JPH0226862A - Production of silica sintered body - Google Patents

Production of silica sintered body

Info

Publication number
JPH0226862A
JPH0226862A JP17664988A JP17664988A JPH0226862A JP H0226862 A JPH0226862 A JP H0226862A JP 17664988 A JP17664988 A JP 17664988A JP 17664988 A JP17664988 A JP 17664988A JP H0226862 A JPH0226862 A JP H0226862A
Authority
JP
Japan
Prior art keywords
silica
sintered body
silica powder
pts
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17664988A
Other languages
Japanese (ja)
Other versions
JPH0547504B2 (en
Inventor
Makoto Takemori
信 竹森
Hiroshi Danbara
檀原 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIA SHINKU GIKEN KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
DIA SHINKU GIKEN KK
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIA SHINKU GIKEN KK, Agency of Industrial Science and Technology filed Critical DIA SHINKU GIKEN KK
Priority to JP17664988A priority Critical patent/JPH0226862A/en
Publication of JPH0226862A publication Critical patent/JPH0226862A/en
Publication of JPH0547504B2 publication Critical patent/JPH0547504B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To produce a sintered body of an accurate shape at a low temp. by hot pressing hyperfine silica powder in high vacuum. CONSTITUTION:Hyperfine silica powder of <=500Angstrom , preferably 50-200Angstrom average particle size is hot pressed at 500-800 deg.C, preferably 550-700 deg.C under 0.05-10t/cm<2>, preferably 0.1-0.5t/cm<2> pressure in high vacuum of 10<-2>-10<-9>Torr, preferably 10<-4>-10<-6>Torr degree of vacuum to obtain a silica sintered body. When the oxides of rare earth elements are added to the silica powder, a sintered body of silica-based multicomponent glass or ceramic can be obtd. The amt. of the oxides added is 0-30 pts.wt., preferably 1-5 pts.wt. per 100 pts.wt. silica powder.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、シリカを基体とする焼結体を低温で製造する
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for producing a sintered body based on silica at a low temperature.

〔従来技術及びその問題点〕[Prior art and its problems]

これまで、シリカ焼結体を製造するためには、1500
℃以上の高温で溶融させたシリカを冷却する溶融法と、
溶液中で作ったシリカゲルを乾燥させて、1000℃程
度に加熱するゾル・ゲル法が行なわれている。しかし、
前者の溶融法では高温を必要とするという問題があり、
一方、後者のゾル・ゲル法ではゲルの収縮で焼結の途中
で形状が変化するという問題がある。従って、従来から
の方法では低温で形状の正確なシリカ焼結体を得ること
は困難である。
Until now, in order to manufacture silica sintered bodies, 1500
A melting method that cools silica melted at a high temperature of ℃ or higher,
A sol-gel method is used in which silica gel made in a solution is dried and heated to about 1000°C. but,
The former melting method has the problem of requiring high temperatures;
On the other hand, the latter sol-gel method has the problem that the shape changes during sintering due to contraction of the gel. Therefore, it is difficult to obtain a silica sintered body with an accurate shape at a low temperature using conventional methods.

〔発明の目的〕[Purpose of the invention]

本発明は、低温で形状の正確なシリカ焼結体を製造し得
る方法を提供することを目的とする。
An object of the present invention is to provide a method that can produce a silica sintered body with an accurate shape at a low temperature.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の方法は、シリカ超微粉末を高真空中で温度50
0〜800℃でホットプレスすることにより、形状の正
確なシリカ焼結体を製造する方法である。
The method of the present invention involves processing ultrafine silica powder in a high vacuum at a temperature of 50°C.
This method produces a silica sintered body with an accurate shape by hot pressing at 0 to 800°C.

本発明で用いるシリカ超微粉末は、平均粒径500Å以
下、好ましくは50〜200人の範囲のものである。微
細なもの程好ましい。このシリカ超微粉末には、必要に
応じ、希土類酸化物等の超微粉末を添加することができ
る。その添加量は、シリカ超微粉末100重量部に対し
、0〜30重量部、好ましくは1〜5重量部の割合であ
る。シリカと希土類酸化物の複合酸化物の超微粉末を出
発原料として用いることもできる。このような添加剤の
使用によリ、シリカを基体とした多成分のガラスやセラ
ミック焼結体を得ることができる。
The ultrafine silica powder used in the present invention has an average particle size of 500 Å or less, preferably in the range of 50 to 200 Å. The finer it is, the more preferable it is. Ultrafine powder of rare earth oxide or the like can be added to this ultrafine silica powder, if necessary. The amount added is 0 to 30 parts by weight, preferably 1 to 5 parts by weight, per 100 parts by weight of ultrafine silica powder. Ultrafine powder of a composite oxide of silica and rare earth oxide can also be used as a starting material. By using such additives, multi-component glass or ceramic sintered bodies based on silica can be obtained.

