JP2614874B2 - Pressureless sintered boron nitride compact - Google Patents

Pressureless sintered boron nitride compact

Info

Publication number
JP2614874B2
JP2614874B2 JP62286483A JP28648387A JP2614874B2 JP 2614874 B2 JP2614874 B2 JP 2614874B2 JP 62286483 A JP62286483 A JP 62286483A JP 28648387 A JP28648387 A JP 28648387A JP 2614874 B2 JP2614874 B2 JP 2614874B2
Authority
JP
Japan
Prior art keywords
powder
weight
molding
pressure
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62286483A
Other languages
Japanese (ja)
Other versions
JPH01131065A (en
Inventor
健一 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP62286483A priority Critical patent/JP2614874B2/en
Publication of JPH01131065A publication Critical patent/JPH01131065A/en
Application granted granted Critical
Publication of JP2614874B2 publication Critical patent/JP2614874B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、常圧焼結窒化硼素成形体に関する。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a normal pressure sintered boron nitride molded article.

<従来の技術> 窒化硼素(BN)は、電気絶縁性、熱伝導性、耐食性、
耐熱衝撃性、潤滑性等の優れた特性を有する一方、機械
加工の容易な数少ないセラミックスである。このため上
記諸特性が要求される金属溶融用の各種容器をはじめ、
電気絶縁材料、高温伝熱材料等に広く利用されている。
<Conventional technology> Boron nitride (BN) has electrical insulation, thermal conductivity, corrosion resistance,
While having excellent properties such as thermal shock resistance and lubricity, it is one of the few ceramics that is easy to machine. For this reason, including various containers for metal melting where the above properties are required,
Widely used for electrical insulation materials, high-temperature heat transfer materials, etc.

BN焼結体は、BNが難焼結性であるので一般にはホット
プレス(加圧焼結)法によって作られている。それは、
1500〜2300℃にて100kg/cm2を超える圧力をかけて実施
するものであるため、大型形状品は得られず、また複雑
形状品の製法には適さない等の問題がある。しかも、現
在市販されているBN成形体は、一旦、円柱状にホットプ
レスされた焼結体を機械加工して最終製品形状に仕上げ
る方法がとられているので高価格である。
The BN sintered body is generally made by a hot press (pressure sintering) method because BN is hardly sintered. that is,
Since the process is carried out at 1500 to 2300 ° C. under a pressure of more than 100 kg / cm 2 , there are problems that a large-sized product cannot be obtained and that it is not suitable for a method of producing a complicated-shaped product. In addition, currently available BN compacts are expensive because they employ a method in which a sintered body that has been hot-pressed into a cylindrical shape is machined to finish the final product shape.

以上のような問題を解決するため各種の常圧焼結法が
試みられているが、現在までのところ、BNの特性の発揮
できるBN焼結体は得られていない。例えば、特開昭61−
132563号公報では、高圧ラバープレス成形し得られた予
備成形体を黒鉛モールドに挿入して自由膨張を制限する
下での焼結が試みられているのが、密度・強度が低い
上、生産能率が悪く、大型形状品が得られない問題があ
る。そのため、電気絶縁性、熱伝達性、耐食性、耐熱衝
撃性等のBN本来の優れた特性を有し、安価に、容易にか
つ効率良く製造できる常圧焼結BN成形体の提供が望まれ
ていた。
Various normal pressure sintering methods have been attempted to solve the above problems, but to date, no BN sintered body that can exhibit the characteristics of BN has been obtained. For example, JP-A-61-
In the publication 132563, sintering under the condition of restricting free expansion by inserting a preform obtained by high-pressure rubber press molding into a graphite mold is attempted, but the density and strength are low and the production efficiency is low. And there is a problem that a large-sized product cannot be obtained. Therefore, it is desired to provide a normal pressure sintered BN molded body having excellent properties inherent to BN, such as electrical insulation, heat transfer, corrosion resistance, and thermal shock resistance, and which can be manufactured at low cost, easily and efficiently. Was.

<発明が解決しようとする問題点> 本発明は、BN焼結体の形状制約と生産性を改善し従来
得られなかった熱伝導性、電気絶縁性の良好な常圧焼結
BN成形体を提供することを目的とするものである。
<Problems to be Solved by the Invention> The present invention improves the shape restriction and productivity of a BN sintered body, and achieves normal pressure sintering with good thermal conductivity and electrical insulation that could not be obtained conventionally.
It is intended to provide a BN molded body.

