JPH0547504B2 - - Google Patents

Info

Publication number
JPH0547504B2
JPH0547504B2 JP17664988A JP17664988A JPH0547504B2 JP H0547504 B2 JPH0547504 B2 JP H0547504B2 JP 17664988 A JP17664988 A JP 17664988A JP 17664988 A JP17664988 A JP 17664988A JP H0547504 B2 JPH0547504 B2 JP H0547504B2
Authority
JP
Japan
Prior art keywords
silica
ultrafine
powder
sintered body
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17664988A
Other languages
Japanese (ja)
Other versions
JPH0226862A (en
Inventor
Makoto Takemori
Hiroshi Danbara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP17664988A priority Critical patent/JPH0226862A/en
Publication of JPH0226862A publication Critical patent/JPH0226862A/en
Publication of JPH0547504B2 publication Critical patent/JPH0547504B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、シリカを基体とする焼結体を低温で
製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for producing a sintered body based on silica at a low temperature.

〔従来技術及びその問題点〕[Prior art and its problems]

これまで、シリカ焼結体を製造するためには、
1500℃以上の高温で溶融させたシリカを冷却する
溶融法と、溶液中で作つたシリカゲルを乾燥させ
て、1000℃程度に加熱するゾル・ゲル法が行なわ
れている。しかし、前者の溶融法では高温を必要
とするという問題があり、一方、後者のゾル・ゲ
ル法ではゲルの収縮で焼結の途中で形状が変化す
るという問題がある。従つて、従来からの方法で
は低温で形状の正確なシリカ焼結体を得ることは
困難である。
Until now, in order to manufacture silica sintered bodies,
Two methods are used: the melting method, in which silica is melted at a high temperature of 1,500°C or higher, and then cooled, and the sol-gel method, in which silica gel made in a solution is dried and heated to about 1,000°C. However, the former melting method has the problem of requiring high temperatures, while the latter sol-gel method has the problem that the shape changes during sintering due to gel contraction. Therefore, it is difficult to obtain a silica sintered body with an accurate shape at a low temperature using conventional methods.

〔発明の目的〕[Purpose of the invention]

本発明は、低温で形状の正確なシリカ焼結体を
製造し得る方法を提供することを目的とする。
An object of the present invention is to provide a method that can produce a silica sintered body with an accurate shape at a low temperature.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の方法は、シリカ超微粉末を高真空中で
温度500〜800℃でホツトプレスすることにより、
形状の正確なシリカ焼結体を製造する方法であ
る。
The method of the present invention involves hot pressing ultrafine silica powder in a high vacuum at a temperature of 500 to 800°C.
This is a method of manufacturing a silica sintered body with an accurate shape.

本発明で用いるシリカ超微粉末は、平均粒径
500Å以下、好ましくは50〜200Åの範囲のもので
ある。微細なもの程好ましい。このシリカ超微粉
末には、必要に応じ、希土類酸化物等の超微粉末
を添加することができる。その添加量は、シリカ
超微粉末100重量部に対し、0〜30重量部、好ま
しくは1〜5重量部の割合である。シリカと希土
類酸化物の複合酸化物の超微粉末を出発原料とし
て用いることもできる。このような添加剤の使用
により、シリカを基体とした多成分のガラスやセ
ラミツク焼結体を得ることができる。
The ultrafine silica powder used in the present invention has an average particle size of
The thickness is 500 Å or less, preferably in the range of 50 to 200 Å. The finer it is, the more preferable it is. Ultrafine powder of rare earth oxide or the like can be added to this ultrafine silica powder, if necessary. The amount added is 0 to 30 parts by weight, preferably 1 to 5 parts by weight, per 100 parts by weight of ultrafine silica powder. Ultrafine powder of a composite oxide of silica and rare earth oxide can also be used as a starting material. By using such additives, multicomponent glass or ceramic sintered bodies based on silica can be obtained.

