JPH01131069A - Complex compact calcined under ordinary pressure - Google Patents

Complex compact calcined under ordinary pressure

Info

Publication number
JPH01131069A
JPH01131069A JP62286487A JP28648787A JPH01131069A JP H01131069 A JPH01131069 A JP H01131069A JP 62286487 A JP62286487 A JP 62286487A JP 28648787 A JP28648787 A JP 28648787A JP H01131069 A JPH01131069 A JP H01131069A
Authority
JP
Japan
Prior art keywords
powder
calcined under
weight
ordinary pressure
under ordinary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62286487A
Other languages
Japanese (ja)
Inventor
Kenichi Adachi
健一 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP62286487A priority Critical patent/JPH01131069A/en
Publication of JPH01131069A publication Critical patent/JPH01131069A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a complex compact calcined under ordinary pressure, consisting of boron nitride and aluminum nitride, containing AlN and BN at a specific ratio, having a relative density of specific value or above and improved shape restriction and productivity as well as good abrasion resistance and thermal shock resistance. CONSTITUTION:The aimed complex compact calcined under ordinary pressure contains 5-65wt.% AlN and 95-35wt.% BN and has >=70% relative density. The complex compact calcined under ordinary pressure can be obtained e.g., by the following method: AlN powder is blended with BN powder at a prescribed ratio and the blend is pulverized under non-oxidizing atmosphere and then molded and calcined under non-oxidizing atmosphere.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、窒化硼素−窒化アルミニウム複合常圧焼結成
形体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a boron nitride-aluminum nitride composite pressureless sintered body.

〈従来の技術〉 近年、各種のセラミックスが産業用の材料部品等に多く
使用されるようになってきた。これは、セラミックスの
持つ優れた耐熱性、耐食性及び機械的強度等によるもの
である。最近、これらセラミックスの中で窒化硼素(B
N)、窒化アルミニウム(A A N)及び焼結助剤か
らなる複合材が開発されている。BNにAINを複合さ
せる理由は、BNの持つ耐食性、耐熱衝撃性に/INを
加えることにより熱伝導性、耐摩耗性及び機械的強を向
上させ放熱板、ブレークリング、バーナーノズル等の用
途に供することを主目的としたものである。
<Prior Art> In recent years, various types of ceramics have come to be increasingly used for industrial material parts. This is due to the excellent heat resistance, corrosion resistance, mechanical strength, etc. of ceramics. Recently, among these ceramics, boron nitride (B
A composite material consisting of aluminum nitride (A N), aluminum nitride (A N), and a sintering aid has been developed. The reason for combining AIN with BN is that by adding /IN to BN's corrosion resistance and thermal shock resistance, it improves thermal conductivity, abrasion resistance, and mechanical strength, making it suitable for applications such as heat sinks, break rings, and burner nozzles. The main purpose is to provide

しかしながら、従来のBN−AAN系複合材は、焼結助
剤を用いるためBNが有する耐食性、耐熱衝撃性及びA
nNが有する熱伝導性、耐摩耗性、機械的強度等の特性
が得られず、特に高温下における曲げ強さが著しく低下
する欠点があった。また、このような焼結体を得るに当
っては、焼結助剤を用いる常圧焼結法(特開昭60〜1
95059号公報)や1600〜2000℃の温度で1
00〜200 kg/crAの圧力をかけるホントプレ
ス法(特開昭60−195060号公報)が知られてい
る。前者は、焼結助剤を使用するためBN、ANNの持
つ本来の特性が得られず、後者は、大型形状品、複雑形
状品が得られず生産性が悪いという欠点があった。これ
らの理由で、耐摩耗性、耐食性、機械的強度及び耐熱衝
撃性に優れたBN−AI!N複合常圧焼結成形体の提供
が望まれていた。
However, since conventional BN-AAN composite materials use sintering aids, they lack the corrosion resistance and thermal shock resistance of BN.
The properties of nN, such as thermal conductivity, abrasion resistance, and mechanical strength, could not be obtained, and there was a drawback that the bending strength, especially at high temperatures, was significantly reduced. In order to obtain such a sintered body, a pressureless sintering method using a sintering aid (Japanese Unexamined Patent Application Publication No. 60-1
95059) and at a temperature of 1,600 to 2,000°C.
A real press method (Japanese Patent Application Laid-Open No. 195060/1983) in which a pressure of 00 to 200 kg/crA is applied is known. The former method uses a sintering aid, so the original characteristics of BN and ANN cannot be obtained, and the latter method has the disadvantage that large-sized or complex-shaped products cannot be obtained and productivity is poor. For these reasons, BN-AI has excellent wear resistance, corrosion resistance, mechanical strength, and thermal shock resistance! It has been desired to provide a pressureless sintered N composite body.