<問題点を解決するための手段> すなわち、本発明は、アルカリ土類金属硼酸塩を2〜
40重量%含有してなり、相対密度65〜80%、曲げ強さ55
0kg/cm2以上であることを特徴とする、絶縁抵抗1010Ω
以上、熱伝導率0.04cal/cm・sec・℃以上の常圧焼結窒
化硼素成形体である。
<Means for Solving the Problems> That is, the present invention provides an alkaline earth metal borate comprising
40% by weight, relative density 65-80%, flexural strength 55
Insulation resistance of 10 10 Ω, characterized by being 0 kg / cm 2 or more
As described above, the normal pressure sintered boron nitride molded body having a thermal conductivity of 0.04 cal / cm · sec · ° C. or more.

以下本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明で用いるBN粉末は、市販品で良いが望ましく
は、結晶性の高い六方晶のBN粉末である。この粉末は予
備成形時の可塑変形性に優れているため高密度の予備成
形体が得られ易い。アルカリ土類金属硼素塩のアルカリ
土類金属としては、マグネシウム、カルシウム、ストロ
ンチウム、バリウムの1種以上を任意に選択する。
The BN powder used in the present invention may be a commercial product, but is preferably a hexagonal BN powder having high crystallinity. Since this powder is excellent in plastic deformation at the time of preforming, a high-density preformed body is easily obtained. As the alkaline earth metal of the alkaline earth metal boron salt, one or more of magnesium, calcium, strontium, and barium are arbitrarily selected.

本発明の成形体は、以上のBN粉末とアルカリ土類金属
硼酸塩とを最終製品組成になるように混合された混合粉
末を5ton/cm2以上の圧力にて成形した後焼成する方法、
及び比表面積を入手したそれの2倍以上になるまで微粉
砕してなるBN粉末にアルカリ土類金属硼酸塩を混合する
か又はBNとアルカリ土類金属硼酸塩との混合物を比表面
積が元の2倍以上になるまで破断、せん断、磨砕等の粉
砕をした後2ton/cm2以上の圧力で成形した後焼成する方
法によって製造することができる。
The compact of the present invention is a method of baking after molding a mixed powder obtained by mixing the above BN powder and alkaline earth metal borate to a final product composition at a pressure of 5 ton / cm 2 or more,
And mixing the alkaline earth metal borate with the BN powder obtained by pulverizing the specific surface area to at least twice the obtained specific surface area, or mixing the mixture of BN and the alkaline earth metal borate with the original specific surface area. It can be manufactured by a method of crushing such as breaking, shearing, grinding and the like until it becomes twice or more, molding at a pressure of 2 ton / cm 2 or more, and firing.

成形装置としては、金型成形機、冷間等方圧成形機
(CIP)等の通常の成形機を用いることができる。結晶
性の高い六方晶のBN粉末あるいは非晶質のBN粉末をその
まま用いる時の成形圧力は、5ton/cm2以上好ましくは7t
on/cm2以上である。5ton/cm2未満の成形圧力では、相対
密度65%以上の常圧焼結BN成形体を得ることが困難とな
る。一方、微粉砕したBN粉末あるいは入手した原料を混
合して微粉砕した粉末を用いる時の成形圧力は、2ton/c
m2以上で上記と同様の効果が得られる。この時の粉砕装
置としては、ボールミル、振動ボールミル、アトライタ
ー、ライカイ機等の通常の粉砕機を用いることができ
る。なお、粉砕は、元の粉末の比表面積の2倍以上好ま
しくは10倍以上になるまで行う。2倍未満の粉砕では相
対密度65%以上の常圧焼結BN成形体を得ることが困難と
なる。
As a molding device, a usual molding machine such as a mold molding machine and a cold isostatic pressing machine (CIP) can be used. The molding pressure when using highly crystalline hexagonal BN powder or amorphous BN powder as it is, 5 ton / cm 2 or more, preferably 7 t
on / cm 2 or more. At a molding pressure of less than 5 ton / cm 2, it is difficult to obtain a normal pressure sintered BN molded body having a relative density of 65% or more. On the other hand, when using crushed BN powder or powder obtained by mixing the obtained raw materials, the molding pressure is 2 ton / c
Similar effects can be obtained in m 2 or more. As a pulverizer at this time, a normal pulverizer such as a ball mill, a vibrating ball mill, an attritor, and a raikai machine can be used. The pulverization is performed until the specific surface area of the original powder becomes 2 times or more, preferably 10 times or more. If the pulverization is less than twice, it is difficult to obtain a normal pressure sintered BN compact having a relative density of 65% or more.

