JP3018354B2 - Ceramic composite material and method for producing the same - Google Patents
Ceramic composite material and method for producing the sameInfo
- Publication number
- JP3018354B2 JP3018354B2 JP1218706A JP21870689A JP3018354B2 JP 3018354 B2 JP3018354 B2 JP 3018354B2 JP 1218706 A JP1218706 A JP 1218706A JP 21870689 A JP21870689 A JP 21870689A JP 3018354 B2 JP3018354 B2 JP 3018354B2
- Authority
- JP
- Japan
- Prior art keywords
- boron nitride
- ceramic composite
- composite material
- sintered body
- wave tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Ceramic Products (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明はセラミックス複合材料およびその製造方法に
関し、特にエレクトロニクス用の進行波管支持体材料に
用いられるセラミックス複合材料およびその製造方法に
関するものである。Description: TECHNICAL FIELD The present invention relates to a ceramic composite material and a method for producing the same, and more particularly, to a ceramic composite material used for a traveling wave tube support material for electronics and a method for producing the same. .
[従来の技術] エレクトロニクスにおける構造体としての用途である
進行波管におけるWやMoの金属らせんの支持体(サポー
トロッド)としては、従来の技術として石英、アテアタ
イト、サファイヤ、ベリリアが検討されてきた(丸善
(株)出版の日本電信電話公社電気通信研究所編で小山
次郎著「進行波管」207ページ)。[Prior Art] Quartz, aatite, sapphire, and beryllia have been considered as conventional techniques as a support (support rod) for a metal spiral of W or Mo in a traveling wave tube which is used as a structure in electronics. (Journal of Telecommunications Research Institute, Nippon Telegraph and Telephone Public Corporation, published by Maruzen Co., Ltd., Jiro Koyama, “Traveling Wave Tube,” p. 207).
一方、近年では通信衛星や放送衛星用の進行波管にお
いて、高周波数化のため支持体に対して従来材料よりも
優れた高周波特性としての低誘電率が重要になってき
た。さらに電子ビームの流入や加熱による高周波損失を
防ぐためには、支持体には熱放散のために高熱伝導性も
要求される。従来の支持体材料である石英ガラス、石
英、ステアタイト、サファイヤ、ベリリアでは各々の室
温の誘電率はそれぞれ3.6,4.3,6.0,9.6,6.9であり、ま
た各々の熱伝導率は2,7,3,40,260W/m・kであって、低
誘電率を実現しつつ高熱伝導性を保持することが困難で
あった。一方、最近では六方晶窒化ホウ素(hBN)が低
誘電率と高熱伝導率を兼ね備えた材料として注目されつ
つある。On the other hand, in recent years, in a traveling wave tube for a communication satellite or a broadcasting satellite, a low dielectric constant as a high-frequency characteristic superior to a conventional material has become important for a support in order to increase the frequency. Further, in order to prevent high-frequency loss due to inflow or heating of the electron beam, the support is required to have high thermal conductivity for heat dissipation. Conventional support materials such as quartz glass, quartz, steatite, sapphire, and beryllia have a dielectric constant of 3.6, 4.3, 6.0, 9.6, 6.9 at room temperature, respectively, and a thermal conductivity of 2, 7, 3,40,260 W / m · k, making it difficult to maintain high thermal conductivity while realizing a low dielectric constant. On the other hand, recently, hexagonal boron nitride (hBN) has been attracting attention as a material having both low dielectric constant and high thermal conductivity.
[発明が解決しようとする課題] 六方晶窒化ホウ素(hBN)は、黒鉛と同じく六角網面
の積層構造を有し、層内のa軸方向が共有結合性であ
り、積層面に垂直なc軸方向はファンデェアワールス結
合による結晶構造のため誘電率や熱伝導率に顕著な異方
性を示す。すなわち、hBNのa軸方向の誘電率と熱伝導
率は各々5.1と62W/m・kであり、c軸方向では3.5と2W/
m・kとの報告がある。[Problems to be Solved by the Invention] Hexagonal boron nitride (hBN) has a laminated structure of a hexagonal mesh plane like graphite, the a-axis direction in the layer is covalently bonded, and c is perpendicular to the laminated plane. The axial direction shows remarkable anisotropy in the dielectric constant and thermal conductivity due to the crystal structure by Van der Waals coupling. That is, the permittivity and thermal conductivity of hBN in the a-axis direction are 5.1 and 62 W / mk, respectively, and in the c-axis direction, they are 3.5 and 2 W / mk.