スする。この場合、加熱温度は500〜800℃、好ま
しくは550〜700℃である。真空条件としては、1
0″”−10−’Torr、好ましくは10−’−10
−’ Torrの高真空が採用される。プレス圧は、0
.05〜10ton/aJ、好ましくは0.1−0.5
ton/jである。
To do so. In this case, the heating temperature is 500-800°C, preferably 550-700°C. As for the vacuum conditions, 1
0''''-10-'Torr, preferably 10-'-10
-' Torr high vacuum is employed. Press pressure is 0
.. 05-10ton/aJ, preferably 0.1-0.5
ton/j.

[発明の効果〕 本発明の方法によれば、単成分のシリカ焼結体の他、適
当な添加剤を加えることにより、シリカ科 を基体とし〒多成分のガラスやセラミックスの焼結体を
低温で、形状正確に製造することができる。
[Effects of the Invention] According to the method of the present invention, in addition to single-component silica sintered bodies, by adding appropriate additives, multi-component glass or ceramic sintered bodies with silica family as a base can be made at low temperature. The shape can be manufactured accurately.

本発明では、従来法のように高温に加熱しないので、容
器等からの不純物の混入もさけられるし、多成分のガラ
スを作るときに問題となる相分離や結晶化の問題もさけ
られる。また、従来のゾル・ゲル法のように有機物を原
料に用いることがないので、炭素等が不純物として混入
することもさけられる。また、真空排気を徹底的に行な
えば、水分も徹底的に除去できる。また、ホットプレス
の条件により、非常に多孔性の焼結体を作ることもでき
るし、−軸のプレスによるひずみを残留させることによ
り、異方性の強いガラスも製造できる。
In the present invention, unlike conventional methods, the glass is not heated to high temperatures, so it is possible to avoid the contamination of impurities from containers, etc., and also to avoid the problems of phase separation and crystallization that occur when producing multi-component glasses. Furthermore, unlike the conventional sol-gel method, organic matter is not used as a raw material, so contamination of carbon and the like as impurities can be avoided. Moreover, if the vacuum is thoroughly evacuated, moisture can also be thoroughly removed. In addition, depending on the conditions of hot pressing, a highly porous sintered body can be made, and by allowing the strain caused by pressing on the -axis to remain, it is also possible to manufacture glass with strong anisotropy.

〔実施例〕〔Example〕

次に実施例によって本発明をさらに詳細に説明する。 Next, the present invention will be explained in more detail with reference to Examples.

実施例 原料のシリカ超微粉末としては、日本アエロジル社製の
アエロジル200(粒径は約12nm)を用いた。
Aerosil 200 (particle size: about 12 nm) manufactured by Nippon Aerosil Co., Ltd. was used as ultrafine silica powder as a raw material for the examples.

この粉末10.4gを大気にさらしておいたものを、真
空ホットプレス装置(大皿真空技研■H)の中で処理し
た。この場合、ダイスはグラファイト製で、内径501
m+のシリンダー状であり、ダイスの内側の表面には薄
く窒化ホウ素の粉末を塗布した。また、真空排気するま
えに、シリカ超微粉末に0.5tonの荷重をかけ、軽
くつぶした後、真空排気し、5×10−’Paの真空に
なったところで、600℃で4tonの荷重をかけてプ
レスした。このようにして、シリカの焼結体が得られた
。その焼結体ばかさ密度0.642g/am3であり、
充填率は約24%である。色は白色であった。この破断
面を走査型電子顕微鏡でwt察したら、ところどころ数
癖程度の粒子も見られたが、他の大部分はほぼ平滑で一
様であった。
10.4 g of this powder, which had been exposed to the atmosphere, was processed in a vacuum hot press device (Osara Shinku Giken ■H). In this case, the die is made of graphite and has an inner diameter of 501 mm.
The die had an m+ cylinder shape, and a thin layer of boron nitride powder was applied to the inner surface of the die. Also, before evacuation, a 0.5 ton load was applied to the ultrafine silica powder, and after crushing it, it was evacuated, and when the vacuum reached 5 × 10-'Pa, a 4 ton load was applied at 600°C. I pressed it. In this way, a sintered body of silica was obtained. The bulk density of the sintered body is 0.642 g/am3,
The filling rate is about 24%. The color was white. When this fractured surface was inspected using a scanning electron microscope, a few irregular particles were observed here and there, but the rest of the surface was almost smooth and uniform.

