | |
JPH0416563A (en) | Ceramics composite material | |
EP0479485A1 (en) | Sialon type sintered bodies | |
US5968426A (en) | Method of producing porous silicon nitride ceramics having high strength and low thermal conductivity | |
JPH0328171A (en) | Ceramic composition material | |
CN113185291B (en) | Preparation method of heat dissipation substrate material for electronic packaging | |
JPH02296772A (en) | Support for traveling-wave tube | |
JPH04275979A (en) | Ceramic composite material | |
JP3018354B2 (en) | Ceramic composite material and method for producing the same | |
CN116178022A (en) | Silicon carbide-beryllium oxide composite ceramic with high density and high heat conduction and preparation method thereof | |
JPH0881267A (en) | Aluminum nitride sintered compact, its production, aluminum nitride circuit board and its production | |
JPH03183662A (en) | Production of ceramics composite material | |
CN113735594B (en) | Method for preparing high-thermal-conductivity silicon nitride ceramic through hot-pressing sintering | |
JP2778783B2 (en) | Method for producing BN-AlN-based sintered body having anisotropy | |
CN113121252B (en) | Preparation method of high-thermal-conductivity SiC-AlN composite ceramic | |
JPS63295479A (en) | Sintered aluminum nitride body and its production | |
JPS63270362A (en) | Sintered ceramic composite and its production | |
JPS63277571A (en) | Production of sintered aluminum nitride having high thermal conductivity | |
JP2001019555A (en) | Silicon nitride sintered compact and substrate using the same | |
JP2003020282A (en) | Aluminum nitride sintered compact, production method therefor and its use | |
US5061664A (en) | Preparation of sintered aluminum nitride | |
JPH0881269A (en) | Highly heat-conductive sintered compact and circuit board | |
CN118359440A (en) | High-thermal-conductivity discharge plasma sintering silicon carbide ceramic material and preparation method thereof |