There is a report of mk.
また現在、進行波管支持体材料として、例えば気相成
長法による熱分解窒化ホウ素(PBN)であるユニオン・
カーバイド(Union Carbide)社の商品名BORALLOYが検
討され、一部実用もされている。しかしながらBORALLOY
は、黒鉛などの基板上に気相成長法により成膜するため
配向性が高く、材料の面内方向と厚み方向では前述した
ように誘電率や熱伝導率が顕著に異なる高異方性を示す
ため、低誘電率と高熱伝導率を同時に発揮できない。す
なわち、低誘電率(3.5)を利用するためにc軸方向を
支持体の使用方向とした場合には熱伝導率は約2W/m・k
と従来の石英、ステアタイト、サファイヤ、ベリリアよ
りもかなり小さく、放熱性に問題があった。また熱放散
のため熱伝導性の良いa軸方向(62W/m・k)を支持体
の使用方向とした場合には、誘導率が5.1と高周波化の
ための低誘電率の要求としては十分ではなかった。また
BORALLOYは六方晶窒化ホウ素の本質的な性質である積層
構造に基づいたa軸とc軸の異方性を有する配向構造の
ため、層間でしばしば剥離および亀裂を生ずるなど構造
体としての信頼性にも問題が多くあった。さらに熱分解
窒化ホウ素は気相成長法による製造方法で作られている
ため、大型で厚い製品が多量に生産できないうえ、コス
トが高いなどの工業的問題点も存在していた。Currently, Union Wave, which is pyrolytic boron nitride (PBN) by vapor deposition, is used as a traveling wave tube support material.
BORALLOY, a trade name of Union Carbide, has been studied and some have been put to practical use. However BORALLOY
Has a high degree of orientation because it is deposited on a substrate such as graphite by vapor phase epitaxy, and has a high anisotropy in which the dielectric constant and thermal conductivity differ significantly in the in-plane direction and thickness direction of the material as described above. Therefore, low dielectric constant and high thermal conductivity cannot be exhibited simultaneously. In other words, when the direction of use of the support is set to the c-axis direction in order to use a low dielectric constant (3.5), the thermal conductivity is about 2 W / m · k.
And it was considerably smaller than conventional quartz, steatite, sapphire, and beryllia, and had a problem in heat dissipation. Also, when the a-axis direction (62 W / m · k) with good thermal conductivity for heat dissipation is used as the support, the dielectric constant is 5.1, which is sufficient for the requirement of low dielectric constant for high frequency. Was not. Also
BORALLOY is an oriented structure with anisotropy of a-axis and c-axis based on the laminated structure, which is an essential property of hexagonal boron nitride. There were also many problems. Furthermore, since pyrolytic boron nitride is produced by a vapor phase growth method, large and thick products cannot be mass-produced, and there are also industrial problems such as high cost.
本発明者はこのような点に対処して鋭意研究を進めた
結果、六方晶窒化ホウ素と窒化アルミニウムから構成さ
れたセラミックス複合材料が低誘電率と高熱伝導率を兼
ね備え、構造上の信頼性にも優れるため進行波管の支持
体として最適であることを見い出し、本発明を完成する
に至った。The present inventor has worked diligently to deal with such a point, and as a result, the ceramic composite material composed of hexagonal boron nitride and aluminum nitride has both low dielectric constant and high thermal conductivity, and has a high structural reliability. As a result, the present invention was found to be most suitable as a support for a traveling wave tube, and the present invention was completed.
[課題を解決するための手段] 本発明は、多孔質六方晶窒化ホウ素焼結体の窒化ホウ
素粒子表面および/または該焼結体粒界部に窒化アルミ
ニウムが存在する構造を備えたことを特徴とする進行波
管支持体用セラミックス複合材料、及び多孔質六方晶窒
化ホウ素焼結体に窒化アルミニウム前駆体であるアルミ
ニウムと窒素を含む有機金属化合物溶液を含浸させた
後、窒素またはアンモニアを含む不活性ガス雰囲気下で
加熱処理することを特徴とする進行波管支持体用セラミ
ックス複合材料の製造方法である。[Means for Solving the Problems] The present invention is characterized in that the porous hexagonal boron nitride sintered body has a structure in which aluminum nitride is present on the surface of the boron nitride particles and / or at the grain boundaries of the sintered body. After impregnating a ceramic composite material for a traveling-wave tube support and a porous hexagonal boron nitride sintered body with an organometallic compound solution containing aluminum and nitrogen, which is an aluminum nitride precursor, a non-nitrogen or ammonia containing A method for producing a ceramic composite material for a traveling wave tube support, which is characterized by performing a heat treatment in an active gas atmosphere.