粉砕を行う場合、それを酸化雰囲気で行うと硼素酸化
物の生成がみられ、そのまま焼成すると焼結体中に遊離
の酸化硼酸が存在する状態となり耐湿性及び熱伝導率の
低下をきたすばかりでなく、焼結体にクラックが発生す
る。この場合、生成した硼酸酸化物を除去する処理を行
うことにより本発明品を得る原料として使用できる。硼
素酸化物を除去する方法としては、メタノール、エタノ
ール、グリセリン等のアルコール類による処理である。
具体的には、アルコールを含んだスラリーの加熱あるい
はアルコールにりよる洗浄・濾過である。粉砕を硼素酸
化物が生成しないような例えばN2,Ar等の非酸化性雰囲
気で行えば上記の硼素酸化物を除去する工夫は必ずしも
必要でない。
When pulverization is performed in an oxidizing atmosphere, the formation of boron oxide is observed, and if the pulverization is performed as it is, free boric acid is present in the sintered body, and the moisture resistance and the thermal conductivity are reduced. No cracks occur in the sintered body. In this case, it can be used as a raw material for obtaining the product of the present invention by performing a treatment for removing the generated borate oxide. As a method for removing boron oxide, treatment with alcohols such as methanol, ethanol, and glycerin is used.
More specifically, the method includes heating of a slurry containing alcohol or washing and filtration using alcohol. If the pulverization is performed in a non-oxidizing atmosphere such as N 2 , Ar or the like in which boron oxide is not generated, the above-described device for removing boron oxide is not necessarily required.

上記した方法により粉砕を行ったものは、高圧成形を
することなく相対密度65%以上の常圧焼結BN成形体を得
ることができる。これは、結晶の格子不整及び部分的な
非晶質化が進むと同時に新たに形成された粒子面が現わ
れ所謂メカノケミカル効果により活性化された粉末とな
ったためと考えられる。高強度の常圧焼結BN成形体を得
るには、成形圧力を高くして予備成形体密度をできるだ
け高くすることが望ましい。
The pulverized product obtained by the above-mentioned method can obtain a normal-pressure sintered BN compact having a relative density of 65% or more without performing high-pressure compaction. This is presumably because the lattice irregularity and partial amorphization of the crystal proceeded, and at the same time, a newly formed particle surface appeared and became a powder activated by the so-called mechanochemical effect. In order to obtain a high-strength normal pressure sintered BN compact, it is desirable to increase the compacting pressure to increase the density of the preformed compact as much as possible.

焼成は、1400〜2100℃の非酸化性雰囲気で行う。焼成
温度が1400℃未満では、BN粒同志及びBN粒とアルカリ土
類金属硼酸塩が直接接合しにくいので高強度の常圧焼結
BN成形体が得られない。一方、2100℃を超えるとアルカ
リ土類金属硼酸塩が熱分解・蒸発を起し本来の添加剤と
しての作用を失う。望ましくは、特に高強度の常圧焼結
BN成形体が得られる1600〜2100℃での非酸化性雰囲気で
ある。非酸化性雰囲気としてはHe,Ar,N2等の不活性雰囲
気が適当である。焼成装置として、タンマン炉、抵抗加
熱炉、高周波炉等が用いられる。
The firing is performed in a non-oxidizing atmosphere at 1400 to 2100 ° C. If the sintering temperature is lower than 1400 ° C, it is difficult for the BN particles to bond directly to each other and the alkaline earth metal borate, so high-strength normal pressure sintering
BN compact cannot be obtained. On the other hand, when the temperature exceeds 2100 ° C., the alkaline earth metal borate undergoes thermal decomposition / evaporation and loses its original function as an additive. Desirably, especially high-pressure atmospheric sintering
This is a non-oxidizing atmosphere at 1600 to 2100 ° C where a BN molded body can be obtained. As the non-oxidizing atmosphere, an inert atmosphere such as He, Ar, and N 2 is suitable. As a firing device, a Tamman furnace, a resistance heating furnace, a high-frequency furnace, or the like is used.

