JPH0567593B2 - - Google Patents
Info
- Publication number
- JPH0567593B2 JPH0567593B2 JP59041908A JP4190884A JPH0567593B2 JP H0567593 B2 JPH0567593 B2 JP H0567593B2 JP 59041908 A JP59041908 A JP 59041908A JP 4190884 A JP4190884 A JP 4190884A JP H0567593 B2 JPH0567593 B2 JP H0567593B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- aluminum nitride
- sintered body
- thermal conductivity
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 19
- 229910052799 carbon Inorganic materials 0.000 claims description 19
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 16
- 238000005245 sintering Methods 0.000 claims description 12
- 239000000843 powder Substances 0.000 claims description 11
- 239000002245 particle Substances 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 239000011812 mixed powder Substances 0.000 claims description 3
- 238000000034 method Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- YIWGJFPJRAEKMK-UHFFFAOYSA-N 1-(2H-benzotriazol-5-yl)-3-methyl-8-[2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carbonyl]-1,3,8-triazaspiro[4.5]decane-2,4-dione Chemical compound CN1C(=O)N(c2ccc3n[nH]nc3c2)C2(CCN(CC2)C(=O)c2cnc(NCc3cccc(OC(F)(F)F)c3)nc2)C1=O YIWGJFPJRAEKMK-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Description
〔発明の技術分野〕
本発明は高熱伝導性を具備した窒化アルミニウ
ム焼結体の製造方法に関するものである。
〔発明の技術的背景とその問題点〕
窒化アルミニウムは絶縁性でありかつ熱伝導性
に優れたセラミツクスとして知られている。
しかしながら窒化アルミニウム焼結体の原料の
窒化アルミニウム粉末には通常は不純物として酸
素をはじめとする不純物が含まれている。このた
め原料粉末をできるだけ不純物の混入を防いだ工
程で焼結、例えば1600℃〜1900℃における加圧焼
結で行なつても得られた焼結体の熱伝導率は40〜
45w/m・K程度の値に止まつてしまう問題があ
り、さらに高熱伝導化の要求があつた。
〔発明の目的〕
本発明は上述の問題を改善し、熱伝導性に優れ
た窒化アルミニウム焼結体の製造方法を提供する
ことを目的としている。
〔発明の概要〕
本発明者は上記の目的を達成するためには、平
均粒径3μm以下のAlN粉末に炭素又は分解して
炭素になる化合物を炭素に換算して0.05重量%以
上2重量%以下添加した混合粉末の成形体を1700
℃〜2100℃の温度範囲で、かつ50Kg/cm2以上の加
圧条件で焼結することが極めて有効であることを
見い出した。
焼結時の圧力は高い方が結晶体の緻密化、熱伝
導率改善及び焼結時に用いられる容器の強度を考
慮して実際上50〜600Kg/cm2の範囲が好ましい。
焼結時の温度は1700℃未満では焼結体が緻密化
せず、逆に2100℃を超えると高温では窒化アルミ
ニウムの蒸発が顕著となり良好な焼結体が得られ
ないので、1700℃−1200℃の範囲とする。添加さ
れる炭素の量が過剰であると焼結体中に残存して
熱伝導度き下げる原因ともなるので0.05〜2重量
%の範囲とする必要がある。又AlN粉末は3μm
を超えると緻密性、熱伝導性が低下する為3μm
以下とする。
〔発明の効果〕
本発明になる窒化アルミニウム焼結体は窒化ア
ルミニウム粉末に所定量の炭素ないしは分解して
炭素となる化合物を添加混合した粉末を焼結する
ことによる簡単な操作で焼結体の熱伝導性を改善
することができる。また添加物が炭素のみであ
り、かつ添加された炭素が窒化アルミニウム粉末
に含まれる炭素を除去するために焼結後の焼結体
は非常に高純度となり高純度であることを要求さ
れるアルミ溶融用ルツボなどへの利用も可能であ
るなどの効果が期待できる。
〔発明の実施例〕
以下実施例によつて詳細に説明する。
実施例 1
平均粒径3μm以下の窒化アルミニウム粉末100
gに無定形炭素(粒径1μm以下)0.1gを添加し
ボールミルで湿式混合を4時間行ない乾燥後金型
プレスを用い300Kg/cm2の加圧成形を行ない約30
mm×30mm×12mmの圧粉体を得た。
圧粉体をカーボン製モールドに入れ窒素ガス雰
囲気下で300Kg/cm2−1800℃−1時間の加圧焼結
を行なつた。得られた焼結体から直径10mm、厚さ
4mmの円板を切り出しレーザーフラツシユ法にて
熱伝導率を測定したところ56w/m・Kの値が得
られた。焼結体の密度は3.26g/cm3であつた。
実施例 2−9
実施例1と同じ窒化アルミニウム粉末と炭素を
用いて炭素濃度、焼結温度−圧力を変えて得られ
た窒化アルミニウム焼結体の熱伝導率測定結果を
第1表に示した。
[Technical Field of the Invention] The present invention relates to a method for manufacturing an aluminum nitride sintered body having high thermal conductivity. [Technical background of the invention and its problems] Aluminum nitride is known as a ceramic that is insulating and has excellent thermal conductivity. However, aluminum nitride powder, which is a raw material for aluminum nitride sintered bodies, usually contains impurities such as oxygen. For this reason, even if the raw material powder is sintered in a process that prevents the contamination of impurities as much as possible, for example by pressure sintering at 1600°C to 1900°C, the thermal conductivity of the sintered body obtained is 40~
There was a problem that the value remained at around 45w/m・K, and there was a demand for even higher thermal conductivity. [Object of the Invention] An object of the present invention is to improve the above-mentioned problems and provide a method for manufacturing an aluminum nitride sintered body with excellent thermal conductivity. [Summary of the Invention] In order to achieve the above-mentioned object, the present inventor has determined that carbon or a compound that becomes carbon when decomposed into AlN powder with an average particle size of 3 μm or less is 0.05% by weight or more and 2% by weight in terms of carbon. A molded body of mixed powder with the following added