以下、本発明をさらに詳しく説明する。 Hereinafter, the present invention will be described in more detail.
本発明のセラミックス複合材料は、六方晶窒化ホウ素
(hBN)と窒化アルミニウム(AlN)を主成分とするもの
で、AlNは前駆体であるAlとNを含む有機金属化合物を
多孔質hBN内部に含浸させた後、加熱処理してAlN相を生
成させるという製造工程上の特徴を有する。その結果、
多孔質hBN焼結体内部において、hBN粒子の表面や粒界部
にAlN相が生成した複合構造を有する。第1図は本発明
のセラミックス複合材料1の構造を模式的に表す断面図
であり、hBN2の表面およびその粒界部にAlN3が存在して
いる。The ceramic composite material of the present invention contains hexagonal boron nitride (hBN) and aluminum nitride (AlN) as main components, and AlN impregnates a precursor of an organometallic compound containing Al and N into porous hBN. After that, it has a feature in the manufacturing process that heat treatment is performed to generate an AlN phase. as a result,
Inside the porous hBN sintered body, it has a composite structure in which AlN phase is generated on the surface and grain boundary of hBN particles. FIG. 1 is a cross-sectional view schematically showing the structure of the ceramic composite material 1 of the present invention, in which AlN3 is present on the surface of hBN2 and at the grain boundary thereof.
さらに本発明のセラミックス複合材料1では、hBN2や
AlN3以外に、第1図に示すように最大50%程度の気孔4
を含有することも誘電率を低下させるために有効であ
る。しかしながら気孔率が50%を超えると、進行波管支
持体等の構造的利用において機械的強度が不十分となる
問題がある。Furthermore, in the ceramic composite material 1 of the present invention, hBN2 or
In addition to AlN3, as shown in FIG.
Is effective for lowering the dielectric constant. However, if the porosity exceeds 50%, there is a problem that the mechanical strength becomes insufficient in structural use of a traveling wave tube support or the like.
本発明のセラミックス複合材料中の窒化ホウ素の含有
量は特に限定されないが、窒化ホウ素量を50〜99重量%
にすると、普通工具で切削加工できるという利点があ
る。The content of boron nitride in the ceramic composite material of the present invention is not particularly limited.
In this case, there is an advantage that cutting can be performed with a normal tool.
次に、本発明のセラミックス複合材料の製造方法につ
いて説明する。Next, a method for producing the ceramic composite material of the present invention will be described.
多孔質六方晶窒化ホウ素(hBN)焼結体は、常圧焼結
法やホットプレス法で作製されたもので、純度としては
98%以上のものが好ましいが、95〜98%程度のものも使
用可能である。気孔率はAlN前駆体である有機金属化合
物溶液が含浸過程でhBN焼結体内部に均一に浸透してい
くために5%以上であることが必要であり、十分な機械
的強度を得るためには50%であることが望ましい。Porous hexagonal boron nitride (hBN) sintered body is produced by normal pressure sintering method or hot press method, and its purity is
Although 98% or more is preferable, about 95-98% can also be used. The porosity must be at least 5% in order for the organometallic compound solution as the AlN precursor to uniformly penetrate into the hBN sintered body during the impregnation process, and in order to obtain sufficient mechanical strength. Is desirably 50%.
アルミニウムと窒素を含む窒化アルミニウム前駆体で
ある有機金属化合物としては、トリエチルアルミニウム
(Al(C2H5)3)とアンモニア(NH3)から作製した有
機アルミニウムポリマー C2H5)2AlNH2 m,C2
H5)AlNHnなどが可能である。これらのAlN前駆体で
ある有機金属化合物を必要によっては溶媒に溶かし、多
孔質hBN焼結体中に含浸する工程では有機金属化合物の
浸透性を良くし、しかも均一に分散および添加するため
減圧雰囲気下で注入を行うことが有効である。As an organometallic compound which is an aluminum nitride precursor containing aluminum and nitrogen, an organoaluminum polymer C 2 H 5 ) 2 AlNH 2 m prepared from triethylaluminum (Al (C 2 H 5 ) 3 ) and ammonia (NH 3 ) , C 2
H 5) AlNH n and the like are possible. In the step of dissolving the organometallic compound, which is an AlN precursor, in a solvent if necessary, and impregnating the porous hBN sintered body, the permeability of the organometallic compound is improved, and a reduced-pressure atmosphere is used to uniformly disperse and add the organometallic compound. It is effective to perform the injection below.