以上のようにして製造された本発明の常圧焼結BN成形
体は、BN98〜96重量%、アルカリ土類金属硼酸塩2〜40
重量%を含有する。特に高度の電気絶縁性、熱伝導性が
要求される場合には、BN98〜80重量%、アルカリ土類金
属硼酸塩2〜20重量%が好ましい。アルカリ土類金属硼
酸塩の含有量が2重量%未満であると、高密度、高強度
の焼結体とはならない。一方、40重量%を超えると、熱
伝導性、電気絶縁性等のBNの優れた特性が著しく低下す
る。特に成形体の使用温度が上昇するとこの傾向は一層
激しくなる。また、以上のようにして製造された本発明
の常圧焼結BN成形体の焼結体密度は、相対密度で65〜80
%で曲げ強さ550kg/cm2以上となる。相対密度が65%未
満では気孔が多く緻密でないため、曲げ強さ及び熱伝導
性が向上せず、ブレークリング、放熱板等の用途には適
さない。また、相対密度が80%をこえると機械加工性が
低下する。
The atmospheric pressure sintered BN compact of the present invention produced as described above has a BN content of 98 to 96% by weight and an alkaline earth metal borate of 2 to 40%.
% By weight. In particular, when a high degree of electrical insulation and thermal conductivity is required, the BN content is preferably 98 to 80% by weight and the alkaline earth metal borate is preferably 2 to 20% by weight. When the content of the alkaline earth metal borate is less than 2% by weight, a sintered body having high density and high strength is not obtained. On the other hand, if it exceeds 40% by weight, the excellent properties of BN, such as thermal conductivity and electrical insulation, will be significantly reduced. In particular, when the working temperature of the molded body increases, this tendency becomes more severe. Further, the sintered body density of the normal pressure sintered BN compact of the present invention produced as described above is a relative density of 65 to 80.
% Gives a bending strength of 550 kg / cm 2 or more. If the relative density is less than 65%, there are many pores and it is not dense, so that the bending strength and the thermal conductivity are not improved, and it is not suitable for applications such as break rings and heat sinks. On the other hand, when the relative density exceeds 80%, machinability decreases.

<実施例> 以下本発明を実施例並びに比較例をもってさらに具体
的に説明するが、本発明はこれらに限定されるものでは
ない。
<Examples> Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

実施例1 市販のBN粉末(六方晶、純度99.0%、比表面積6m2/
g)85重量部にCaO・B2O315重量部を添加した後ボールミ
ルにて混合し、成形用混合粉末を得た。次にこの混合粉
末を5ton/cm2の圧力で冷間等方圧成形した。得られた予
備成形体を前記BN粉末の入った黒鉛容器中に埋め込み高
周波炉にて1900℃、60分間、Ar雰囲気下で焼成した。得
られたBN焼結体の組成、相対密度、絶縁抵抗、熱伝導率
の測定結果を表に示す。
Example 1 Commercially available BN powder (hexagonal, purity 99.0%, specific surface area 6 m 2 /
g) 15 parts by weight of CaO.B 2 O 3 was added to 85 parts by weight, and then mixed by a ball mill to obtain a mixed powder for molding. Next, this mixed powder was subjected to cold isostatic pressing at a pressure of 5 ton / cm 2 . The obtained preform was embedded in the graphite container containing the BN powder, and fired at 1900 ° C. for 60 minutes in an Ar atmosphere in a high-frequency furnace. The measurement results of the composition, relative density, insulation resistance, and thermal conductivity of the obtained BN sintered body are shown in the table.

実施例2 実施例1で得た成形用混合粉末を用い成形圧力を7ton
/cm2としたこと以外は実施例1と同様の方法にて実施し
た。
Example 2 Using the mixed powder for molding obtained in Example 1, the molding pressure was 7 ton.
The procedure was performed in the same manner as in Example 1 except that the density was set to / cm 2 .

実施例3 実施例1で用いたBN粉末90重量部にMgO.CaO・2B2O310
重量部を添加・混合して成形用混合粉末を得た。この粉
末を用い、焼成温度を1700℃としたこと以外は、実施例
1と同様の方法により実施した。
Example 3 MgO.CaO.2B 2 O 3 10 was added to 90 parts by weight of the BN powder used in Example 1.
The parts by weight were added and mixed to obtain a mixed powder for molding. Except that this powder was used and the sintering temperature was 1700 ° C., the same procedure as in Example 1 was carried out.