It has been found that sintering at a temperature range of 2100°C to 2100°C and under pressure conditions of 50 kg/cm 2 or more is extremely effective. The pressure during sintering is preferably in the range of 50 to 600 kg/cm 2 , considering the densification of the crystal, the improvement of thermal conductivity, and the strength of the container used during sintering. If the temperature during sintering is less than 1700℃, the sintered body will not become dense, and if it exceeds 2100℃, the evaporation of aluminum nitride will become noticeable and a good sintered body will not be obtained. ℃ range. If the amount of carbon added is excessive, it will remain in the sintered body and cause a decrease in thermal conductivity, so it is necessary to keep it in the range of 0.05 to 2% by weight. Also, AlN powder is 3μm
If it exceeds 3μm, the density and thermal conductivity will decrease.
The following shall apply. [Effects of the Invention] The aluminum nitride sintered body of the present invention can be made into a sintered body by a simple operation by sintering aluminum nitride powder with a predetermined amount of carbon or a compound that decomposes into carbon. Thermal conductivity can be improved. In addition, the only additive is carbon, and since the added carbon removes the carbon contained in the aluminum nitride powder, the sintered body after sintering has a very high purity, which requires high purity. It can be expected to have effects such as being able to be used in melting crucibles, etc. [Embodiments of the Invention] The present invention will be explained in detail below using Examples. Example 1 Aluminum nitride powder 100 with an average particle size of 3 μm or less
0.1 g of amorphous carbon (particle size 1 μm or less) was added to the mixture, wet-mixed in a ball mill for 4 hours, dried, and then pressure-molded at 300 Kg/cm 2 using a mold press.
A green compact of mm x 30 mm x 12 mm was obtained. The green compact was placed in a carbon mold and subjected to pressure sintering at 300 kg/cm 2 -1800°C for 1 hour in a nitrogen gas atmosphere. A disk with a diameter of 10 mm and a thickness of 4 mm was cut out from the obtained sintered body and its thermal conductivity was measured by the laser flash method, and a value of 56 w/m·K was obtained. The density of the sintered body was 3.26 g/cm 3 . Example 2-9 Table 1 shows the thermal conductivity measurement results of aluminum nitride sintered bodies obtained using the same aluminum nitride powder and carbon as in Example 1, but varying the carbon concentration and sintering temperature and pressure. .
【表】
実施例 11
平均粒径2μmの以下へ窒化アルミニウム粉末
100gに炭素源として砂糖1gを添加しボールミ
ルで乾式混合を24時間行なつた。この混合粉末を
金型プレスを用いて300Kg/cm2の加圧成形を行な
い約30mm×30mm×12mmの圧粉体を得た。圧粉体を
カーボン製モールドに入れ窒素ガス雰囲気化で
300Kg/cm2−1800℃−30分間の加圧焼結を行なつ
た。得られた焼結体から直径10mm、厚さ4mmの円
板を切り出しレーザーフラツシユ法にて熱伝導率
を測定したところ55w/mKの値が得られた。焼
結体の密度は3.26g/cm3であつた。
比較例 1〜5
実施例1−9と同じ窒化アルミニウム粉末と炭
素を用いて炭素濃度、焼結温度−圧力を変えて得
られた窒化アルミニウム焼結体の熱伝導率測定結
果を第2表に示した。[Table] Example 11 Aluminum nitride powder with an average particle size of 2 μm or less
1 g of sugar was added as a carbon source to 100 g, and dry mixing was performed in a ball mill for 24 hours. This mixed powder was press-molded at 300 kg/cm 2 using a die press to obtain a green compact of approximately 30 mm x 30 mm x 12 mm. The green compact is placed in a carbon mold and placed in a nitrogen gas atmosphere.
Pressure sintering was performed at 300Kg/cm 2 -1800°C for 30 minutes. A disk with a diameter of 10 mm and a thickness of 4 mm was cut out from the obtained sintered body and its thermal conductivity was measured by the laser flash method, and a value of 55 w/mK was obtained. The density of the sintered body was 3.26 g/cm 3 . Comparative Examples 1 to 5 Table 2 shows the thermal conductivity measurement results of aluminum nitride sintered bodies obtained by using the same aluminum nitride powder and carbon as in Example 1-9 and changing the carbon concentration and sintering temperature and pressure. Indicated.
Claims (1)
解して炭素になる化合物を炭素に換算して0.05重
量%以上2重量%以下添加した混合粉末の成形体
を1700℃〜2100℃の温度範囲で、かつ50Kg/cm2以
上の加圧条件で焼結して得られることを特徴とす
る高熱伝導性窒化アルミニウム焼結体の製造方
法。1. A molded body of mixed powder in which carbon or a compound that decomposes into carbon is added to AlN powder with an average particle size of 3 μm or less and 0.05% to 2% by weight in terms of carbon is heated in a temperature range of 1700°C to 2100°C. , and a method for producing a highly thermally conductive aluminum nitride sintered body, characterized in that it is obtained by sintering under a pressurized condition of 50 Kg/cm 2 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59041908A JPS60186479A (en) | 1984-03-07 | 1984-03-07 | Manufacture of high heat conductivity aluminum nitride sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59041908A JPS60186479A (en) | 1984-03-07 | 1984-03-07 | Manufacture of high heat conductivity aluminum nitride sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60186479A JPS60186479A (en) | 1985-09-21 |
JPH0567593B2 true JPH0567593B2 (en) | 1993-09-27 |
Family
ID=12621376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59041908A Granted JPS60186479A (en) | 1984-03-07 | 1984-03-07 | Manufacture of high heat conductivity aluminum nitride sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60186479A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01242468A (en) * | 1988-03-23 | 1989-09-27 | Japan Steel Works Ltd:The | Production of sintered body of aluminum nitride |
JP2567491B2 (en) * | 1990-04-17 | 1996-12-25 | 住友電気工業株式会社 | High thermal conductivity colored aluminum nitride sintered body and method for producing the same |
CN1550477A (en) | 1999-09-06 | 2004-12-01 | Ibiden股份有限公司 | Carbon-containing aluminium nitride sintered compact and ceramic substrate for use in equipment for manufacturing or inspecting semiconductor |
EP1440957A3 (en) * | 1999-12-28 | 2005-01-05 | Ibiden Co., Ltd. | Ceramic heater |
DE10000621A1 (en) | 2000-01-10 | 2001-07-12 | Basf Ag | Low-viscosity, formaldehyde-reduced dispersions of microcapsules made from melamine-formaldehyde resins |
-
1984
- 1984-03-07 JP JP59041908A patent/JPS60186479A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60186479A (en) | 1985-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4073845A (en) | High density high strength S13 N4 ceramics prepared by pressureless sintering of partly crystalline, partly amorphous S13 N4 powder | |
US4701427A (en) | Sintered silicon carbide ceramic body of high electrical resistivity | |
JPH0244787B2 (en) | ||
JPS6353151B2 (en) | ||
Hamasaki et al. | Preparation and Characterization of Machinable Mica Glass‐Ceramics by the Sol‐Gel Process | |
JPH029763A (en) | Boron nitride sintered body and production thereof under ordinary pressure | |
US4376652A (en) | High density high strength Si3 N4 ceramics prepared by pressureless sintering of amorphous Si3 N4 powder and Ti | |
JPH0567593B2 (en) | ||
JPH02296771A (en) | Composite ceramic and its production | |
JPS6331434B2 (en) | ||
JP2525432B2 (en) | Normal pressure sintered boron nitride compact | |
JPH01252584A (en) | Sintered composite ceramic compact and production thereof | |
JP2876521B2 (en) | Manufacturing method of aluminum nitride sintered body | |
JPS6128629B2 (en) | ||
JPH0522670B2 (en) | ||
JPH01179763A (en) | Production of combined sintered body of boron nitride and silicon nitride | |
JP2587854B2 (en) | Method for producing aluminum nitride sintered body with improved thermal conductivity | |
JPH02307871A (en) | Production of ceramic sintered compact | |
JPH0453831B2 (en) | ||
RU2032642C1 (en) | Mixture for articles of aluminium nitride having high heat conductivity and method for their production | |
JPS6374966A (en) | Manufacture of aluminum nitride sintered body | |
JPH02233560A (en) | High-strength calcined sialon-based compact | |
JPS5951515B2 (en) | Manufacturing method of Sialon sintered body | |
JP2592895B2 (en) | Baking container and method for producing the same | |
JPH0547504B2 (en) |