その後、窒素またはアンモニアを含む不活性ガス雰囲
気下で300〜1000℃まで1〜10℃/分の昇温速度で加熱
した後、設定の温度で1〜5時間加熱処理を行う。前述
のAlN前駆体である有機金属ポリマー C2H5)2AlNH
2 m,C2H5)AlNHnでは、300〜800℃においての
アンモニアを含む不活性ガス雰囲気下での加熱処理がAl
N相を生成させることに有効である。本発明のセラミッ
クス複合材料でのAlN相の含有量を多くするには、AlN前
駆体の含浸および加熱処理の工程を繰り返し行うことに
よってコントロールすることが可能である。300〜1000
℃におけるAlN前駆体の加熱処理では、生成したAlNは微
細な粉末状態であるため多孔質六方晶窒化ホウ素焼結体
に対して熱伝導率の向上は著しく現れない。そこでこれ
を1600〜2000℃の窒素等の不活性ガス雰囲気下でさらに
加熱処理することにより、hBN粒子の表面や粒界部にお
いて熱分解で生成されたAlN粉末の焼結が生じるため熱
伝導率が著しく増大する。Then, after heating to 300 to 1000 ° C. at a rate of 1 to 10 ° C./min in an inert gas atmosphere containing nitrogen or ammonia, heat treatment is performed at a set temperature for 1 to 5 hours. Organometallic polymer C 2 H 5 ) 2 AlNH which is an AlN precursor described above
2 m, the C 2 H 5) AlNH n, heat treatment in an inert gas atmosphere containing ammonia at 300 to 800 ° C. is Al
It is effective to generate N phase. The content of the AlN phase in the ceramic composite material of the present invention can be increased by repeating the steps of impregnating the AlN precursor and heating. 300-1000
In the heat treatment of the AlN precursor at ° C., since the generated AlN is in a fine powder state, the thermal conductivity of the porous hexagonal boron nitride sintered body is not significantly improved. Therefore, by subjecting this to further heat treatment in an inert gas atmosphere such as nitrogen at 1600 to 2000 ° C, sintering of the AlN powder generated by thermal decomposition occurs on the surface and grain boundary of the hBN particles. Significantly increase.
本発明を更に具体的に説明するため次に実施例を挙げ
て説明するが、本発明はこれらの実施例に限定されるも
のではない。EXAMPLES The present invention will now be described more specifically with reference to examples, but the present invention is not limited to these examples.
[実施例] 実施例1 ホットプレス法による純度99.5%(不純物酸素0.4
%)、平均粒径5μm、気孔率20%の六方晶窒化ホウ素
焼結体を機械加工により110×110×5mmに作製した。こ
の窒化ホウ素焼結体の室温での誘電率は3.4で、熱伝導
率は55W/m・kであった。[Example] Example 1 Purity 99.5% by hot pressing (impurity oxygen 0.4
%), A hexagonal boron nitride sintered body having an average particle size of 5 μm and a porosity of 20% was formed into 110 × 110 × 5 mm by machining. The dielectric constant of this boron nitride sintered body at room temperature was 3.4, and the thermal conductivity was 55 W / mk.
この窒化ホウ素焼結体に、ビーカーに入れた窒化アル
ミニウムの前駆体である有機金属化合物溶液C2H5)
2AlNH2 mを室温の減圧雰囲気下で真空含浸した。その
後、この有機金属化合物を含浸した窒化ホウ素焼結体
を、アンモニアを10%含む窒素ガス雰囲気下で500℃ま
で1℃/分の昇温速度で加熱して500℃で2時間保持し
た。この過程で生成した粉末状のAlNの焼結を行うため
に、この六方晶窒化ホウ素と窒化アルミニウムからなる
セラミックス複合材料を窒素ガス雰囲気下で20℃/分の
昇温速度で1800℃まで加熱して1時間保持した。その結
果、気孔率15%となり、室温での誘電率3.6、熱伝導率1
00W/m・kの六方晶窒化ホウ素と窒化アルミニウムから
構成されたセラミックス複合材料が得られた。An organic metal compound solution C 2 H 5, which is a precursor of aluminum nitride placed in a beaker, is added to the boron nitride sintered body.