〈発明が解決しようとする問題点〉 本発明は、このようなりN−AnN系複合焼結体の形状
制約と生産性を改善し従来得られなかった耐摩耗性、耐
熱衝撃性の良好なりN−AAN複合常圧焼結成形体を提
供することを目的とするものである。
<Problems to be Solved by the Invention> The present invention improves the shape constraints and productivity of the N-AnN composite sintered body, and achieves good wear resistance and thermal shock resistance that could not be obtained conventionally. -An object of the present invention is to provide an AAN composite pressureless sintered body.

〈問題点を解決するための手段〉 すなわち、本発明は、AIN5−65重量%、BN95
〜35重景%含有し7なる相対密度が70%以上のBN
−AAN複合常圧焼結成形体である。
<Means for Solving the Problems> That is, the present invention provides a method for solving the problems in which AIN5-65% by weight, BN95
BN containing ~35% and a relative density of 70% or more
-AAN composite pressureless sintered compact.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明のBN−Aj!N複合常圧焼結成形体において、
ApNが5重量%未満では、相対的にBN含有量が多く
なり耐熱衝撃性が向上する反面、耐摩耗性及び曲げ強さ
が低下する。一方、AINが65重量%を超えると耐摩
耗性及び曲げ強さが向上する反面、相対的にBN含有量
が少くなり耐熱衝撃性及び機械加工性が低下する。
BN-Aj of the present invention! In the N composite pressureless sintered body,
If ApN is less than 5% by weight, the BN content will be relatively large and the thermal shock resistance will improve, but the abrasion resistance and bending strength will decrease. On the other hand, when AIN exceeds 65% by weight, wear resistance and bending strength are improved, but on the other hand, the BN content is relatively reduced and thermal shock resistance and machinability are reduced.

焼結体密度は、相対密度で70%以上である。The density of the sintered body is 70% or more in terms of relative density.

相対密度が70%未満の焼結体では、気孔が多く緻密で
ないため曲げ強、さ耐摩耗性及び耐熱衝撃性が向上せず
、高温構造部材、ブレークリング等の用途には適さない
。特に相対密度が80%以上のものは、曲げ強さ、耐摩
耗性、耐熱衝撃性が著しく向上するため高度な耐摩耗性
、耐熱衝撃性が要求される分野での利用が期待される。
A sintered body with a relative density of less than 70% has many pores and is not dense, so bending strength, abrasion resistance, and thermal shock resistance are not improved, and it is not suitable for applications such as high-temperature structural members and break rings. In particular, those having a relative density of 80% or more have significantly improved bending strength, abrasion resistance, and thermal shock resistance, and are therefore expected to be used in fields where high abrasion resistance and thermal shock resistance are required.

本発明で用いる原料粉末について説明すると、BN粉末
は市販品が使用できるが、特に結晶性の高い六方晶のB
N粉末が良い。結晶性の高い六方晶のBN粉末は、予備
成形時の可塑変形性に優れているために高密度の予備成
形体が得られ易い。
To explain the raw material powder used in the present invention, commercially available BN powders can be used, but especially highly crystalline hexagonal B
N powder is good. Since hexagonal BN powder with high crystallinity has excellent plastic deformability during preforming, it is easy to obtain a high-density preform.

また、AAN粉末は市販品で良いが、望ましくは純度9
9%以上、平均粒子径/I4μm以下である。
AAN powder may be a commercially available product, but preferably has a purity of 9.
9% or more, and the average particle diameter/I is 4 μm or less.