実施例4 硼酸とメラミンとを1:1の重量比率で混合しアンモニ
アガス気流中にて1200℃、4時間、加熱処理してBN純度
90%、比表面積50m2/gのBN粉末を得た。この粉末をX線
回折した結果、非晶質BNであることが判った。この粉末
90重量部に2CaO・B2O310重量部添加した後ボールミール
にて混合し成形用混合粉末を得た。この混合粉末を用
い、成形圧力を7ton/cm2及び焼成温度を1700℃としたこ
と以外は実施例1と同様の方法にて実施した。
Example 4 Boric acid and melamine were mixed at a weight ratio of 1: 1 and subjected to a heat treatment at 1200 ° C. for 4 hours in a flow of ammonia gas to obtain BN purity.
90% of a BN powder having a specific surface area of 50 m 2 / g was obtained. X-ray diffraction of this powder revealed that it was amorphous BN. This powder
After adding 10 parts by weight of 2CaO.B 2 O 3 to 90 parts by weight, the mixture was mixed with a ball meal to obtain a mixed powder for molding. Using this mixed powder, the same procedure as in Example 1 was carried out except that the molding pressure was 7 ton / cm 2 and the firing temperature was 1700 ° C.

実施例5 実施例1で用いたBN粉末をライカイ機で比表面積が60
m2/gになるまで大気中にて粉砕した後、メタノールで洗
浄乾燥しBN微粉末を得た。比表面積は、BET法にて測定
した。この粉末95重量部にCaO・B2O3を5重量部を添加
した後ボールミルにて混合し成形用混合粉末を得た。次
に該混合粉末を金型に充填し2ton/cm2の圧力で一軸加圧
成形した。この予備成形体を用いたこと以外は実施例1
と同様の方法にて実施した。
Example 5 The specific surface area of the BN powder used in Example 1 was 60
After pulverizing in the atmosphere to m 2 / g, the powder was washed with methanol and dried to obtain a fine BN powder. The specific surface area was measured by the BET method. To 95 parts by weight of this powder, 5 parts by weight of CaO.B 2 O 3 was added and mixed by a ball mill to obtain a mixed powder for molding. Next, the mixed powder was filled in a mold and uniaxially pressed at a pressure of 2 ton / cm 2 . Example 1 except that this preform was used.
Was carried out in the same manner as described above.

実施例6 実施例5で得たBN微粉末80重量部にCaO・BaO・2B2O32
0重量部を添加・混合して成形用混合粉末を得た。この
混合粉末を用いたこと以外は実施例1と同様の方法にて
実施した。
Example 6 CaO.BaO.2B 2 O 3 2 was added to 80 parts by weight of the BN fine powder obtained in Example 5.
0 parts by weight were added and mixed to obtain a mixed powder for molding. Except using this mixed powder, it carried out by the method similar to Example 1.

実施例7 実施例1で用いたBN粉末をアトライターで比表面積が
70m2/gになるまでN2雰囲気下にて粉砕しBN微粉末を得
た。この粉末を用いたこと以外は、実施例5と同様の方
法にて実施した。
Example 7 The specific surface area of the BN powder used in Example 1 was measured with an attritor.
It was pulverized under an N 2 atmosphere until it reached 70 m 2 / g to obtain a fine BN powder. Except using this powder, it implemented by the method similar to Example 5.

実施例8 実施例1で用いたBN粉末85重量部にCaO・B2O315重量
部を添加した後、ライカイ機で比表面積が60m2/gになる
まで大気中にて粉砕した後、メタノールで洗浄乾燥し成
形用混合粉末を得た。この混合粉末を用いたこと以外
は、実施例5と同様の方法にて実施した。
Example 8 After adding 15 parts by weight of CaO.B 2 O 3 to 85 parts by weight of the BN powder used in Example 1, pulverizing in the atmosphere until the specific surface area becomes 60 m 2 / g with a raikai machine, After washing with methanol and drying, a mixed powder for molding was obtained. Except using this mixed powder, it carried out by the same method as Example 5.