2 m 2 NH 2 was vacuum impregnated at room temperature under reduced pressure atmosphere. Thereafter, the boron nitride sintered body impregnated with the organometallic compound was heated to 500 ° C. in a nitrogen gas atmosphere containing 10% of ammonia at a rate of 1 ° C./min and kept at 500 ° C. for 2 hours. In order to sinter the powdery AlN produced in this process, this ceramic composite material consisting of hexagonal boron nitride and aluminum nitride is heated to 1800 ° C at a temperature increase rate of 20 ° C / min in a nitrogen gas atmosphere. For one hour. As a result, the porosity became 15%, the dielectric constant at room temperature was 3.6, and the thermal conductivity was 1
A ceramic composite material composed of hexagonal boron nitride and aluminum nitride of 00 W / m · k was obtained.
このセラミックス複合材料を切断加工後、0.25×0.5
×100mmの長い直方体状の進行波管支持体を作製して進
行波管に実装した。After cutting this ceramic composite material, 0.25 × 0.5
A long rectangular parallelepiped traveling wave tube support of 100 mm was prepared and mounted on the traveling wave tube.
第2図(a)はその断面図、第2図(b)は(a)に
おけるA−A′線による断面図である。タングステンコ
イル6は3本の支持体5で3方向からステンレス保護管
9により圧縮保持されている。7はカソード、8はコレ
クターである。支持体5はタングステンコイル6とステ
ンレス保護管9の内壁の3点から圧縮およびせん断の応
力を受けているが、熱分解窒化ホウ素で生じる剥離や亀
裂は発生しなかった。FIG. 2 (a) is a cross-sectional view thereof, and FIG. 2 (b) is a cross-sectional view taken along line AA 'in FIG. 2 (a). The tungsten coil 6 is compressed and held by the stainless steel protection tube 9 from three directions by three supports 5. 7 is a cathode and 8 is a collector. The support 5 was subjected to compressive and shear stresses from three points of the tungsten coil 6 and the inner wall of the stainless protective tube 9, but no peeling or cracking caused by pyrolytic boron nitride occurred.
[発明の効果] 以上説明したように、本発明の六方晶窒化ホウ素と窒
化アルミニウムから構成されるセラミックス複合材料
は、進行波管支持体として従来の支持体材料である石
英、アステアタイト、サファイヤ、ベリリア、熱分解窒
化ホウ素より優れた低誘電率と高熱伝導率を兼ね備えた
材料であり、熱分解室化ホウ素での特性の異方性も少な
く、しかも剥離や亀裂などの発生の問題もない。さらに
熱分解窒化ホウ素では困難な、大型で厚い製品を多量に
低コストで製造可能であることなど、工業的に多くの利
点を有するものである。[Effects of the Invention] As described above, the ceramic composite material composed of hexagonal boron nitride and aluminum nitride according to the present invention can be used as a conventional support material for a traveling wave tube support, such as quartz, asbestite, sapphire, Beryllia is a material having both a low dielectric constant and a high thermal conductivity superior to pyrolytic boron nitride, and has little anisotropy of properties in pyrolytic boronization, and has no problem of peeling or cracking. In addition, it has many industrial advantages, such as the ability to produce large and thick products in large quantities at low cost, which is difficult with pyrolytic boron nitride.
また本発明のセラミックス複合材料は、進行波管の支
持体以外の用途である電子部品、絶縁基板、高温炉治具
などにも利用できる効果もある。Further, the ceramic composite material of the present invention has an effect that it can be used for electronic parts, insulating substrates, high-temperature furnace jigs, and the like, which are applications other than the support of the traveling wave tube.
第1図は本発明のセラミックス複合材料の構造を模式的
に示す断面図、第2図は進行波管の断面図(a)および
(a)のA−A′線による断面図(b)である。 1……セラミックス複合材料 2……六方晶窒化ホウ素 3……窒化アルミニウム 4……気孔 5……支持体 6……タングステンコイル 7……カソード 8……コレクター 9……ステンレス保護管FIG. 1 is a cross-sectional view schematically showing the structure of the ceramic composite material of the present invention, and FIG. 2 is a cross-sectional view of the traveling-wave tube (a) and a cross-sectional view (b) taken along the line AA 'of (a). is there. DESCRIPTION OF SYMBOLS 1 ... Ceramic composite material 2 ... Hexagonal boron nitride 3 ... Aluminum nitride 4 ... Pores 5 ... Support 6 ... Tungsten coil 7 ... Cathode 8 ... Collector 9 ... Stainless steel protection tube
Claims (2)
素粒子表面および/または該焼結体粒界部に窒化アルミ
ニウムが存在する構造を備えたことを特徴とする進行波
管支持体用セラミックス複合材料。1. A traveling wave tube support, characterized in that the porous hexagonal boron nitride sintered body has a structure in which aluminum nitride is present on the surface of boron nitride particles and / or grain boundaries of the sintered body. Ceramic composite materials.