A4Nの粒度が、BN粉末と同等あるいは微細粒はど焼
結体密度及び強度が向上する。
If the grain size of A4N is equal to or finer than that of BN powder, the density and strength of the sintered body will be improved.

上記原料を混合するに当っては、最終製品組成になるよ
うにBNとA7!Nを振動ボールミル等で混合する方法
、比表面積が入手時のそれの2倍以上になるまで微粉砕
したBNとAl1Nをボールミル等で混合する方法、あ
るいはBNとAINの混合物をアトライター等で比表面
積が元の2倍以上になるように微粉砕する方法が用いら
れる。
When mixing the above raw materials, mix BN and A7! so that the final product composition is achieved. A method of mixing N with a vibrating ball mill, etc., a method of mixing finely ground BN and Al1N with a ball mill, etc. until the specific surface area is more than twice that of the original surface area, or a method of mixing a mixture of BN and AIN with an attritor, etc. A method is used in which the material is pulverized so that the surface area is more than twice its original size.

これらの粉末を成形するに当っては、一般に良く知られ
ている金型成形機、冷間等方圧成形機(CI P)等の
公知の成形機を用いることができる。成形圧力について
は、結晶性の高い大方晶のBN粉末あるいは非晶質のB
N粉末をそのまま用いるときは、5ton/c+J以上
好ましくは7 torl/cイ以上である。5ton/
CIA未満の成形圧力では、相対密度70%以上の常圧
焼結体を得ることが困難となる。一方、微粉砕したBN
粉末あるいはBNとAfNを混合した後微粉砕した粉末
を用いるときは、2ton/cn以上で前記と同様の効
果が得られる。
In molding these powders, well-known molding machines such as generally well-known mold molding machines and cold isostatic pressing machines (CIP) can be used. Regarding the molding pressure, we use highly crystalline macrogonal BN powder or amorphous B
When N powder is used as it is, it is 5 ton/c+J or more, preferably 7 torl/c+J or more. 5ton/
At a molding pressure lower than CIA, it is difficult to obtain a pressureless sintered body with a relative density of 70% or more. On the other hand, finely ground BN
When using powder or powder obtained by mixing BN and AfN and then finely pulverizing the mixture, the same effect as described above can be obtained at 2 ton/cn or more.

粉砕装置としては、一般に良く知られているボールミル
、振動ボールミル、アトライター、ライカイ機等の通常
の粉砕機を用いることができる。
As a crushing device, a commonly known crusher such as a ball mill, a vibrating ball mill, an attritor, a Raikai machine, etc. can be used.

粉砕を行う場合は、元の粉末の比表面積の2倍以上好ま
しくは10倍以上になるまで行う。2倍未満の粉砕では
、相対密度70%以上の常圧焼結体を得ることを困難と
なる。
When pulverizing is performed, it is performed until the specific surface area of the powder becomes at least twice, preferably at least 10 times, the specific surface area of the original powder. If the pulverization is less than twice, it becomes difficult to obtain a pressureless sintered body with a relative density of 70% or more.

粉砕を行う場合、それを酸化性雰囲気で行うと酸化物の
生成がみられそのまま焼成すると高温強度、耐熱衝撃性
が著しく低下するばかりでなく、焼結体にクラックが発
生する。従って、酸化物が生成しないような例えばAr
 、Nz等の非酸化性雰囲気下で行う必要がある。粉砕
を行ったものは、高強度でなおかつ耐摩耗性、耐熱衝撃
性に優れた常圧焼結体を得ることができる理由は、結晶
の格子不整及び部分的な非晶質化が進むと同時に新たな
形成された粒子面が現われ所謂メカノケミカル効果によ
り活性化された粉末が得られたためと考えられる。
If pulverization is carried out in an oxidizing atmosphere, oxides will be produced, and if sintered as is, not only will the high temperature strength and thermal shock resistance deteriorate significantly, but also cracks will occur in the sintered body. Therefore, for example, Ar
, Nz, etc., in a non-oxidizing atmosphere. The reason why it is possible to obtain a pressureless sintered body that has high strength and excellent wear resistance and thermal shock resistance is that the pulverization process is caused by the progress of crystal lattice misalignment and partial amorphization. This is thought to be because newly formed particle surfaces appeared and activated powder was obtained due to the so-called mechanochemical effect.