実施例9 実施例8で得た成形用混合粉末を用いたこと以外は実
施例1と同様の方法にて実施した。
Example 9 The same procedure as in Example 1 was carried out except that the mixed powder for molding obtained in Example 8 was used.

実施例10 実施例1で用いたBN粉末80重量部にMgO・CaO・2B2O32
0重量部を添加した後、アトライターで比表面積が70m2/
gになるまでN2雰囲気下にて粉砕し成形用混合粉末を得
た。この混合粉末を用い、焼成温度を1600℃としたこと
以外は、実施例5と同様の方法にて実施した。
Example 10 MgO.CaO.2B 2 O 3 2 was added to 80 parts by weight of the BN powder used in Example 1.
After adding 0 parts by weight, the specific surface area is 70 m 2 /
The mixture was pulverized under an N 2 atmosphere until the mixture became g to obtain a mixed powder for molding. Except that this mixed powder was used and the firing temperature was 1600 ° C., the same procedure as in Example 5 was performed.

比較例1 実施例1で用いたBN粉末をそのまま成形用の粉末とし
て用いたこと以外は実施例1と同様の方法により実施し
た。
Comparative Example 1 The same procedure as in Example 1 was carried out except that the BN powder used in Example 1 was used as it was as a molding powder.

比較例2 実施例3で得た成形用混合粉末を用い、成形圧力を2t
on/cm2としたこと以外は実施例1と同様の方法にて実施
した。
Comparative Example 2 Using the mixed powder for molding obtained in Example 3, the molding pressure was 2t.
The procedure was performed in the same manner as in Example 1 except that on / cm 2 was set.

比較例3 実施例1で用いたBN粉末95重量部にB2O3を5重量部添
加した後ボールミルで混合し成形用混合粉末を得た。こ
の混合粉末を用いたこと以外は実施例5と同様の方法に
て実施例した。
Comparative Example 3 Five parts by weight of B 2 O 3 were added to 95 parts by weight of the BN powder used in Example 1, and then mixed by a ball mill to obtain a mixed powder for molding. An example was performed in the same manner as in Example 5, except that this mixed powder was used.

比較例4 実施例1で用いたBN粉末55重量部にCaO・2B2O3を45重
量部添加した後ボールミルで混合し成形用混合粉末を得
た。この混合粉末を用いたこと以外は実施例1と同様の
方法により実施した。
To obtain a molding mixed powder were mixed by a ball mill after the CaO · 2B 2 O 3 was added 45 parts by weight BN powder 55 parts by weight used in Comparative Example 4 Example 1. Except using this mixed powder, it carried out by the method similar to Example 1.

尚、表に記載したBN焼結体の物性測定は次の方法によ
り行った。
The physical properties of the BN sintered bodies described in the table were measured by the following methods.

(1) 相対密度;焼結体の寸法より体積を求めその重
量より密度を求めた後、相対密度(%)=密度(g/c
m2)/理論密度(g/cm2)×100で算出した。
(1) Relative density: After determining the volume from the dimensions of the sintered body and the density from its weight, the relative density (%) = density (g / c
m 2 ) / theoretical density (g / cm 2 ) × 100.

(2) 常温曲げ強さ;JIS R−1601に準拠して測定し
た。
(2) Room temperature bending strength; measured in accordance with JIS R-1601.

(3) 絶縁抵抗;得られた焼結体を外径20mm厚み1mm
の形状に加工し、加工後及び(NH42SO4溶液の入った
デシケータ中に24hr保存・吸湿後の絶縁抵抗(Ω)を測
定した。
(3) Insulation resistance: The obtained sintered body has an outer diameter of 20 mm and a thickness of 1 mm
And the insulation resistance (Ω) was measured after processing and in a desiccator containing a (NH 4 ) 2 SO 4 solution for 24 hours after storage and moisture absorption.

(4) 熱伝導率;レーザーフラッシュ法による。(4) Thermal conductivity; by laser flash method.