本発明においては、このシリカ超微粉末を慣用
のホツトプレス機を用いて高真空中でホツトプレ
スする。この場合、加熱温度は500〜800℃、好ま
しくは550〜700℃である。真空条件としては、
10-2〜10-9Torr、好ましくは10-4〜10-6Torrの
高真空が採用される。プレス圧は、0.05〜
10ton/cm2、好ましくは0.1〜0.5ton/cm2である。
In the present invention, this ultrafine silica powder is hot pressed in a high vacuum using a conventional hot press machine. In this case, the heating temperature is 500-800°C, preferably 550-700°C. As for the vacuum conditions,
A high vacuum of 10 -2 to 10 -9 Torr, preferably 10 -4 to 10 -6 Torr is employed. Press pressure is 0.05~
10 ton/cm 2 , preferably 0.1 to 0.5 ton/cm 2 .

〔発明の効果〕 本発明の方法によれば、単成分のシリカ焼結体
の他、適当な添加剤を加えることにより、シリカ
を基体とした多成分のガラスやセラミツクスの焼
結体を低温で、形状正確に製造することができ
る。本発明では、従来法のように高温に加熱しな
いので、容器等からの不純物の混入もさけられる
し、多成分のガラスを作るときに問題となる相分
離や結晶化の問題もさけられる。また、従来のゾ
ル・ゲル法のように有機物を原料に用いることが
ないので、炭素等が不純物として混入することも
さけられる。また、真空排気を徹底的に行なえ
ば、水分も徹底的に除去できる。また、ホツトプ
レスの条件により、非常に多孔性の焼結体を作る
こともできるし、一軸のプレスによるひずみを残
留させることにより、異方性の強いガラスも製造
できる。
[Effects of the Invention] According to the method of the present invention, in addition to single-component sintered silica, multi-component sintered glass or ceramics based on silica can be produced at low temperatures by adding appropriate additives. , the shape can be manufactured accurately. In the present invention, unlike conventional methods, the glass is not heated to high temperatures, so it is possible to avoid the contamination of impurities from containers, etc., and also to avoid the problems of phase separation and crystallization that occur when producing multi-component glasses. Furthermore, unlike the conventional sol-gel method, organic matter is not used as a raw material, so contamination of carbon and the like as impurities can be avoided. Moreover, if the vacuum is thoroughly evacuated, moisture can also be thoroughly removed. Further, depending on the conditions of hot pressing, it is possible to produce a highly porous sintered body, and by leaving strain due to uniaxial pressing, it is also possible to produce glass with strong anisotropy.

〔実施例〕〔Example〕

次に実施例によつて本発明をさらに詳細に説明
する。
Next, the present invention will be explained in more detail with reference to Examples.

実施例 原料のシリカ超微粉末としては、日本アエロジ
ル社製のアエロジル200(粒径は約12nm)を用い
た。この粉末10.4gを大気にさらしておいたもの
を、真空ホツトプレス装置(大亜真空技研(株)製)
の中で処理した。この場合、ダイスはグラフアイ
ト製で、内径50mmのシリンダー状であり、ダイス
の内側の表面には薄く窒化ホウ素の粉末を塗布し
た。また、真空排気するまえに、シリカ超微粉末
に0.5tonの荷重をかけ、軽くつぶした後、真空排
気し、5×10-3Paの真空になつたところで、600
℃で4tonの荷重をかけてプレスした。このように
して、シリカの焼結体が得られた。その焼結体は
かさ密度0.642g/cm3であり、充填率は約24%で
ある。色は白色であつた。この破断面を走査型電
子顕微鏡で観察したら、ところどころ数μm程度
の粒子も見られたが、他の大部分はほぼ平滑で一
様であつた。
Examples Aerosil 200 (particle size: about 12 nm) manufactured by Nippon Aerosil Co., Ltd. was used as the raw material ultrafine silica powder. 10.4g of this powder was exposed to the atmosphere and then heated using a vacuum hot press machine (manufactured by Taia Vacuum Giken Co., Ltd.).
It was processed inside. In this case, the die was made of graphite and had a cylindrical shape with an inner diameter of 50 mm, and a thin layer of boron nitride powder was applied to the inner surface of the die. Also, before evacuation, a 0.5 ton load was applied to the ultrafine silica powder, and after crushing it, it was evacuated, and when the vacuum reached 5 × 10 -3 Pa, it was
It was pressed at ℃ with a load of 4 tons. In this way, a sintered body of silica was obtained. The sintered body has a bulk density of 0.642 g/cm 3 and a filling rate of about 24%. The color was white. When this fractured surface was observed with a scanning electron microscope, particles of several micrometers were observed here and there, but the rest of the surface was almost smooth and uniform.