焼成は、1200〜2100℃の非酸化性雰囲気で行う
。焼成温度が1200℃未満では、BN粒同志及びBN
粒とAIN粒が直接結合しにくいので高強度の常圧焼結
体が得られない。また、2100′Cを超えるとBN、
AnNが熱分解を起こし、その本来の性質を失う。特に
高い耐摩耗性、耐熱衝撃性の焼結体う得るには1300
〜1800℃の非酸化性雰囲気下で焼成することが好ま
しい。
Firing is performed in a non-oxidizing atmosphere at 1200 to 2100°C. When the firing temperature is less than 1200°C, BN grains and BN
Since the grains and the AIN grains are difficult to bond directly, a high-strength pressureless sintered body cannot be obtained. Also, when it exceeds 2100'C, BN,
AnN undergoes thermal decomposition and loses its original properties. 1300 to obtain a sintered body with particularly high wear resistance and thermal shock resistance.
It is preferable to perform the firing in a non-oxidizing atmosphere at a temperature of ~1800°C.

非酸化性雰囲気としては、He 、Ar % N2等の
不活性雰囲気かまたは真空中であるが、望ましくは、B
N、/M!Nの分解を抑制する効果のあるN2雰囲気が
好ましい。酸化雰囲気で焼成すると、耐食性、耐熱衝撃
性、耐摩耗性が著しく低下するばかりでなく焼結体にク
ラックが発生ずる。焼成装置としては、タンマン炉、高
周波炉、抵抗加熱炉が用いられる。
The non-oxidizing atmosphere is an inert atmosphere such as He, Ar%N2, or vacuum, but preferably B
N,/M! A N2 atmosphere is preferred since it has the effect of suppressing the decomposition of N. When fired in an oxidizing atmosphere, not only the corrosion resistance, thermal shock resistance, and abrasion resistance are significantly reduced, but also cracks occur in the sintered body. As the firing device, a Tammann furnace, a high frequency furnace, or a resistance heating furnace is used.

〈実施例〉 以下本発明を実施例並びに比較例をもってさらに具体的
説明するが、本発明は何らこれらに限定されるものでは
ない。
<Examples> The present invention will be explained in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited to these in any way.

実施例I BN粉末(六方晶、純度99%、比表面積6ml/g)
40重量部に/IN粉末(純度99%、比表面積4rr
r/g)60重量部を添加した後、振動ボールミルにて
混合し、成形用混合粉末を得た。
Example I BN powder (hexagonal crystal, purity 99%, specific surface area 6ml/g)
40 parts by weight/IN powder (purity 99%, specific surface area 4rr)
After adding 60 parts by weight (r/g), the mixture was mixed in a vibrating ball mill to obtain a mixed powder for molding.

この混合粉末を5tow+/cJの圧力で冷間等方圧成
形した後、それを前記BN粉の入った黒鉛容器中に埋め
込み高周波炉にて1700°C160分間、N2雰囲気
下で焼成した。得られた焼結体の組成、相対密度、曲げ
強さ、ショアー硬度、熱伝導率、耐熱衝撃性の測定結果
を表に示す。
After this mixed powder was cold isostatically pressed at a pressure of 5 tow+/cJ, it was embedded in a graphite container containing the BN powder and fired in a high frequency furnace at 1700° C. for 160 minutes in an N2 atmosphere. The measurement results of the composition, relative density, bending strength, Shore hardness, thermal conductivity, and thermal shock resistance of the obtained sintered body are shown in the table.

実施例2 実施例1で得た成形用混合粉末を用い、成形圧力を7t
on/cn及び焼成温度を1400°Cとしたこと以外
は実施例1と同様の方法にて実施した。
Example 2 Using the mixed powder for molding obtained in Example 1, the molding pressure was 7t.
It was carried out in the same manner as in Example 1 except that the on/cn and firing temperature were set to 1400°C.

実施例3 硼酸とメラミンとを1:1の重量比率で混合しそれをア
ンモニアガス気流中にて1200℃、4時間、加熱処理
してBN純度90%、比表面積50n?/gのBN粉末
を得た。この粉末をX線回折した結果、非晶質BNであ
ることが判った。この粉末60重量部にAIN粉末40
重量部を添加した後ボールミルにて混合し成形用混合粉
末を得た。この混合粉末を用い焼成温度を1600℃と
したこと以外は実施例1と同様の方法にて実施した。
Example 3 Boric acid and melamine were mixed at a weight ratio of 1:1 and heated in an ammonia gas stream at 1200°C for 4 hours to obtain a BN purity of 90% and a specific surface area of 50 nm. /g of BN powder was obtained. As a result of X-ray diffraction of this powder, it was found that it was amorphous BN. Add 40 parts by weight of AIN powder to 60 parts by weight of this powder.
After adding parts by weight, they were mixed in a ball mill to obtain a mixed powder for molding. It was carried out in the same manner as in Example 1 except that this mixed powder was used and the firing temperature was 1600°C.

実施例4 実施例1で用いたBN粉末を了トライターで比表面積が
5On?/gになるまでN2雰囲気下にて粉砕しBNI
粉末を得た。比表面積の測定は、BET法にて測定した
。この粉末80重量部にiN粉末20重量部添加した後
ボールミルにて混合し成形用混合粉末を得た。
Example 4 The specific surface area of the BN powder used in Example 1 was 5On using a dry triter. /g under N2 atmosphere until BNI
A powder was obtained. The specific surface area was measured by the BET method. 20 parts by weight of iN powder was added to 80 parts by weight of this powder and mixed in a ball mill to obtain a mixed powder for molding.

この混合粉末を用いたこと以外は実施例1と同様の方法
にて実施した。
The same method as in Example 1 was carried out except that this mixed powder was used.

実施Ml 実施例4で得た成形用混合粉を用い、これを2ton/
cJの金型成形で行ったこと以外は実施例1と同様の方
法にて実施した。
Implementation Ml Using the mixed powder for molding obtained in Example 4, it was mixed at 2 tons/
The same method as in Example 1 was carried out except for the cJ molding.

実施例6 実施例1で用いたBN粉末90重量部にAnN粉末10
重量部を添加した後、アトライターで比表面積が60r
rr/gになるまでAr雰囲気下にて粉砕し成形用混合
粉末を得た。この混合粉末を用いたこと以外は実施例1
と同様の方法にて実施した。
Example 6 10 parts by weight of AnN powder was added to 90 parts by weight of the BN powder used in Example 1.
After adding parts by weight, the specific surface area is 60r with attritor.
The mixture was ground in an Ar atmosphere until it reached rr/g to obtain a mixed powder for molding. Example 1 except that this mixed powder was used
It was carried out in the same manner as.

スフ1ff91J7 実施例6で得た成形用混合粉末を用いこれを2ton/
c+dの金型で行ったこと以外は実施例1と同様の方法
にて実施した。
Sufu 1ff91J7 Using the molding powder mixture obtained in Example 6, 2 tons/
It was carried out in the same manner as in Example 1 except that it was carried out using the c+d molds.

比較例1 実施例1で用いたBN粉末97重量部にA7!N粉末3
重量部を添加した後振動ボールミルにて混合し成形用混
合粉末を得た。この混合粉末を用い2toa’/c+a
の金型成形で行ったこと以外は実施例1と同様の方法に
て実施した。
Comparative Example 1 A7! was added to 97 parts by weight of the BN powder used in Example 1. N powder 3
After adding parts by weight, they were mixed in a vibrating ball mill to obtain a mixed powder for molding. Using this mixed powder, 2toa'/c+a
It was carried out in the same manner as in Example 1 except for the molding performed in Example 1.