復代理人sub-agent

Claims (2)

【特許請求の範囲】[Claims] (1)高真空中で、シリカ超微粉末を温度500〜80
0℃でホットプレスすることを特徴とするシリカ焼結体
の製造方法。
(1) Ultrafine silica powder is heated to a temperature of 500 to 800 in a high vacuum.
A method for producing a silica sintered body, characterized by hot pressing at 0°C.
(2)該シリカ超微粉が、添加剤として、希土類酸化物
を含有する請求項1の方法。
(2) The method according to claim 1, wherein the ultrafine silica powder contains a rare earth oxide as an additive.
JP17664988A 1988-07-15 1988-07-15 Production of silica sintered body Granted JPH0226862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17664988A JPH0226862A (en) 1988-07-15 1988-07-15 Production of silica sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17664988A JPH0226862A (en) 1988-07-15 1988-07-15 Production of silica sintered body

Publications (2)

Publication Number Publication Date
JPH0226862A true JPH0226862A (en) 1990-01-29
JPH0547504B2 JPH0547504B2 (en) 1993-07-16

Family

ID=16017273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17664988A Granted JPH0226862A (en) 1988-07-15 1988-07-15 Production of silica sintered body

Country Status (1)

Country Link
JP (1) JPH0226862A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5714112A (en) * 1994-05-13 1998-02-03 Nec Corporation Process for producing a silica sintered product for a multi-layer wiring substrate
CN114349516A (en) * 2021-12-16 2022-04-15 郑州大学 Method for synthesizing high-density SiC ceramic at low temperature

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5714112A (en) * 1994-05-13 1998-02-03 Nec Corporation Process for producing a silica sintered product for a multi-layer wiring substrate
US5728470A (en) * 1994-05-13 1998-03-17 Nec Corporation Multi-layer wiring substrate, and process for producing the same
CN114349516A (en) * 2021-12-16 2022-04-15 郑州大学 Method for synthesizing high-density SiC ceramic at low temperature

Also Published As

Publication number Publication date
JPH0547504B2 (en) 1993-07-16

Similar Documents

Publication Publication Date Title
CN109400123B (en) Fine-crystal alumina ceramic and preparation method and application thereof
US4762810A (en) Method for the preparation of a sintered body of silicon carbide
JP3285620B2 (en) Method for producing translucent yttrium-aluminum-garnet sintered body
JPH029763A (en) Boron nitride sintered body and production thereof under ordinary pressure
JPH0226862A (en) Production of silica sintered body
EP1298104A1 (en) Electrically conductive ceramic sintered compact exhibiting low thermal expansion
JP2620287B2 (en) Method for producing translucent spinel sintered body
JP2525432B2 (en) Normal pressure sintered boron nitride compact
US3632710A (en) Use of alumina alone or with silica as sintering aid for boron carbide
JP2008156169A (en) Silicon carbide granule, method for producing silicon carbide sintered compact using it and silicon carbide sintered compact
JPH0567593B2 (en)
FR2755128A1 (en) Magnetic ceramic for microwave device
JP3318946B2 (en) Powdery dry gel, silica glass powder, and method for producing silica glass melt molded article
JPS6046908A (en) Production of sic powder
JPS61168570A (en) Boron nitride sintered body and manufacture
JPS6364973A (en) Boron nitride sintered body and manufacture
JPH0867517A (en) Member consisting of indium-tin oxide and production thereof
JPH03153570A (en) Polycrystalline spinel sintered body
JPH09183660A (en) High fillability hexagonal boron nitride powder, its production and use thereof
JPH0648839A (en) Production of boron nitride sintered body
JP2001058870A (en) Sintered quartz and its production
JPH0798333B2 (en) Binderless molding method for anisotropic carbon products
JPS6110069A (en) High strength minute silicon nitride sintered body and manufacture
KR20230079075A (en) Black quartz glass and manufacturing method thereof
RU2005099C1 (en) Method for preparing articles of glass powder materials

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term