Claims (1)

【特許請求の範囲】 1 高真空中で、シリカ超微粉末を温度500〜800
℃でホツトプレスすることを特徴とするシリカ焼
結体の製造方法。 2 該シリカ超微粉が、添加剤として、希土類酸
化物を含有する請求項1の方法。
[Claims] 1 Ultrafine silica powder is heated to a temperature of 500 to 800 in a high vacuum.
A method for producing a sintered silica body, characterized by hot pressing at ℃. 2. The method according to claim 1, wherein the ultrafine silica powder contains a rare earth oxide as an additive.
JP17664988A 1988-07-15 1988-07-15 Production of silica sintered body Granted JPH0226862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17664988A JPH0226862A (en) 1988-07-15 1988-07-15 Production of silica sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17664988A JPH0226862A (en) 1988-07-15 1988-07-15 Production of silica sintered body

Publications (2)

Publication Number Publication Date
JPH0226862A JPH0226862A (en) 1990-01-29
JPH0547504B2 true JPH0547504B2 (en) 1993-07-16

Family

ID=16017273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17664988A Granted JPH0226862A (en) 1988-07-15 1988-07-15 Production of silica sintered body

Country Status (1)

Country Link
JP (1) JPH0226862A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5728470A (en) * 1994-05-13 1998-03-17 Nec Corporation Multi-layer wiring substrate, and process for producing the same
CN114349516B (en) * 2021-12-16 2023-05-12 郑州大学 Method for synthesizing high-density SiC ceramic at low temperature

Also Published As

Publication number Publication date
JPH0226862A (en) 1990-01-29

Similar Documents

Publication Publication Date Title
CN109400123B (en) Fine-crystal alumina ceramic and preparation method and application thereof
JPH0617270B2 (en) Boron nitride atmospheric pressure sintered body
JP2535768B2 (en) High heat resistant composite material
US4496503A (en) Method of making a densified silicon nitride/oxynitride composite
JPS627150B2 (en)
JPH0547504B2 (en)
CN108178615B (en) Microwave ceramic dielectric sintered powder material, microwave dielectric ceramic and application thereof
JP2002226285A (en) Lightweight ceramic member and method for manufacturing the same
JP2525432B2 (en) Normal pressure sintered boron nitride compact
JP2620287B2 (en) Method for producing translucent spinel sintered body
JPH0567593B2 (en)
JPS6364973A (en) Boron nitride sintered body and manufacture
JPS6128629B2 (en)
JPS61163180A (en) High size precision and anti-abrasivity silicon carbide composite body and manufacture
JP2510705B2 (en) Method for producing transparent aluminum oxynitride composite sintered body
JPS59207883A (en) Manufacture of aluminum nitride sintered body
JPH053430B2 (en)
JPS6110069A (en) High strength minute silicon nitride sintered body and manufacture
JPS6046908A (en) Production of sic powder
JPH0648839A (en) Production of boron nitride sintered body
JPS6045147B2 (en) Transparent polycrystalline alumina composition and method for producing the same
JP2001058870A (en) Sintered quartz and its production
JPS6340771A (en) Normal pressure high density composite sintered body of cubic boron nitride and manufacture
JPH0798333B2 (en) Binderless molding method for anisotropic carbon products
JPS62108721A (en) Preparation of isotropic carbon material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term