比較例2 実施例1で用いたBN粉末50重量部にApN粉末47
.5重量部及びY2032.5重量部添加した後、振動
ボールミルにて混合し成形用混合粉末を得た。この混合
粉末を用い成形圧力を5 tos / craとしたこ
と以外は実施例1と同様の方法にて実施した。
Comparative Example 2 47 parts by weight of ApN powder was added to 50 parts by weight of BN powder used in Example 1.
.. After adding 5 parts by weight and 2.5 parts by weight of Y20, they were mixed in a vibrating ball mill to obtain a mixed powder for molding. It was carried out in the same manner as in Example 1 except that this mixed powder was used and the molding pressure was 5 tos/cra.

比較例3 実施例1で用いた。IN粉末70重量部にBN粉末30
重量部を添加した後、振動ボールミルにて混合し、成形
用混合粉末を得た。この混合粉末を用いたこと以外は実
施例1と同様の方法にて実施した。
Comparative Example 3 Used in Example 1. 70 parts by weight of IN powder and 30 parts by weight of BN powder
After adding parts by weight, they were mixed in a vibrating ball mill to obtain a mixed powder for molding. The same method as in Example 1 was carried out except that this mixed powder was used.

尚、表に記載した各物性の測定は次の方法によった。In addition, each physical property described in the table was measured by the following method.

+l)  相対密度−焼結体の寸法により体積を求め、
その重量から密度を求めた後、相対密度(%)−密度(
g/c+J)/理論密度(g/cJ) X 100(7
)式で算出した。
+l) Relative density - Find the volume from the dimensions of the sintered body,
After calculating the density from its weight, calculate the relative density (%) - density (
g/c+J)/theoretical density (g/cJ) x 100(7
) was calculated using the formula.

(2)常温曲げ強さ−JIS  R1601に準拠して
測定した。
(2) Room temperature bending strength - Measured in accordance with JIS R1601.

(3)  ショアー硬度−・JIS  Z2246に準
拠して測定した。
(3) Shore hardness - Measured in accordance with JIS Z2246.

(4)熱伝導率−レーザーフラッシュ法によった。(4) Thermal conductivity - by laser flash method.

(5)耐熱衝撃性−焼結体より切出した試料を一定温度
に加熱保持した後、この試料を20℃の水中に急冷投入
して熱衝撃を加え、急冷後の試料の曲げ強さを測定して
急激な曲げ強さの低下がおき始める臨界温度差ΔTを求
め耐熱衝撃性とした。
(5) Thermal shock resistance - After heating and holding a sample cut from a sintered body at a constant temperature, the sample is rapidly cooled in water at 20°C to apply thermal shock, and the bending strength of the sample after rapidly cooling is measured. The critical temperature difference ΔT at which a sudden decrease in bending strength begins was determined and defined as thermal shock resistance.

〈発明の効果〉 本発明によるBN−A7!N複合常圧焼結成形体は、熱
伝導性、耐摩耗性、曲げ強さ、耐熱衝撃性に優れている
ために、放熱板、ブレークリング、バーナー、ノズル等
の用途に利用できる。
<Effect of the invention> BN-A7 according to the invention! The N composite pressureless sintered compact has excellent thermal conductivity, abrasion resistance, bending strength, and thermal shock resistance, so it can be used for applications such as heat sinks, break rings, burners, and nozzles.

特許出願人 電気化学工業株式会社Patent applicant Denki Kagaku Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1.AlN5〜65重量%、BN95〜35重量%含有
してなる相対密度が70%以上の窒化硼素−窒化アルミ
ニウム複合常圧焼結成形体。
1. A pressureless sintered boron nitride-aluminum nitride composite body having a relative density of 70% or more and containing 5 to 65% by weight of AlN and 95 to 35% by weight of BN.
JP62286487A 1987-11-14 1987-11-14 Complex compact calcined under ordinary pressure Pending JPH01131069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62286487A JPH01131069A (en) 1987-11-14 1987-11-14 Complex compact calcined under ordinary pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62286487A JPH01131069A (en) 1987-11-14 1987-11-14 Complex compact calcined under ordinary pressure

Publications (1)

Publication Number Publication Date
JPH01131069A true JPH01131069A (en) 1989-05-23

Family

ID=17705038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62286487A Pending JPH01131069A (en) 1987-11-14 1987-11-14 Complex compact calcined under ordinary pressure

Country Status (1)

Country Link
JP (1) JPH01131069A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244067A (en) * 1988-08-04 1990-02-14 Koransha Co Ltd Bn no-pressure sintered ceramic having excellent melting flacture resistance
JPH0416563A (en) * 1990-05-11 1992-01-21 Nec Corp Ceramics composite material
JPH0748173A (en) * 1993-03-26 1995-02-21 Advanced Ceramics Corp Ceramic composite material excellent in erosion resistance and corrosion resistance
JP2007162737A (en) * 2005-12-09 2007-06-28 Nok Corp Resin bellows and its manufacturing method
JP2008001536A (en) * 2006-06-20 2008-01-10 Osaka Univ Aluminum nitride-boron nitride composite powder and method for producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832073A (en) * 1981-08-21 1983-02-24 株式会社日立製作所 Sintered body
JPS60195059A (en) * 1984-03-15 1985-10-03 株式会社トクヤマ Composite sintered body
JPS61182710A (en) * 1985-02-08 1986-08-15 Toshiba Chem Corp Device for drilling inner layer datum hole in multilayer circuit substrate
JPS62116627A (en) * 1985-10-10 1987-05-28 ソルベイ(ソシエテ アノニム) Brominated polyether polyol

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832073A (en) * 1981-08-21 1983-02-24 株式会社日立製作所 Sintered body
JPS60195059A (en) * 1984-03-15 1985-10-03 株式会社トクヤマ Composite sintered body
JPS61182710A (en) * 1985-02-08 1986-08-15 Toshiba Chem Corp Device for drilling inner layer datum hole in multilayer circuit substrate
JPS62116627A (en) * 1985-10-10 1987-05-28 ソルベイ(ソシエテ アノニム) Brominated polyether polyol

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0244067A (en) * 1988-08-04 1990-02-14 Koransha Co Ltd Bn no-pressure sintered ceramic having excellent melting flacture resistance
JPH0416563A (en) * 1990-05-11 1992-01-21 Nec Corp Ceramics composite material
JPH0748173A (en) * 1993-03-26 1995-02-21 Advanced Ceramics Corp Ceramic composite material excellent in erosion resistance and corrosion resistance
JP2007162737A (en) * 2005-12-09 2007-06-28 Nok Corp Resin bellows and its manufacturing method
JP2008001536A (en) * 2006-06-20 2008-01-10 Osaka Univ Aluminum nitride-boron nitride composite powder and method for producing the same

Similar Documents

Publication Publication Date Title
EP0344372A1 (en) Hexagonal silicon carbide platelets and preforms and methods for making and using same
JPH0231031B2 (en)
JPS62100412A (en) Production of alumina-zirconia compound powder body
US4981665A (en) Hexagonal silicon carbide platelets and preforms and methods for making and using same
JP2002097005A5 (en)
JPH01131069A (en) Complex compact calcined under ordinary pressure
JP2999486B2 (en) Manufacturing method of machinable ceramics
JPH04223808A (en) Silicon nitride sintered body tool
JP2525432B2 (en) Normal pressure sintered boron nitride compact
JPH01131062A (en) Complex compact calcined under ordinary pressure
JPH0312316A (en) Boron nitride powder and its sintered body
JPH01131072A (en) Production of sintered material having corrosion resistance at high temperature
US7314593B2 (en) Process for preparing improved silicon carbide powder
JPH03261611A (en) Production of silicon nitride composite powder
JPH01246178A (en) Production of refractory for molten steel
EP0250592A1 (en) Ceramics containing alpha-sialon
JPH08225311A (en) Silicon nitride/silicon carbide complex powder, complex molding, their production and production of sintered compact of silicon nitride/silicon carbide complex
JPH01179763A (en) Production of combined sintered body of boron nitride and silicon nitride
JP2614874B2 (en) Pressureless sintered boron nitride compact
JPS6034515B2 (en) Manufacturing method of silicon carbide ceramic sintered body
JPS6141872B2 (en)
JP2573720B2 (en) Manufacturing method of silicon nitride sintered body
JPS59207814A (en) Aluminum nitride powder
JPH0559073B2 (en)
JPH01129937A (en) Manufacture of high temperature corrosion-resistant sintered body