ミニウム前駆体であるアルミニウムと窒素を含む有機金
属化合物溶液を含浸させた後、窒素またはアンモニアを
含む不活性ガス雰囲気下で加熱処理することを特徴とす
る進行波管支持体用セラミックス複合材料の製造方法。2. A porous hexagonal boron nitride sintered body is impregnated with an organometallic compound solution containing aluminum and nitrogen, which is a precursor of aluminum nitride, and then heat-treated in an inert gas atmosphere containing nitrogen or ammonia. A method for producing a ceramic composite material for a traveling wave tube support, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1218706A JP3018354B2 (en) | 1989-08-28 | 1989-08-28 | Ceramic composite material and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1218706A JP3018354B2 (en) | 1989-08-28 | 1989-08-28 | Ceramic composite material and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0383863A JPH0383863A (en) | 1991-04-09 |
JP3018354B2 true JP3018354B2 (en) | 2000-03-13 |
Family
ID=16724148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1218706A Expired - Lifetime JP3018354B2 (en) | 1989-08-28 | 1989-08-28 | Ceramic composite material and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3018354B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102180706A (en) * | 2011-03-03 | 2011-09-14 | 西北工业大学 | Method for preparing hexagonal boron nitride interface coating |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111029229B (en) * | 2019-11-26 | 2022-06-21 | 南京三乐集团有限公司 | Boron nitride clamping rod degassing device and method for traveling wave tube |
-
1989
- 1989-08-28 JP JP1218706A patent/JP3018354B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102180706A (en) * | 2011-03-03 | 2011-09-14 | 西北工业大学 | Method for preparing hexagonal boron nitride interface coating |
Also Published As
Publication number | Publication date |
---|---|
JPH0383863A (en) | 1991-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6686048B1 (en) | Composite carbonaceous heat insulator | |
JP2002080280A (en) | High temperature conductive composite material and method of manufacturing the same | |
CN107675260B (en) | AlN-SiC solid solution whisker and preparation method thereof | |
CN114309596B (en) | Preparation method of high-heat-conductivity surface-metallized diamond/copper composite substrate | |
CN1364748A (en) | Combining method for aluminium nitride and copper | |
JPS5811390B2 (en) | Method of manufacturing thermally conductive substrate | |
KR101981543B1 (en) | Pressureless sintering method of alumina-silicon carbide composites | |
JP3018354B2 (en) | Ceramic composite material and method for producing the same | |
US5252267A (en) | Process for microwave sintering boron carbide | |
KR101231437B1 (en) | Silicon carbide sintered body and method for manufacturing the same | |
JP2920970B2 (en) | Manufacturing method of ceramic composite material | |
JPH02296772A (en) | Support for traveling-wave tube | |
CN115538155A (en) | Silicon carbide fiber composite electromagnetic wave-absorbing material and preparation method thereof | |
JPH0328171A (en) | Ceramic composition material | |
CN116041072B (en) | Hollow SiCN ceramic fiber and preparation method and application thereof | |
JPH1192225A (en) | Silicon carbide sintered product and its production | |
JPH0416563A (en) | Ceramics composite material | |
CN116200626B (en) | In-situ preparation method of diamond and silicon carbide mixed reinforced high-heat-conductivity high-strength aluminum-based composite material | |
JPS63277571A (en) | Production of sintered aluminum nitride having high thermal conductivity | |
JP3486745B2 (en) | Plate heater and its manufacturing method | |
JPH035375A (en) | Production of aluminum nitride sintered compact | |
CN118125826A (en) | ZrB (ZrB)2SiC ceramic matrix composite material and preparation method and application thereof | |
CN116971035A (en) | Silicon carbide-based lithium tantalate composite wafer and bonding preparation method thereof | |
CN116355353A (en) | Silicon nitride whisker reinforced silicon carbide/polymer composite material and preparation method thereof | |
JP2006232569A (en) | SiC/Si COMPOSITE MATERIAL AND METHOD OF MANUFACTURING THE SAME |