<発明の効果> 本発明の常圧焼結BN成形体は、電気絶縁性、熱伝導
性、耐食性、耐熱衝撃性等のBNの持つ優れた特性を有
し、形状制約を受けることがない。
<Effect of the Invention> The normal pressure sintered BN molded article of the present invention has excellent properties of BN such as electrical insulation, thermal conductivity, corrosion resistance, and thermal shock resistance, and is not subject to shape restrictions.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アルカリ土類金属硼酸塩を2〜40重量%含
有してなり、相対密度65〜80%、曲げ強さ550kg/cm2
上であることを特徴とする、絶縁抵抗1010Ω以上、熱伝
導率0.04cal/cm・sec・℃以上の常圧焼結窒化硼素成形
体。
An insulation resistance of 10 10 Ω, comprising 2 to 40% by weight of an alkaline earth metal borate, a relative density of 65 to 80% and a bending strength of 550 kg / cm 2 or more. Above, a normal pressure sintered boron nitride molded body having a thermal conductivity of 0.04 cal / cm · sec · ° C or more.
JP62286483A 1987-11-14 1987-11-14 Pressureless sintered boron nitride compact Expired - Fee Related JP2614874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62286483A JP2614874B2 (en) 1987-11-14 1987-11-14 Pressureless sintered boron nitride compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62286483A JP2614874B2 (en) 1987-11-14 1987-11-14 Pressureless sintered boron nitride compact

Publications (2)

Publication Number Publication Date
JPH01131065A JPH01131065A (en) 1989-05-23
JP2614874B2 true JP2614874B2 (en) 1997-05-28

Family

ID=17704981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62286483A Expired - Fee Related JP2614874B2 (en) 1987-11-14 1987-11-14 Pressureless sintered boron nitride compact

Country Status (1)

Country Link
JP (1) JP2614874B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013508669A (en) * 2009-10-26 2013-03-07 アルストム・テクノロジー・リミテッド Cooling device for cooling medium voltage devices by utilizing insulated heat pipes

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4392088B2 (en) * 1999-10-27 2009-12-24 電気化学工業株式会社 Boron nitride-coated spherical borate particles, mixed powder containing the same, and methods for producing them
US7494635B2 (en) 2003-08-21 2009-02-24 Saint-Gobain Ceramics & Plastics, Inc. Boron nitride agglomerated powder

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61109138A (en) * 1984-10-31 1986-05-27 Mitsubishi Heavy Ind Ltd Computer controller
JPS61184217A (en) * 1985-02-13 1986-08-16 Hitachi Ltd Rotary machine with movable thrust bearing
JPS61186458A (en) * 1985-02-15 1986-08-20 Honda Motor Co Ltd Production of high-strength aluminum alloy member
JPS62123070A (en) * 1985-11-21 1987-06-04 株式会社香蘭社 Manufacture of boron nitride base sintered body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013508669A (en) * 2009-10-26 2013-03-07 アルストム・テクノロジー・リミテッド Cooling device for cooling medium voltage devices by utilizing insulated heat pipes

Also Published As

Publication number Publication date
JPH01131065A (en) 1989-05-23

Similar Documents

Publication Publication Date Title
CA1332616C (en) Sintered silicon carbide ceramic body
US5063184A (en) Pressureless sintered body of boron nitride
JP2614874B2 (en) Pressureless sintered boron nitride compact
US3642505A (en) Manufacture of mullite refractory grain and product
US5064589A (en) Method for producing high density hexagonal boron nitride sintered article
JP2525432B2 (en) Normal pressure sintered boron nitride compact
JP2614875B2 (en) Manufacturing method of high temperature corrosion resistant sintered material
JPH0312316A (en) Boron nitride powder and its sintered body
JPS632913B2 (en)
JPH0253388B2 (en)
JP3688022B2 (en) Hexagonal boron nitride sintered body
JPH01131069A (en) Complex compact calcined under ordinary pressure
JPH0735304B2 (en) Method for manufacturing boron nitride sintered body
JPH0567593B2 (en)
JP3112286B2 (en) Manufacturing method of dense machinable ceramics
JPH01131062A (en) Complex compact calcined under ordinary pressure
JPH01179763A (en) Production of combined sintered body of boron nitride and silicon nitride
JPS5926966A (en) Manufacture of ceramics green molded body
JPS62275067A (en) Manufacture of silicon nitride sintered body
JPS6321254A (en) Manufacture of silicon nitride ceramics
JP2612011B2 (en) Method for producing high-temperature corrosion-resistant sintered body
JP2510705B2 (en) Method for producing transparent aluminum oxynitride composite sintered body
JPS6110069A (en) High strength minute silicon nitride sintered body and manufacture
JPS6127353B2 (en)
JP2573720B2 (en) Manufacturing method of silicon nitride sintered body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees