JP2002087878A - Plasma resistant member and its manufacturing method - Google Patents

Plasma resistant member and its manufacturing method

Info

Publication number
JP2002087878A
JP2002087878A JP2001036819A JP2001036819A JP2002087878A JP 2002087878 A JP2002087878 A JP 2002087878A JP 2001036819 A JP2001036819 A JP 2001036819A JP 2001036819 A JP2001036819 A JP 2001036819A JP 2002087878 A JP2002087878 A JP 2002087878A
Authority
JP
Japan
Prior art keywords
plasma
sintered body
aluminum garnet
yttrium aluminum
resistant member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001036819A
Other languages
Japanese (ja)
Other versions
JP4688307B2 (en
Inventor
Akira Miyazaki
晃 宮崎
Mitsuhiro Fujita
光広 藤田
Shunzo Shimai
駿蔵 島井
Takashi Morita
敬司 森田
Shunichi Suzuki
俊一 鈴木
Shuichi Saito
秀一 齋藤
Katsuaki Aoki
克明 青木
Eriko Nishimura
絵里子 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Toshiba Corp
Original Assignee
Toshiba Corp
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Ceramics Co Ltd filed Critical Toshiba Corp
Priority to JP2001036819A priority Critical patent/JP4688307B2/en
Publication of JP2002087878A publication Critical patent/JP2002087878A/en
Application granted granted Critical
Publication of JP4688307B2 publication Critical patent/JP4688307B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plasma resistant member of low cost type which is also excellent in mechanical strengths such as bending strength and toughness and to provide its manufacturing method. SOLUTION: The plasma resistant member of this invention is distinguished by being substantially made of yttrium aluminum garnet sintered compact and by that the inside of the sintered compact or sintered compact structure is reinforced by proper selection of average crystalline grain size of the sintered compact and addition and incorporation or the like of a reinforcing agent.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ハロゲン系腐食性
ガス雰囲気下などで、すぐれた耐プラズマ性を呈する耐
プラズマ性部材、およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma-resistant member exhibiting excellent plasma resistance in a halogen-based corrosive gas atmosphere and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】半導体装置の製造工程においては、半導
体ウエハーに成膜を施すCVD装置やスパッタリング装
置、あるいは半導体ウエハーに微細な加工を施すエッチ
ング装置などでは、高集積化を目的としてプラズマ発生
機構を備えた半導体製造装置が使用されている。たとえ
ば、図1に構成の概略を示すように、マイクロ波発生室
1および処理室2を有する電子サイクロトロン共鳴を用
いたCVD装置が知られている。
2. Description of the Related Art In a semiconductor device manufacturing process, a plasma generating mechanism is used for high integration in a CVD apparatus or a sputtering apparatus for forming a film on a semiconductor wafer or an etching apparatus for performing a fine processing on a semiconductor wafer. The semiconductor manufacturing apparatus provided is used. For example, as schematically shown in FIG. 1, a CVD apparatus using electron cyclotron resonance having a microwave generation chamber 1 and a processing chamber 2 is known.

【0003】ここで、マイクロ波発生室1と処理室2と
は、マイクロ波導入窓3で離隔されており、また、処理
室2の外周には、磁界を形成するコイル4が配置されて
いる。さらに、処理室2は、成膜性ガスおよび雰囲気ガ
スを供給するガス供給口5、処理室2内を真空排気する
ガス排気口6、処理室2内を監視する監視窓7を有する
とともに、処理室2内には、半導体ウエハー8を直接も
しくはサセプター(図示省略)を介して支持する支持・
載置台9が設置されている。
Here, the microwave generation chamber 1 and the processing chamber 2 are separated from each other by a microwave introduction window 3, and a coil 4 for forming a magnetic field is arranged around the processing chamber 2. . Further, the processing chamber 2 has a gas supply port 5 for supplying a film-forming gas and an atmosphere gas, a gas exhaust port 6 for evacuating the processing chamber 2, and a monitoring window 7 for monitoring the inside of the processing chamber 2. In the chamber 2, a support / support for supporting the semiconductor wafer 8 directly or via a susceptor (not shown) is provided.
A mounting table 9 is provided.

【0004】そして、このCVD装置による成膜は、次
のように行われる。すなわち、支持・載置台9面に半導
体ウエハー8を載置し、処理室2内を真空化した後に、
ガス供給口5から成膜性ガスおよび雰囲気ガスを供給す
る。一方、マイクロ波発生室1で発生させたマイクロ波
は、マイクロ波導入窓3を介して処理室2内に導入され
る。また、このマイクロ波導入に伴ってコイル4に通電
し、磁界を発生させることにより、処理室2内に高密度
のプラズマを発生させる。このプラズマエネルギーによ
って、成膜性ガスを原子状態に分解し、半導体ウエハー
8面に堆積・成膜する。
[0004] Film formation by this CVD apparatus is performed as follows. That is, after the semiconductor wafer 8 is mounted on the support / mounting table 9 and the inside of the processing chamber 2 is evacuated,
A film forming gas and an atmosphere gas are supplied from the gas supply port 5. On the other hand, the microwave generated in the microwave generation chamber 1 is introduced into the processing chamber 2 through the microwave introduction window 3. In addition, by energizing the coil 4 with the introduction of the microwave and generating a magnetic field, high-density plasma is generated in the processing chamber 2. The plasma energy decomposes the film-forming gas into an atomic state, and deposits and forms a film on the surface of the semiconductor wafer 8.

【0005】ところで、この種の製造装置では、クリー
ニングガスとして塩素系ガスやフッ素系ガスなどのハロ
ゲン系腐食性ガスを使用するため、処理室2の内壁部、
監視窓7、マイクロ波導入窓3、支持・載置台9など、
腐食性ガス雰囲気下でプラズマに曝される構成部材につ
いて、耐プラズマ性が要求される。このような要求に対
応して、上記耐プラズマ性部材として、たとえばイット
リウムアルミニウムガーネットの焼結体を素材とする耐
プラズマ性部材が提案されている(特開平10?236
871号公報)。
In this type of manufacturing apparatus, a halogen-based corrosive gas such as a chlorine-based gas or a fluorine-based gas is used as a cleaning gas.
Monitoring window 7, microwave introduction window 3, support / mounting table 9, etc.
Components that are exposed to plasma in a corrosive gas atmosphere are required to have plasma resistance. In response to such a demand, a plasma-resistant member made of a sintered body of, for example, yttrium aluminum garnet has been proposed as the above-mentioned plasma-resistant member (JP-A-10-236).
871).

【0006】すなわち、ハロゲン系腐食性ガス雰囲気下
でプラズマに曝される表面を気孔率3%以下のイットリ
ウムアルミニウムガーネット焼結体で形成し、かつ表面
を中心線平均粗さ(Ra)1μm以下とした耐プラズマ
性部材が知られている。
That is, a surface exposed to plasma in a halogen-based corrosive gas atmosphere is formed of a sintered body of yttrium aluminum garnet having a porosity of 3% or less, and has a center line average roughness (Ra) of 1 μm or less. Known plasma-resistant members are known.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記イ
ットリウムアルミニウムガーネット焼結体は、すぐれた
耐プラズマ性を有するが、曲げ強度や破壊靱性などの機
械的特性が劣るという問題がある。たとえば、アルミナ
焼結体の破壊靱性値が4MN/m3/2程度であるのに
対し、イットリウムアルミニウムガーネット焼結体は、
その破壊靱性値が1〜2MN/m3/2程度と脆く、破
断ないし破損し易い傾向にある。
However, the yttrium aluminum garnet sintered body has excellent plasma resistance, but has a problem in that mechanical properties such as bending strength and fracture toughness are inferior. For example, while the fracture toughness value of the alumina sintered body is about 4 MN / m 3/2 , the yttrium aluminum garnet sintered body is
It has a fracture toughness value of about 1 to 2 MN / m 3/2 and is fragile, and tends to break or break.

【0008】ここで、機械的強度が劣ることは、たとえ
ば処理室2の内壁部、監視窓7、マイクロ波導入窓3、
支持・載置台9などを清浄化するため、それら部材の着
脱・取り外し、洗浄操作などの過程で、損傷・損壊を発
生する恐れがある。こうした懸念は、製造装置の稼動率
低下に連なり、また、イットリウムアルミニウムガーネ
ット焼結体が比較的高価であることと相俟って、製造装
置ないし半導体の製造コストアップに通じる。
Here, the mechanical strength is inferior because, for example, the inner wall of the processing chamber 2, the monitoring window 7, the microwave introduction window 3,
In order to clean the support / mounting table 9 and the like, there is a possibility that damage and damage may occur in the process of attaching / detaching / removing those members, cleaning operations, and the like. Such a concern leads to a decrease in the operation rate of the manufacturing apparatus, and in addition to the relatively high cost of the yttrium aluminum garnet sintered body, leads to an increase in the manufacturing cost of the manufacturing apparatus or the semiconductor.

【0009】本発明は、上記事情に対処してなされたも
ので、高い耐プラズマ性を有するとともに、曲げ強度や
強靱性などの機械的な強度もすぐれた低コスト型の耐プ
ラズマ部材、その製造方法の提供を目的とする。
The present invention has been made in view of the above circumstances, and is a low-cost type plasma-resistant member having high plasma resistance and excellent mechanical strength such as bending strength and toughness. The purpose is to provide a method.

【0010】[0010]

【課題を解決するための手段】請求項1の発明は、実質
的にイットリウムアルミニウムガーネット焼結体から成
り、かつその焼結体の平均結晶粒径が1μm以下である
ことを特徴とする耐プラズマ性部材である。
According to a first aspect of the present invention, there is provided a plasma-resistant article comprising substantially a sintered body of yttrium aluminum garnet, wherein the sintered body has an average crystal grain size of 1 μm or less. It is a sex member.

【0011】上記請求項1に係る発明は、イットリウム
アルミニウムガーネット焼結体の平均結晶粒径が1μm
以下のとき、すぐれた曲げ強度や破壊靱性を呈すること
の知見に基づいたものである。すなわち、真空焼結もし
くは水素焼結したイットリウムアルミニウムガーネット
焼結体の平均結晶粒径が2〜5μm程度であるのに対
し、焼結体の平均結晶粒径が1μm以下の場合、破壊靱
性値が大幅に高いことに着目して成されたものである。
なお、平均結晶粒径が1μm以下の焼結体は、結晶粒成
長を抑制する助剤の添加、ホットプレスによって得られ
る。
The invention according to claim 1 is characterized in that the yttrium aluminum garnet sintered body has an average crystal grain size of 1 μm.
The following is based on the finding that they exhibit excellent bending strength and fracture toughness. That is, while the average crystal grain size of the vacuum-sintered or hydrogen-sintered yttrium aluminum garnet sintered body is about 2 to 5 μm, when the average crystal grain size of the sintered body is 1 μm or less, the fracture toughness value is It was made by paying attention to the significantly high price.
The sintered body having an average crystal grain size of 1 μm or less can be obtained by adding an auxiliary agent for suppressing crystal grain growth and hot pressing.

【0012】請求項2の発明は、イットリウムアルミニ
ウムガーネット焼結体で、かつその焼結体中にアスペク
ト比が2以上の粒子、ファイバー、ウィスカーの少なく
とも1種を5〜80体積%分散含有していることを特徴
とする耐プラズマ性部材である。
A second aspect of the present invention is a sintered yttrium aluminum garnet, wherein the sintered body contains at least one of particles, fibers, and whiskers having an aspect ratio of 2 or more in a dispersion of 5 to 80% by volume. A plasma-resistant member.

【0013】上記請求項2に係る発明は、イットリウム
アルミニウムガーネットの耐プラズマ性を生かす一方、
繊維強化的な手段で焼結体の破壊靱性を改善向上させた
ものである。ここで、添加成分の性状は、アスペクト比
2以上の粒子、ファイバー、ウィスカーの1種もしくは
2種以上の混合系が選ばれ、また、分散含有量は、5〜
80体積%、より好ましくは30〜50体積%の範囲で
ある。
According to the second aspect of the present invention, while utilizing the plasma resistance of yttrium aluminum garnet,
The fracture toughness of the sintered body is improved and improved by means of fiber reinforcement. Here, as the property of the additive component, one or a mixture of two or more of particles, fibers, and whiskers having an aspect ratio of 2 or more is selected, and the dispersion content is 5 to 5.
The range is 80% by volume, more preferably 30 to 50% by volume.

【0014】すなわち、5体積%未満では破壊靱性の向
上が不十分であり、80体積%を超えると耐プラズマ性
が低下する恐れがあるため、上記のように選択される。
さらに、この種の粒子などは、たとえばイットリウムア
ルミニウムガーネット、アルミナ、ジルコニアなどを素
材としたものが挙げられ、イットリウムアルミニウムガ
ーネットが好ましい。
That is, if it is less than 5% by volume, the improvement in fracture toughness is insufficient, and if it exceeds 80% by volume, the plasma resistance may be reduced.
Further, examples of such particles include particles made of yttrium aluminum garnet, alumina, zirconia, or the like, and yttrium aluminum garnet is preferable.

【0015】請求項3の発明は、イットリウムアルミニ
ウムガーネット焼結体で、かつその焼結体中にジルコニ
アおよび酸化ハフニウムから選ばれた少なくとも1種を
0.15〜5質量%分散含有していることを特徴とする
耐プラズマ性部材である。
A third aspect of the present invention is a sintered body of yttrium aluminum garnet, wherein the sintered body contains at least one selected from zirconia and hafnium oxide in an amount of 0.15 to 5% by mass. A plasma-resistant member characterized by the following.

【0016】上記請求項3に係る発明は、ジルコニアや
酸化ハフニウムは、イットリアと固溶し易く、かつその
固溶を形成し易いセラミック系が破壊靱性の向上に寄与
することとに着目したものである。すなわち、イットリ
ウムアルミニウムガーネット焼結体に、ジルコニア、酸
化ハフニウムの少なくとも1種を0.15〜5質量%分
散含有させると、耐プラズマ性を損なわずに、イットリ
ウムアルミニウムガーネットの破壊靱性値が2.5倍以
上になるとの知見に基づいたものである。
The third aspect of the present invention focuses on the fact that zirconia and hafnium oxide easily form a solid solution with yttria and that a ceramic system which easily forms the solid solution contributes to improvement in fracture toughness. is there. That is, when at least one kind of zirconia and hafnium oxide is dispersed and contained in the yttrium aluminum garnet sintered body in an amount of 0.15 to 5% by mass, the fracture toughness value of yttrium aluminum garnet is 2.5 without impairing the plasma resistance. It is based on the finding that it will be more than doubled.

【0017】請求項4の発明は、周期律表2a族および
3a族の金属フッ化物から選ばれた少なくとも1種を
0.5〜90質量%分散含有したイットリウムアルミニ
ウムガーネット焼結体である。
The invention of claim 4 is a yttrium aluminum garnet sintered body containing 0.5 to 90% by mass of at least one selected from metal fluorides of groups 2a and 3a of the periodic table.

【0018】上記請求項4に係る発明は、周期律表2a
族および3a族の金属フッ化物を、所定量分散含有させ
たことにより、耐プラズマ性の向上および破壊靱性など
の向上を併せて図ったものである。つまり、イットリウ
ムアルミニウムガーネット焼結体に、金属のフッ化物相
を形成し、耐プラズマ性の向上に寄与させる。一方、金
属フッ化物は、イットリウムアルミニウムガーネットへ
の分散含有により、金属フッ化物単体に比べて熱膨張も
低くなるとともに、熱膨張係数が異なる材質が組み合わ
せ・複合体化することになる。そして、この複合体化に
伴って破壊靱性値が大きくなり、すぐれた耐熱衝撃性を
呈するように機能する。
[0018] The invention according to claim 4 is characterized in that the periodic table 2a
By incorporating and dispersing a predetermined amount of metal fluorides of Group 3a and Group 3a, both plasma resistance and fracture toughness are improved. That is, a metal fluoride phase is formed on the yttrium aluminum garnet sintered body, thereby contributing to an improvement in plasma resistance. On the other hand, by dispersing metal fluoride in yttrium aluminum garnet, thermal expansion is lower than that of metal fluoride alone, and materials having different thermal expansion coefficients are combined / composited. Then, with the formation of the composite, the fracture toughness value increases, and it functions so as to exhibit excellent thermal shock resistance.

【0019】請求項5の発明は、イットリウムアルミニ
ウムガーネット焼結体で、かつその焼結体中に球形の気
孔をほぼ均一に分散含有していることを特徴とする耐プ
ラズマ性部材である。
The invention according to claim 5 is a plasma-resistant member characterized by being a sintered body of yttrium aluminum garnet, wherein spherical sintered bodies are substantially uniformly dispersed and contained in the sintered body.

【0020】上記請求項5に係る発明は、イットリウム
アルミニウムガーネット焼結体中に分散含有される気孔
を外的な衝撃に対する緩衝に作用させ、破壊靱性値の向
上を図ったものである。すなわち、セラミックス焼結体
は、通常、気孔ないしボイドが存在すると、表面も粗面
化し易くプラズマによる腐食が加速されるので、できる
だけ緻密な方がよいと考えられている。
The invention according to claim 5 is intended to improve the fracture toughness value by making the pores dispersed and contained in the yttrium aluminum garnet sintered body act as a buffer against external impact. In other words, it is generally considered that a ceramic sintered body should be as dense as possible because pores or voids can easily roughen the surface and accelerate corrosion by plasma.

【0021】しかしながら、セラミックス焼結体中に分
散する気孔がほぼ球形の場合は、その球形気孔が衝撃に
対して緩衝剤的に作用する一方、クラックが生じても球
形気孔によって分散化され、破壊・損傷などが抑制・防
止され、結果的に、破壊靱性値が向上する。つまり、イ
ットリウムアルミニウムガーネットの耐プラズマ性を生
かしながら、靱性の向上・改善を図ったものである。
However, when the pores dispersed in the ceramic sintered body are substantially spherical, the spherical pores act as a buffer against impact, and even if cracks are formed, they are dispersed by the spherical pores and destroyed. -Damage and the like are suppressed and prevented, and as a result, the fracture toughness value is improved. In other words, the toughness is improved and improved while utilizing the plasma resistance of yttrium aluminum garnet.

【0022】請求項6の発明は、平均粒径0.05〜
0.8μmのイットリア粒子を含有する粘調液をスプレ
ードライヤーで造粒する工程と、前記造粒粉を高温で焼
結して粒子成長させて原料粉末を調製する工程と、前記
原料粉末にバインダー成分を添加・混合して組成物を調
製する工程と、前記組成物を成形して焼成・焼結する工
程とを有することを特徴とする耐プラズマ性部材の製造
方法である。
The invention according to claim 6 is characterized in that the average particle size is 0.05 to
A step of granulating a viscous liquid containing 0.8 μm yttria particles with a spray drier, a step of sintering the granulated powder at a high temperature to grow the particles and preparing a raw material powder, and a binder for the raw material powder. A method for producing a plasma-resistant member, comprising: a step of preparing a composition by adding and mixing components; and a step of molding, firing and sintering the composition.

【0023】上記請求項6に係る発明は、上記請求項2
の発明に係る耐プラズマ性部材の一製造手段である。す
なわち、イットリウムアルミニウムガーネット焼結体中
にアスペクト比が2以上の粒子などを、5〜80体積%
分散含有させた耐プラズマ性部材の製造において、原料
粉末の調製段階で粒子成長させ、単結晶に近い状態にし
ておくことを骨子とする。
[0023] The invention according to claim 6 is the invention according to claim 2.
FIG. 6 is a means for manufacturing a plasma-resistant member according to the invention. That is, particles having an aspect ratio of 2 or more are contained in the yttrium aluminum garnet sintered body in an amount of 5 to 80% by volume.
In the production of the plasma-resistant member in which the components are dispersed and contained, the main point is that particles are grown at the stage of preparing the raw material powder to be in a state close to a single crystal.

【0024】そのために、平均粒径0.05〜0.8μ
mの造粒するイットリア粒子を選択し、また、スプレー
ドライヤーで造粒する際のゾルないしスラリーの調製に
当たり、たとえばポリ塩化アルミニウムなどの粘調液を
使用する。そして、前記造粒粉を焼結・解砕して原料粉
末化する操作過程での、焼結温度を比較的高く設定する
ことによって、アスペクト比が2以上の粒子に成長さ
せ、これにイットリウムアルミニウムガーネット粉末を
配合し結果的に、アスペクト比が2以上の粒子を分散含
有する破壊靱性値の高いイットリウムアルミニウムガー
ネット焼結体(耐プラズマ性部材)が提供される。
Therefore, the average particle size is 0.05 to 0.8 μm.
When selecting the yttria particles to be granulated and preparing a sol or slurry when granulating with a spray drier, a viscous liquid such as polyaluminum chloride is used. Then, by setting the sintering temperature relatively high in the process of sintering and pulverizing the granulated powder to obtain a raw material powder, particles having an aspect ratio of 2 or more are grown. As a result of blending the garnet powder, a yttrium aluminum garnet sintered body (plasma-resistant member) having a high fracture toughness and containing particles having an aspect ratio of 2 or more dispersed therein is provided.

【0025】請求項7の発明は、平均粒径0.8μm以
下のイットリウムアルミニウムガーネット粉末に、周期
律表2a族および3a族の金属フッ化物から選ばれた少
なくとも1種を0.5〜90質量%添加・混合して原料
組成物を調製する工程と、前記原料組成物を成形する工
程と、前記成形体を少なくとも1250℃の温度でのホ
ットプレスにより焼結・焼成する工程とを有することを
特徴とする耐プラズマ性部材の製造方法である。
According to a seventh aspect of the present invention, there is provided a yttrium aluminum garnet powder having an average particle size of 0.8 μm or less, wherein at least one selected from metal fluorides of Groups 2a and 3a of the periodic table is added in an amount of 0.5 to 90 mass%. % To prepare a raw material composition by adding and mixing, a step of molding the raw material composition, and a step of sintering and firing the molded body by hot pressing at a temperature of at least 1250 ° C. A method for producing a plasma-resistant member characterized by the following.

【0026】上記請求項7に係る発明は、上記請求項4
の発明に係る耐プラズマ性部材の一製造手段であり、イ
ットリウムアルミニウムガーネット原料粉末の調製段階
で、所要の金属フッ化物を混合し、この混物物系をホッ
トプレス焼結することを骨子とする。つまり、イットリ
ウムアルミニウムガーネットの平均粒径を所定の範囲で
選択し、かつ所定量の金属フッ化物を分散混合させてホ
ットプレスする。
According to the seventh aspect of the present invention, there is provided the fourth aspect of the present invention.
Is a means for producing the plasma-resistant member according to the invention of the present invention, and in the preparation stage of yttrium aluminum garnet raw material powder, the main point is to mix a required metal fluoride and hot press sinter this mixture system. . That is, the average particle size of yttrium aluminum garnet is selected within a predetermined range, and a predetermined amount of metal fluoride is dispersed and mixed and hot pressed.

【0027】このホットプレスにおいて、イットリウム
アルミニウムガーネット(融点、約1900℃)に比べ
て融点の低い金属フッ化物(たとえばフッ化カルシウム
の場合融点は1360℃)であるため、加熱加圧により
金属フッ化物が焼結体内では、一様に分散含有される。
In this hot press, metal fluoride (for example, calcium fluoride has a melting point of 1360 ° C.) having a lower melting point than yttrium aluminum garnet (melting point: about 1900 ° C.) Are uniformly dispersed and contained in the sintered body.

【0028】請求項8の発明は、平均粒径0.8μm以
下のイットリウムアルミニウムガーネット粉末に、仮焼
ないし焼結・焼成時に揮散する略球形の有機物粒子を
0.1〜10体積%添加・混合して原料組成物を調製す
る工程と、前記原料組成物を成形する工程と、前記成形
体を500〜1000℃の温度で有機物粒子を揮散さ
せ、かつ略球形の気孔を残留させて焼結・焼成する工程
とを有することを特徴とする耐プラズマ性部材の製造方
法である。
[0028] The invention of claim 8 is a method of adding and mixing 0.1 to 10% by volume of substantially spherical organic particles which are volatilized during calcination or sintering / firing to yttrium aluminum garnet powder having an average particle diameter of 0.8 µm or less. And preparing the raw material composition, forming the raw material composition, and sintering the formed body by evaporating the organic particles at a temperature of 500 to 1000 ° C. and leaving substantially spherical pores. And baking a plasma-resistant member.

【0029】上記請求項8に係る発明は、上記請求項5
に係る発明の耐プラズマ性部材の一製造手段であり、イ
ットリウムアルミニウムガーネット原料粉末中に、仮焼
ないし焼結・焼成時に揮散する略球形の有機物粒子を予
め分散させておくこと、成形体を加熱・焼結する段階
で、前記有機物粒子を揮散させ、焼結体中に球形の気孔
として残留させることを骨子とする。
[0029] The invention according to claim 8 is the invention according to claim 5.
Is a means for producing a plasma-resistant member according to the invention, wherein substantially spherical organic particles that are volatilized during calcination or sintering / firing are previously dispersed in yttrium aluminum garnet raw material powder, and the molded body is heated. In the sintering step, the essence is to volatilize the organic particles and leave them as spherical pores in the sintered body.

【0030】ここで、イットリウムアルミニウムガーネ
ット粉末を平均粒径0.8μm以下に、また、仮焼、焼
結・焼成時に揮散する略球形の有機物粒子の添加・混合
比を0.1〜10体積%にそれぞれ設定したのは、前記
範囲外ではいずれの場合も、所要の耐プラズマ性部材が
得られない。そして、略球形の有機物粒子は、たとえば
澱粉、紙、セルロースなど、仮焼ないし焼結・焼成の温
度で炭酸ガスとして揮散し易い素材製が好ましい。
Here, the yttrium aluminum garnet powder is adjusted to have an average particle diameter of 0.8 μm or less, and the addition and mixing ratio of substantially spherical organic particles which are volatilized during calcination, sintering and sintering is 0.1 to 10% by volume. In each case, the required plasma-resistant member cannot be obtained. The substantially spherical organic particles are preferably made of a material such as starch, paper, cellulose, etc., which is easily vaporized as carbon dioxide at the temperature of calcination or sintering / firing.

【0031】なお、略球形の有機物粒子の揮散で残留す
る気孔は、略球形の空洞を維持しているため、その後、
焼成・焼結が進行しても全周面が圧縮される状態を採る
ので、気孔は依然として略球形を保持する。また、焼結
体中の気孔は、略球形で衝撃に対し緩衝作用を呈する。
請求項9の発明は、請求項4で得られたイットリウムア
ルミニウムガーネット焼結体の少なくとも表面の一部に
フッ化物層が形成されていることを特徴とする耐プラズ
マ性部材である。表面にフッ化物層を形成することによ
りさらに耐プラズマ性を向上させることができる。
The pores remaining due to the volatilization of the substantially spherical organic particles maintain a substantially spherical cavity.
Even when firing and sintering proceed, the entire peripheral surface is compressed, so that the pores still maintain a substantially spherical shape. Further, the pores in the sintered body are substantially spherical and exhibit a buffering action against impact.
A ninth aspect of the present invention is a plasma resistant member, characterized in that a fluoride layer is formed on at least a part of the surface of the yttrium aluminum garnet sintered body obtained in the fourth aspect. By forming a fluoride layer on the surface, plasma resistance can be further improved.

【0032】請求項1〜5および9の発明では、適切な
補強手段の採用により、すぐれた耐プラズマ性を有する
とともに、破壊靱性値の向上により損傷の恐れを解消し
た低コスト化を図れる耐プラズマ性部材として機能す
る。
According to the first to fifth and ninth aspects of the present invention, the use of an appropriate reinforcing means provides excellent plasma resistance, and improves the fracture toughness value to reduce the possibility of damage by reducing the possibility of damage. It functions as a conductive member.

【0033】請求項6〜8の発明では、半導体の製造コ
ストアップの抑制に寄与する耐プラズマ性部材を歩留ま
りよくし、また、量産的な提供が可能になる。
According to the sixth to eighth aspects of the present invention, it is possible to improve the yield of the plasma-resistant member which contributes to the suppression of the increase in the manufacturing cost of the semiconductor, and to provide mass production.

【0034】[0034]

【発明の実施形態】以下、実施例を説明する。Embodiments of the present invention will be described below.

【0035】実施例1Embodiment 1

【0036】平均粒子径0.2μmイットリウムアルミ
ニウムガーネット系粉末99質量%、MgSO・7H
Oをマグネシアに換算して1質量%の組成系に、適量
のイオン交換水およびポリビニルアルコールを加え、撹
拌・混合してスラリーを調製する。次いで、前記調製し
たスラリーをスプレードライヤーで造粒し、得られた造
粒粉を9.807x10MPa(1000kgf/c
)の圧力で成形し、厚さ10mm、直径100mm
の成形体をそれぞれ得た。
The average particle diameter of 0.2μm yttrium aluminum garnet-based powder 99 mass%, MgSO 4 · 7H
An appropriate amount of ion-exchanged water and polyvinyl alcohol are added to a 1% by mass composition system in terms of magnesia in terms of magnesia, and stirred and mixed to prepare a slurry. Next, the prepared slurry was granulated by a spray dryer, and the obtained granulated powder was 9.807 × 10 5 MPa (1000 kgf / c).
m 2 ), molded with a thickness of 10 mm and a diameter of 100 mm
Were obtained respectively.

【0037】上記成形体に、900℃の温度で仮焼・脱
脂の処理を施した後、ホットプレス(圧力はたとえば
9.807x10〜1.9614x10MPa(1
00〜2000kgf/cm))、温度1400〜1
650℃、加圧・加熱時間0.2〜3時間で焼結・焼成
処理を行って、耐プラズマ性部材を得た。この耐プラズ
マ性部材をX線回折(XRD)で同定した結果、焼結体
の平均結晶粒径が0.8μmであった。また、曲げ強度
(MPa)、および破壊靱性値KIC(MN/
3/2)をそれぞれ測定した結果を表1に示す。な
お、比較のため、平均結晶粒径が30μmイットリウム
アルミニウムガーネット系焼結体の機械的特性値を併せ
て表1に示す。
The molded body is calcined at 900 ° C.
After applying the grease treatment, hot press (pressure
9.807x104~ 1.9614x106MPa (1
00-2000kgf / cm2)), Temperature 1400-1
Sintering and firing at 650 ° C, pressurization and heating time of 0.2 to 3 hours
By performing the treatment, a plasma-resistant member was obtained. This anti-plasm
As a result of X-ray diffraction (XRD) of the
Was 0.8 μm. Also, bending strength
(MPa), and fracture toughness value KIC(MN /
m 3/2) Are shown in Table 1. What
For comparison, the average crystal grain size is 30 μm yttrium.
Combined with the mechanical properties of aluminum garnet based sintered body
The results are shown in Table 1.

【0038】[0038]

【表1】 [Table 1]

【0039】実施例2Embodiment 2

【0040】平均粒径0.05〜0.8μmのイットリ
ア粒子を質量比で30〜70%程度含有するポリ塩化ア
ルミニウム粘調液をスプレードライヤーにかけて造粒す
る。次いで、前記造粒粉を1750〜1870℃の高温
で、4時間程度焼結して粒子成長させて、アスペクト比
2.0〜10の原料粉末を得る。この原料粉末をバイン
ダー成分(ポリビニルブチラール)とともに、平均粒径
0.1〜0.7μmのイットリウムアルミニウムガーネ
ット粉末に体積比で10%添加・混合して組成物を調製
し、この組成物を9.807x10Pa(1000k
gf/cm)の圧力で成形し、厚さ10mm、直径1
00mmの成形体をそれぞれ得た。
A polyaluminum chloride viscous liquid containing about 30 to 70% by mass of yttria particles having an average particle diameter of 0.05 to 0.8 μm is granulated by a spray drier. Next, the granulated powder is sintered at a high temperature of 1750 to 1870 ° C. for about 4 hours to grow particles to obtain a raw material powder having an aspect ratio of 2.0 to 10. This raw material powder was added and mixed with a binder component (polyvinyl butyral) to yttrium aluminum garnet powder having an average particle diameter of 0.1 to 0.7 μm at a volume ratio of 10% to prepare a composition. 807 × 10 5 Pa (1000k
gf / cm 2 ), thickness 10 mm, diameter 1
A molded body of 00 mm was obtained.

【0041】上記成形体に、900℃の温度で仮焼・脱
脂の処理を施した後、水素気流中、1650〜1790
℃の温度で、0.5〜2時間程度焼結・焼成処理を行っ
て、耐プラズマ性部材を得た。この耐プラズマ性部材を
電子顕微鏡で観察した結果、焼結体中にはアスペクト比
2以上のイットリアの分散含有量が15体積%であっ
た。また、曲げ強度(MPa)、および破壊靱性値K
IC(MN/m3/2)をそれぞれ測定した結果を表2
に示す。
After subjecting the compact to calcination and degreasing at a temperature of 900 ° C.,
Sintering and baking treatment was performed at a temperature of about 0.5 to 2 hours at a temperature of ° C. to obtain a plasma-resistant member. As a result of observing the plasma-resistant member with an electron microscope, the dispersed content of yttria having an aspect ratio of 2 or more in the sintered body was 15% by volume. Further, the bending strength (MPa) and the fracture toughness value K
Table 2 shows the results of measuring the IC (MN / m 3/2 ).
Shown in

【0042】[0042]

【表2】 [Table 2]

【0043】さらに、上記アスペクト比2.0〜10の
原料粉末の代わりに、径50μm程度、長さ100〜1
0000μm程度のアルミナファイバーを体積比で5%
(実施例2a)、40%(実施例2b)、80%(実施
例2c)、径10μm程度、長さ500〜10000μ
m程度のイットリウムアルミニウムガーネット40%
(実施例2d)、もしくは径10μm程度、長さ500
〜10000μm程度のジルコニアファイバーを体積比
で40%(実施例2e)をそれぞれ用いた他は、同様の
条件で製造したイットリウムアルミニウムガーネット系
焼結体(比較例2)の機械的特性値を併せて表2に示
す。
Further, instead of the raw material powder having the aspect ratio of 2.0 to 10, the diameter is about 50 μm and the length is 100 to 1 μm.
5% by volume of alumina fiber of about 0000μm
(Example 2a), 40% (Example 2b), 80% (Example 2c), about 10 μm in diameter, 500 to 10,000 μ in length
40% of yttrium aluminum garnet of about m
(Example 2d) or about 10 μm in diameter and 500 in length
The mechanical property values of the yttrium aluminum garnet-based sintered body (Comparative Example 2) manufactured under the same conditions except that zirconia fibers of about 10000 μm and 40% by volume (Example 2e) were used were also added. It is shown in Table 2.

【0044】また、比較のため、上記製造条件におい
て、アスペクト比2以上の粒子を添加配合しない場合
(比較例2)の機械的特性値を併せて表2に示す。
For comparison, Table 2 also shows the mechanical characteristics when no particles having an aspect ratio of 2 or more were added and compounded under the above manufacturing conditions (Comparative Example 2).

【0045】実施例3Embodiment 3

【0046】平均粒径0.1〜0.8μmのイットリウ
ムアルミニウムガーネット粒子に、質量比で10%程度
もしくは25%程度のジルコニア粉末もしくは酸化ハフ
ニウム粉末、バインダー樹脂および溶媒を添加・混合し
て調製したスラリーをスプレードライヤーにかけて2種
の造粒する。次いで、前記2種類の造粒粉を9.807
x10MPa(1000kgf/cm)の圧力で成
形し、厚さ10mm、直径100mmの成形体をそれぞ
れ得た。
A yttrium aluminum garnet particle having an average particle diameter of 0.1 to 0.8 μm was prepared by adding and mixing a zirconia powder or a hafnium oxide powder, a binder resin and a solvent in a mass ratio of about 10% or 25%. The slurry is subjected to two types of granulation in a spray dryer. Next, 9.807 was added to the two types of granulated powder.
Molding was performed at a pressure of x10 5 MPa (1000 kgf / cm 2 ) to obtain molded bodies each having a thickness of 10 mm and a diameter of 100 mm.

【0047】上記成形体に、900℃の温度で仮焼・脱
脂の処理を施した後、水素気流中、1650〜1790
℃の温度で、0.5〜4時間程度焼結・焼成処理を行っ
て、耐プラズマ性部材を得た。この耐プラズマ性部材を
電子線マイクロアナリシス(EPMA)で同定した結
果、焼結体中にはジルコニアの分散含有量が10質量%
もしくは25質量%であった。また、破壊靱性値KIC
(MN/m3/2)をそれぞれ測定した結果を表3に示
す。
After subjecting the above molded body to a calcining and degreasing treatment at a temperature of 900 ° C.,
A sintering and firing treatment was performed at a temperature of about 0.5 to 4 hours to obtain a plasma-resistant member. As a result of identifying this plasma resistant member by electron beam microanalysis (EPMA), the zirconia dispersed content in the sintered body was 10% by mass.
Or it was 25 mass%. Also, the fracture toughness value K IC
Table 3 shows the results of measuring (MN / m 3/2 ).

【0048】[0048]

【表3】 [Table 3]

【0049】さらに、上記両焼結体から、片面が焼結体
表面である厚さ2mm、10x10mm角の試験片をそ
れぞれ切り出し、平行平板型RIE装置に取り付け、周
波数13.56MHz、高周波ソース500、高周波バ
イアス300W、CF/O /Ar=30:20:5
0、ガス圧0.6665Pa(5mTorr)の条件で
プラズマ曝露試験を行ったときのエッチングレート(n
m/時間)を表3にあわせて示す。なお、ジルコニア粉
末および酸化ハフニウム粉末を混合系とし添加含有させ
た場合も、同様の結果が得られた。
Further, one of the two sintered bodies is a sintered body.
A test piece of 2 mm in thickness and 10 x 10 mm square,
Cut out each and attach it to a parallel plate type RIE device.
13.56 MHz wave number, high frequency source 500, high frequency
EAS 300W, CF4/ O 2/ Ar = 30: 20: 5
0, at a gas pressure of 0.6665 Pa (5 mTorr)
Etching rate when conducting plasma exposure test (n
m / hour) are shown in Table 3. In addition, zirconia powder
Powder and hafnium oxide powder as a mixed system
, Similar results were obtained.

【0050】実施例4Embodiment 4

【0051】平均粒子径0.3μmイットリウムアルミ
ニウムーネット粒子85質量%、およびフッ化カルシウ
ム粒子13質量%を含む組成系に、適量のイオン交換水
およびポリビニルアルコール2質量%を加え、撹拌・混
合してスラリーを調製する。次いで、前記調製した各ス
ラリーをスプレードライヤーで造粒し、得られた造粒粉
をCIPプレスにて、9.807x10MPa(10
00kgf/cm)の圧力で成形し、厚さ10mm、
直径100mmの成形体をそれぞれ得た。
To a composition system containing 85% by mass of yttrium aluminum-net particles having an average particle size of 0.3 μm and 13% by mass of calcium fluoride particles, an appropriate amount of ion-exchanged water and 2% by mass of polyvinyl alcohol are added, followed by stirring and mixing. To prepare a slurry. Next, each of the prepared slurries was granulated by a spray drier, and the obtained granulated powder was 9.807 × 10 5 MPa (10
00 kgf / cm 2 ), and molded to a thickness of 10 mm.
Molded articles each having a diameter of 100 mm were obtained.

【0052】上記成形体について、900℃の温度で仮
焼・脱脂の処理を施した後、減圧雰囲気中、1250℃
の温度でホットプレス処理を行って、耐プラズマ性部材
を得た。この耐プラズマ性部材を電子線マイクロアナリ
シス(EPMA)で同定した結果、焼結体(耐プラズマ
性部材)の内部にフッ化カルシウム相が均一に存在して
いた。この耐プラズマ性部材の破壊靱性値KIC(MN
/m3/2)を測定した結果を表4に示す。
After subjecting the above molded body to calcination and degreasing at a temperature of 900 ° C.,
Hot-pressing treatment was performed at the temperature described above to obtain a plasma-resistant member. As a result of identifying this plasma resistant member by electron beam microanalysis (EPMA), a calcium fluoride phase was uniformly present inside the sintered body (plasma resistant member). The fracture toughness value K IC (MN
/ M 3/2 ) are shown in Table 4.

【0053】[0053]

【表4】 [Table 4]

【0054】さらに、上記焼結体から、厚さ2mm、1
0x10mm角の試験片を切り出し、平行平板型RIE
装置に取り付け、周波数13.56MHz、高周波ソー
ス500、高周波バイアス300W、CF/O/A
r=30:20:50、ガス圧0.6665Pa(5m
Torr)の条件でプラズマ曝露試験を行ったときのエ
ッチングレート(nm/時間)を表4に併せて示す。な
お、フッ化カルシウム粉末の代わりに、たとえばフッ化
マグネシウムなど、周期律表2a族もしくは3a族の他
の金属フッ化物を添加含有させた場合も、同様の結果が
得られた。なお、このようにして得られた耐プラズマ性
部材に対して、例えば、CFを100sccm(ml
/min)の流量で流し、真空チャンバー内に該部材を
置き、5.332Pa(40mTorr)とし、真空チ
ャンバー内に誘導結合型の高周波を500W印加してプ
ラズマを発生させ、数分から数時間プラズマに暴露させ
るなどすることによって、表面にフッ化物層(厚み数十
nm以上)を形成することができる。
Further, a thickness of 2 mm, 1 mm
A test piece of 0x10mm square was cut out and parallel plate type RIE
Attached to the device, frequency 13.56 MHz, high frequency source 500, high frequency bias 300 W, CF 4 / O 2 / A
r = 30: 20: 50, gas pressure 0.6665 Pa (5 m
Table 4 also shows the etching rate (nm / hour) when the plasma exposure test was performed under the conditions of (Torr). Similar results were obtained when other metal fluorides of the 2a or 3a group of the periodic table, such as magnesium fluoride, were added instead of the calcium fluoride powder. Incidentally, with respect to this way plasma resistance member obtained, for example, a CF 4 100 sccm (ml
/ Min), place the member in a vacuum chamber, set the pressure to 5.332 Pa (40 mTorr), apply 500 W of inductively-coupled high-frequency in the vacuum chamber, generate plasma, and generate plasma for several minutes to several hours. By exposing, for example, a fluoride layer (several tens nm or more in thickness) can be formed on the surface.

【0055】平均粒子径0.3μmイットリウムアルミ
ニウムガーネット粒子および平均粒径100μm程度の
澱粉粒子0.5質量%もしくは10質量%を含む組成系
に、適量のイオン交換水およびポリビニルアルコール2
質量%を加え、撹拌・混合して2種類のスラリーを調製
する。次いで、前記調製した各スラリーをスプレードラ
イヤーで造粒し、得られた造粒粉をCIPプレスにて、
9.807x10MPa(1000kgf/cm
の圧力で成形し、厚さ10mm、直径100mmの成形
体をそれぞれ得た。
In a composition system containing yttrium aluminum garnet particles having an average particle diameter of 0.3 μm and starch particles having an average particle diameter of about 100 μm in an amount of 0.5% by mass or 10% by mass, an appropriate amount of ion-exchanged water and polyvinyl alcohol 2 are added.
% By mass, and stirred and mixed to prepare two types of slurries. Next, each of the prepared slurries was granulated with a spray drier, and the obtained granulated powder was granulated with a CIP press.
9.807 × 10 5 MPa (1000 kgf / cm 2 )
To obtain molded articles each having a thickness of 10 mm and a diameter of 100 mm.

【0056】上記成形体について、900℃の温度で仮
焼・脱脂の処理を施した後、水素ガス雰囲気中、175
0℃の温度で焼結・焼成処理を行って、耐プラズマ性部
材を得た。この耐プラズマ性部材を電子顕微鏡(SE
M)で観察した結果、焼結体(耐プラズマ性部材)中に
は、径10μm程度のほぼ球形の気孔がほぼ均一に分散
する相を成していた。
After subjecting the above compact to calcination and degreasing at a temperature of 900 ° C.,
Sintering and baking treatment was performed at a temperature of 0 ° C. to obtain a plasma-resistant member. This plasma resistant member is connected to an electron microscope (SE
As a result of observation in (M), in the sintered body (plasma-resistant member), a substantially spherical pore having a diameter of about 10 μm was substantially uniformly dispersed.

【0057】すなわち、焼結体の断面について電子顕微
鏡で観察・撮像したところ、焼結体全体が細かい球形の
気孔を分散含有するイットリウムアルミニウムガーネッ
ト基材の耐プラズマ性部材であることが確認された。こ
の耐プラズマ性部材の破壊靱性値KIC(MN/m
3/2)を測定した結果を表5に示す。
That is, when the cross section of the sintered body was observed and imaged with an electron microscope, it was confirmed that the entire sintered body was a plasma-resistant member made of an yttrium aluminum garnet base material containing fine spherical pores dispersed therein. . The fracture toughness value K IC (MN / m
3/2 ) is shown in Table 5.

【0058】[0058]

【表5】 [Table 5]

【0059】さらに、上記焼結体から、厚さ2mm、1
0x10mm角の試験片を切り出し、平行平板型RIE
装置に取り付け、周波数13.56MHz、高周波ソー
ス500、高周波バイアス300W、CF/O/A
r=30:20:50、ガス圧0.6665Pa(5m
Torr)の条件でプラズマ曝露試験を行ったときのエ
ッチングレート(nm/時間)を表5に併せて示す。な
お、上記球形の澱粉粒子の代わりに、たとえばセルロー
スなど、セラミックスの仮焼ないし焼成温度で揮散する
球形の物質を添加含有させた場合も、同様の結果が得ら
れた。
Further, a thickness of 2 mm, 1 mm
A test piece of 0x10mm square was cut out and parallel plate type RIE
Attached to the device, frequency 13.56 MHz, high frequency source 500, high frequency bias 300 W, CF 4 / O 2 / A
r = 30: 20: 50, gas pressure 0.6665 Pa (5 m
Table 5 also shows the etching rate (nm / hour) when the plasma exposure test was performed under the conditions of (Torr). Similar results were obtained when a spherical substance, such as cellulose, which was volatilized at the calcination or firing temperature of ceramics was added and contained instead of the above-mentioned spherical starch particles.

【0060】本発明は、上記実施例に限定されるもので
なく、発明の趣旨を逸脱しない範囲でいろいろの変形を
採ることができる。
The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the invention.

【0061】[0061]

【発明の効果】請求項1〜5の発明によれば、プラズマ
に曝される表面が、耐プラズマ性のすぐれたイットリウ
ムアルミニウムガーネット層など形成されているだけで
なく、破壊靱性など機械的強度を改善向上させた構成と
なっている。したがって、洗浄操作などでの損傷・損壊
の発生が解消され、また、パーティクル汚染を生じる恐
れもなくなる。
According to the first to fifth aspects of the present invention, not only the surface exposed to plasma is formed with an yttrium aluminum garnet layer having excellent plasma resistance, but also the mechanical strength such as fracture toughness is improved. The configuration is improved and improved. Therefore, the occurrence of damage or breakage in a cleaning operation or the like is eliminated, and there is no possibility of causing particle contamination.

【0062】つまり、半導体製造装置ないし半導体の製
造コストアップを抑制防止する一方、成膜の質や精度な
どに悪影響を与えることなく、性能や信頼性の高い半導
体の製造・加工に効果的に寄与する耐プラズマ性部材を
提供できる。
That is, while suppressing an increase in the cost of manufacturing a semiconductor manufacturing apparatus or a semiconductor, it effectively contributes to the manufacture and processing of a semiconductor having high performance and reliability without adversely affecting the quality and precision of film formation. Plasma resistant member can be provided.

【0063】請求項6〜8の発明によれば、半導体の製
造コストアップの抑制に寄与する耐久性の高い耐プラズ
マ性部材を歩留まりよくし、また、量産的に提供するこ
とができる。
According to the sixth to eighth aspects of the present invention, a highly durable plasma-resistant member that contributes to suppressing an increase in semiconductor manufacturing cost can be provided with high yield and mass production.

【図面の簡単な説明】[Brief description of the drawings]

【図1】CVD装置の概略構成を示す断面図。FIG. 1 is a sectional view showing a schematic configuration of a CVD apparatus.

【符号の説明】[Explanation of symbols]

1……マイクロ波発生室 2……処理室 3……マイクロ波導入窓 4……磁界形成コイル 5……ガス供給口 6……ガス排出口 7……監視窓 8……半導体ウエハー 9……半導体ウエハー支持・載置台 DESCRIPTION OF SYMBOLS 1 ... Microwave generation chamber 2 ... Processing chamber 3 ... Microwave introduction window 4 ... Magnetic field forming coil 5 ... Gas supply port 6 ... Gas discharge port 7 ... Monitoring window 8 ... Semiconductor wafer 9 ... Semiconductor wafer support / mounting table

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤田 光広 神奈川県秦野市曾屋30番地 東芝セラミッ クス株式会社開発研究所内 (72)発明者 島井 駿蔵 神奈川県秦野市曾屋30番地 東芝セラミッ クス株式会社開発研究所内 (72)発明者 森田 敬司 神奈川県秦野市曾屋30番地 東芝セラミッ クス株式会社開発研究所内 (72)発明者 鈴木 俊一 神奈川県秦野市曾屋30番地 東芝セラミッ クス株式会社開発研究所内 (72)発明者 齋藤 秀一 神奈川県横浜市磯子区新磯子町33番地 株 式会社東芝生産技術センター内 (72)発明者 青木 克明 神奈川県横浜市磯子区新磯子町33番地 株 式会社東芝生産技術センター内 (72)発明者 西村 絵里子 神奈川県横浜市磯子区新磯子町33番地 株 式会社東芝生産技術センター内 Fターム(参考) 4G031 AA02 AA07 AA08 AA10 AA12 AA29 BA01 BA20 CA07 GA01 GA03 GA06 GA11 GA12 4K029 AA06 AA24 BD01 DC27 4K030 CA04 CA12 KA14 KA46  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Mitsuhiro Fujita 30 Soya, Hadano-shi, Kanagawa Toshiba Ceramics Co., Ltd. (72) Inventor Shuzo Shimai 30 Soya, Hadano-shi, Kanagawa Toshiba Ceramics Co., Ltd. (72) Inventor Keiji Morita 30 Soya, Hadano-shi, Kanagawa Toshiba Ceramics Co., Ltd. (72) Inventor Shunichi 30 Soya, Hadano-shi, Kanagawa Toshiba Ceramics Co., Ltd. (72) Inventor Shuichi Saito 33, Shinisogo-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Inside the Toshiba Production Technology Center (72) Inventor Katsuaki Aoki 33, Shinisogo-cho, Isogo-ku, Yokohama-shi, Kanagawa Toshiba Production Technology Inside the center (72) Inventor Eriko Nishimura 33, Shinisogo-cho, Isogo-ku, Yokohama, Kanagawa Earth Co., Ltd. Toshiba production technology center in the F-term (reference) 4G031 AA02 AA07 AA08 AA10 AA12 AA29 BA01 BA20 CA07 GA01 GA03 GA06 GA11 GA12 4K029 AA06 AA24 BD01 DC27 4K030 CA04 CA12 KA14 KA46

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 実質的にイットリウムアルミニウムガー
ネット焼結体から成り、かつその焼結体の平均結晶粒径
が1μm以下であることを特徴とする耐プラズマ性部
材。
1. A plasma-resistant member substantially made of a sintered body of yttrium aluminum garnet, wherein the sintered body has an average crystal grain size of 1 μm or less.
【請求項2】 イットリウムアルミニウムガーネット焼
結体で、かつその焼結体中にアスペクト比が2以上の粒
子、ファイバー、ウィスカーの少なくとも1種を5〜8
0体積%分散含有していることを特徴とする耐プラズマ
性部材。
2. A sintered body of yttrium aluminum garnet, wherein at least one of particles, fibers, and whiskers having an aspect ratio of 2 or more is contained in the sintered body in an amount of 5 to 8%.
A plasma resistant member containing 0% by volume dispersed therein.
【請求項3】 イットリウムアルミニウムガーネット焼
結体で、かつその焼結体中にジルコニアおよび酸化ハフ
ニウムから選ばれた少なくとも1種を0.15〜5質量
%分散含有していることを特徴とする耐プラズマ性部
材。
3. A sintered body of yttrium aluminum garnet, wherein at least one selected from zirconia and hafnium oxide is dispersed and contained in the sintered body in an amount of 0.15 to 5% by mass. Plasma material.
【請求項4】 周期律表2a族および3a族の金属フッ
化物から選ばれた少なくとも1種を0.5〜90質量%
分散含有したイットリウムアルミニウムガーネット焼結
体からなることを特徴とする耐プラズマ性部材。
4. 0.5% to 90% by mass of at least one selected from metal fluorides of groups 2a and 3a of the periodic table
A plasma-resistant member comprising a yttrium aluminum garnet sintered body containing dispersed therein.
【請求項5】 イットリウムアルミニウムガーネット焼
結体で、かつその焼結体中に球形の気孔をほぼ均一に分
散含有していることを特徴とする耐プラズマ性部材。
5. A plasma-resistant member which is a sintered body of yttrium aluminum garnet, wherein spherical pores are substantially uniformly dispersed and contained in the sintered body.
【請求項6】 請求項2記載の耐プラズマ性部材を製造
する方法において、平均粒径0.05〜0.8μmのイ
ットリア粒子を含有する粘調液をスプレードライヤーで
造粒する工程と、前記造粒粉を高温で焼結して粒子成長
させて原料粉末を調製する工程と、前記原料粉末にイッ
トリウムアルミニウムガーネット粉末を混合しバインダ
ー成分を添加・混合して組成物を調製する工程と、前記
組成物を成形して焼成・焼結する工程と、を有すること
を特徴とする耐プラズマ性部材の製造方法。
6. The method for producing a plasma-resistant member according to claim 2, wherein a viscous liquid containing yttria particles having an average particle diameter of 0.05 to 0.8 μm is granulated by a spray drier. A step of preparing a raw material powder by sintering the granulated powder at a high temperature to grow particles, and a step of preparing a composition by mixing yttrium aluminum garnet powder with the raw material powder, adding and mixing a binder component, And b. Sintering and sintering the composition.
【請求項7】 平均粒径0.8μm以下のイットリウム
アルミニウムガーネット粉末に、周期律表2a族および
3a族の金属フッ化物から選ばれた少なくとも1種を
0.5〜90質量%添加・混合して原料組成物を調製す
る工程と、前記原料組成物を成形する工程と、前記成形
体を少なくとも1250℃の温度でのホットプレスによ
り焼結・焼成する工程と、を有することを特徴とする耐
プラズマ性部材の製造方法。
7. Addition and mixing of 0.5 to 90% by mass of at least one selected from metal fluorides of groups 2a and 3a of the periodic table to yttrium aluminum garnet powder having an average particle diameter of 0.8 μm or less. A step of preparing a raw material composition by heating, a step of forming the raw material composition, and a step of sintering and firing the molded body by hot pressing at a temperature of at least 1250 ° C. A method for producing a plasma member.
【請求項8】 平均粒径0.8μm以下のイットリウム
アルミニウムガーネット粉末に、焼結・焼成時に揮散す
る略球形の有機物粒子を0.1〜10体積%添加・混合
して原料組成物を調製する工程と、前記原料組成物を成
形する工程と、前記成形体を500〜1000℃の温度
で有機物粒子を揮散させ、かつ略球形の気孔を残留させ
て焼結・焼成する工程と、を有することを特徴とする耐
プラズマ性部材の製造方法。
8. A raw material composition is prepared by adding and mixing 0.1 to 10% by volume of substantially spherical organic particles volatilized during sintering and firing to yttrium aluminum garnet powder having an average particle diameter of 0.8 μm or less. A step of molding the raw material composition, and a step of sintering and firing the molded body at a temperature of 500 to 1000 ° C. to volatilize the organic particles and to leave substantially spherical pores. A method for producing a plasma-resistant member, comprising:
【請求項9】 周期律表2a族および3a族の金属フッ
化物から選ばれた少なくとも1種を0.5〜990質量
%分散含有したイットリウムアルミニウムガーネット焼
結体で、かつ少なくとも表面の一部にフッ化物層が形成
されていることを特徴とする請求項4記載の耐プラズマ
性部材。
9. A yttrium aluminum garnet sintered body containing 0.5 to 990% by mass of at least one selected from metal fluorides of groups 2a and 3a of the periodic table, and at least a part of the surface thereof. The plasma-resistant member according to claim 4, wherein a fluoride layer is formed.
JP2001036819A 2000-07-11 2001-02-14 Plasma-resistant member for semiconductor manufacturing equipment Expired - Fee Related JP4688307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001036819A JP4688307B2 (en) 2000-07-11 2001-02-14 Plasma-resistant member for semiconductor manufacturing equipment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000209238 2000-07-11
JP2000209238 2000-07-11
JP2000-209238 2000-07-11
JP2001036819A JP4688307B2 (en) 2000-07-11 2001-02-14 Plasma-resistant member for semiconductor manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2002087878A true JP2002087878A (en) 2002-03-27
JP4688307B2 JP4688307B2 (en) 2011-05-25

Family

ID=26595765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001036819A Expired - Fee Related JP4688307B2 (en) 2000-07-11 2001-02-14 Plasma-resistant member for semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4688307B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199562A (en) * 2005-01-24 2006-08-03 Kyocera Corp Corrosion-resistant member, and semiconductor or member for liquid crystal manufacturing apparatus using the same
JP2008273823A (en) * 2007-04-27 2008-11-13 Applied Materials Inc Apparatus and method for reducing erosion rate of surface exposed to halogen-containing plasma
US8034734B2 (en) 2007-04-27 2011-10-11 Applied Materials, Inc. Semiconductor processing apparatus which is formed from yttrium oxide and zirconium oxide to produce a solid solution ceramic apparatus
WO2014018830A1 (en) * 2012-07-27 2014-01-30 Applied Materials, Inc. Chemistry compatible coating material for advanced device on-wafer particle performance
JP2014159637A (en) * 2007-08-02 2014-09-04 Applied Materials Inc Method of coating semiconductor processor with yttrium-containing protective coating
US9034199B2 (en) 2012-02-21 2015-05-19 Applied Materials, Inc. Ceramic article with reduced surface defect density and process for producing a ceramic article
US9090046B2 (en) 2012-04-16 2015-07-28 Applied Materials, Inc. Ceramic coated article and process for applying ceramic coating
US9212099B2 (en) 2012-02-22 2015-12-15 Applied Materials, Inc. Heat treated ceramic substrate having ceramic coating and heat treatment for coated ceramics
US9604249B2 (en) 2012-07-26 2017-03-28 Applied Materials, Inc. Innovative top-coat approach for advanced device on-wafer particle performance
US9865434B2 (en) 2013-06-05 2018-01-09 Applied Materials, Inc. Rare-earth oxide based erosion resistant coatings for semiconductor application
US10242888B2 (en) 2007-04-27 2019-03-26 Applied Materials, Inc. Semiconductor processing apparatus with a ceramic-comprising surface which exhibits fracture toughness and halogen plasma resistance
US10501843B2 (en) 2013-06-20 2019-12-10 Applied Materials, Inc. Plasma erosion resistant rare-earth oxide based thin film coatings
US10622194B2 (en) 2007-04-27 2020-04-14 Applied Materials, Inc. Bulk sintered solid solution ceramic which exhibits fracture toughness and halogen plasma resistance
US20210020415A1 (en) * 2018-04-03 2021-01-21 Kyocera Corporation Plasma processing device member, plasma processing device comprising said plasma processing device member, and method for manufacturing plasma processing device member
US11014853B2 (en) 2018-03-07 2021-05-25 Applied Materials, Inc. Y2O3—ZrO2 erosion resistant material for chamber components in plasma environments
US11047035B2 (en) 2018-02-23 2021-06-29 Applied Materials, Inc. Protective yttria coating for semiconductor equipment parts
KR20240033853A (en) * 2022-09-06 2024-03-13 한국재료연구원 Plasma etching device parts for semiconductor manufacturing including yttrium-based composite sintered body and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102674364B1 (en) 2015-11-16 2024-06-13 쿠어스 테크, 인코포레이티드 Corrosion-resistant parts and manufacturing methods
KR102384436B1 (en) 2016-11-16 2022-04-12 쿠어스 테크, 인코포레이티드 Corrosion-resistant parts and manufacturing methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06507946A (en) * 1991-06-03 1994-09-08 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー Yttria-alumina fiber
JP2000191369A (en) * 1998-12-28 2000-07-11 Kyocera Corp Member for apparatus for producing semiconductor or liquid crystal
JP2001102365A (en) * 1999-07-29 2001-04-13 Kyocera Corp Vacuum chamber and manufacturing method therefor
JP2001181024A (en) * 1999-12-27 2001-07-03 Nihon Ceratec Co Ltd Ceramic member
JP2002029742A (en) * 2000-07-21 2002-01-29 Daiichi Kigensokagaku Kogyo Co Ltd Rare earth oxide powder and method for manufacturing the same
JP2002037683A (en) * 2000-07-24 2002-02-06 Toshiba Ceramics Co Ltd Plasma resistant element and its manufacturing method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8700844A (en) * 1987-04-10 1988-11-01 Philips Nv CERAMIC TRANSPARENT MATERIAL, METHOD FOR MANUFACTURING SUCH MATERIAL AND HIGH-PRESSURE DISCHARGE LAMP INCLUDING SUCH MATERIAL.
JP2673161B2 (en) * 1988-09-27 1997-11-05 科学技術庁 無機材質研究所長 Method for manufacturing yttrium aluminum garnet
JPH03275561A (en) * 1990-03-23 1991-12-06 Sumitomo Electric Ind Ltd Light-transmissive yag sintered body and production thereof
JP3017528B2 (en) * 1990-11-27 2000-03-13 アプライドマテリアルズジャパン株式会社 Plasma processing equipment
JP3243278B2 (en) * 1992-04-10 2002-01-07 黒崎播磨株式会社 Polycrystalline transparent YAG ceramics for solid-state laser
JPH05286762A (en) * 1992-04-10 1993-11-02 Kurosaki Refract Co Ltd Manufacture of polycrystalline transparent yag ceramic for solid laser
US5378665A (en) * 1992-10-30 1995-01-03 General Atomics Crystalline yttrium aluminate and process for making
JPH0829975B2 (en) * 1993-12-24 1996-03-27 工業技術院長 Alumina-based ceramics sintered body
JPH09188516A (en) * 1996-01-08 1997-07-22 Shin Etsu Chem Co Ltd Agglomerated lump-shaped rare earth oxide and its production
JPH104083A (en) * 1996-06-17 1998-01-06 Kyocera Corp Anticorrosive material for semiconductor fabrication
JP3261044B2 (en) * 1996-07-31 2002-02-25 京セラ株式会社 Components for plasma processing equipment
JP3798482B2 (en) * 1996-09-24 2006-07-19 神島化学工業株式会社 Method for producing fine yttrium aluminum garnet powder
JP3692188B2 (en) * 1996-09-24 2005-09-07 神島化学工業株式会社 Method for producing fine yttrium aluminum garnet powder
JPH10236871A (en) * 1997-02-26 1998-09-08 Kyocera Corp Plasma resistant member
JP3125067B2 (en) * 1997-12-25 2001-01-15 科学技術庁無機材質研究所長 Method for producing transparent yttria sintered body
JP3527839B2 (en) * 1998-01-28 2004-05-17 京セラ株式会社 Components for semiconductor device manufacturing equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06507946A (en) * 1991-06-03 1994-09-08 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー Yttria-alumina fiber
JP2000191369A (en) * 1998-12-28 2000-07-11 Kyocera Corp Member for apparatus for producing semiconductor or liquid crystal
JP2001102365A (en) * 1999-07-29 2001-04-13 Kyocera Corp Vacuum chamber and manufacturing method therefor
JP2001181024A (en) * 1999-12-27 2001-07-03 Nihon Ceratec Co Ltd Ceramic member
JP2002029742A (en) * 2000-07-21 2002-01-29 Daiichi Kigensokagaku Kogyo Co Ltd Rare earth oxide powder and method for manufacturing the same
JP2002037683A (en) * 2000-07-24 2002-02-06 Toshiba Ceramics Co Ltd Plasma resistant element and its manufacturing method

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006199562A (en) * 2005-01-24 2006-08-03 Kyocera Corp Corrosion-resistant member, and semiconductor or member for liquid crystal manufacturing apparatus using the same
US9051219B2 (en) 2007-04-27 2015-06-09 Applied Materials, Inc. Semiconductor processing apparatus comprising a solid solution ceramic formed from yttrium oxide, zirconium oxide, and aluminum oxide
US10840112B2 (en) 2007-04-27 2020-11-17 Applied Materials, Inc. Coated article and semiconductor chamber apparatus formed from yttrium oxide and zirconium oxide
JP2008273823A (en) * 2007-04-27 2008-11-13 Applied Materials Inc Apparatus and method for reducing erosion rate of surface exposed to halogen-containing plasma
US10847386B2 (en) 2007-04-27 2020-11-24 Applied Materials, Inc. Method of forming a bulk article and semiconductor chamber apparatus from yttrium oxide and zirconium oxide
US10622194B2 (en) 2007-04-27 2020-04-14 Applied Materials, Inc. Bulk sintered solid solution ceramic which exhibits fracture toughness and halogen plasma resistance
US8034734B2 (en) 2007-04-27 2011-10-11 Applied Materials, Inc. Semiconductor processing apparatus which is formed from yttrium oxide and zirconium oxide to produce a solid solution ceramic apparatus
US10840113B2 (en) 2007-04-27 2020-11-17 Applied Materials, Inc. Method of forming a coated article and semiconductor chamber apparatus from yttrium oxide and zirconium oxide
US10242888B2 (en) 2007-04-27 2019-03-26 Applied Materials, Inc. Semiconductor processing apparatus with a ceramic-comprising surface which exhibits fracture toughness and halogen plasma resistance
US11373882B2 (en) 2007-04-27 2022-06-28 Applied Materials, Inc. Coated article and semiconductor chamber apparatus formed from yttrium oxide and zirconium oxide
US8623527B2 (en) 2007-04-27 2014-01-07 Applied Materials, Inc. Semiconductor processing apparatus comprising a coating formed from a solid solution of yttrium oxide and zirconium oxide
JP2014159637A (en) * 2007-08-02 2014-09-04 Applied Materials Inc Method of coating semiconductor processor with yttrium-containing protective coating
US10336656B2 (en) 2012-02-21 2019-07-02 Applied Materials, Inc. Ceramic article with reduced surface defect density
US9034199B2 (en) 2012-02-21 2015-05-19 Applied Materials, Inc. Ceramic article with reduced surface defect density and process for producing a ceramic article
US11279661B2 (en) 2012-02-22 2022-03-22 Applied Materials, Inc. Heat treated ceramic substrate having ceramic coating
US9212099B2 (en) 2012-02-22 2015-12-15 Applied Materials, Inc. Heat treated ceramic substrate having ceramic coating and heat treatment for coated ceramics
US10364197B2 (en) 2012-02-22 2019-07-30 Applied Materials, Inc. Heat treated ceramic substrate having ceramic coating
US9090046B2 (en) 2012-04-16 2015-07-28 Applied Materials, Inc. Ceramic coated article and process for applying ceramic coating
US9604249B2 (en) 2012-07-26 2017-03-28 Applied Materials, Inc. Innovative top-coat approach for advanced device on-wafer particle performance
KR20190114040A (en) * 2012-07-27 2019-10-08 어플라이드 머티어리얼스, 인코포레이티드 Chemistry compatible coating material for advanced device on-wafer particle performance
US11587771B2 (en) 2012-07-27 2023-02-21 Applied Materials, Inc. Chemistry compatible coating material for advanced device on-wafer particle performance
US10020170B2 (en) 2012-07-27 2018-07-10 Applied Materials, Inc. Chemistry compatible coating material for advanced device on-wafer particle performance
KR101897594B1 (en) 2012-07-27 2018-09-12 어플라이드 머티어리얼스, 인코포레이티드 Chemistry compatible coating material for advanced device on-wafer particle performance
KR102029885B1 (en) 2012-07-27 2019-10-08 어플라이드 머티어리얼스, 인코포레이티드 Chemistry compatible coating material for advanced device on-wafer particle performance
WO2014018830A1 (en) * 2012-07-27 2014-01-30 Applied Materials, Inc. Chemistry compatible coating material for advanced device on-wafer particle performance
KR20170104668A (en) * 2012-07-27 2017-09-15 어플라이드 머티어리얼스, 인코포레이티드 Chemistry compatible coating material for advanced device on-wafer particle performance
KR102140194B1 (en) 2012-07-27 2020-07-31 어플라이드 머티어리얼스, 인코포레이티드 Chemistry compatible coating material for advanced device on-wafer particle performance
KR20150046073A (en) * 2012-07-27 2015-04-29 어플라이드 머티어리얼스, 인코포레이티드 Chemistry compatible coating material for advanced device on-wafer particle performance
KR20170034938A (en) * 2012-07-27 2017-03-29 어플라이드 머티어리얼스, 인코포레이티드 Chemistry compatible coating material for advanced device on-wafer particle performance
KR101720094B1 (en) 2012-07-27 2017-03-27 어플라이드 머티어리얼스, 인코포레이티드 Chemistry compatible coating material for advanced device on-wafer particle performance
US9343289B2 (en) 2012-07-27 2016-05-17 Applied Materials, Inc. Chemistry compatible coating material for advanced device on-wafer particle performance
US10734202B2 (en) 2013-06-05 2020-08-04 Applied Materials, Inc. Rare-earth oxide based erosion resistant coatings for semiconductor application
US9865434B2 (en) 2013-06-05 2018-01-09 Applied Materials, Inc. Rare-earth oxide based erosion resistant coatings for semiconductor application
US11680308B2 (en) 2013-06-20 2023-06-20 Applied Materials, Inc. Plasma erosion resistant rare-earth oxide based thin film coatings
US11053581B2 (en) 2013-06-20 2021-07-06 Applied Materials, Inc. Plasma erosion resistant rare-earth oxide based thin film coatings
US10501843B2 (en) 2013-06-20 2019-12-10 Applied Materials, Inc. Plasma erosion resistant rare-earth oxide based thin film coatings
US11047035B2 (en) 2018-02-23 2021-06-29 Applied Materials, Inc. Protective yttria coating for semiconductor equipment parts
US11014853B2 (en) 2018-03-07 2021-05-25 Applied Materials, Inc. Y2O3—ZrO2 erosion resistant material for chamber components in plasma environments
US11667577B2 (en) 2018-03-07 2023-06-06 Applied Materials, Inc. Y2O3—ZrO2 erosion resistant material for chamber components in plasma environments
US11521835B2 (en) 2018-04-03 2022-12-06 Kyocera Corporation Plasma processing device member and plasma processing device provided with same
US20210020415A1 (en) * 2018-04-03 2021-01-21 Kyocera Corporation Plasma processing device member, plasma processing device comprising said plasma processing device member, and method for manufacturing plasma processing device member
US11715629B2 (en) * 2018-04-03 2023-08-01 Kyocera Corporation Plasma processing device member, plasma processing device comprising said plasma processing device member, and method for manufacturing plasma processing device member
KR20240033853A (en) * 2022-09-06 2024-03-13 한국재료연구원 Plasma etching device parts for semiconductor manufacturing including yttrium-based composite sintered body and manufacturing method thereof
KR102659099B1 (en) 2022-09-06 2024-04-18 한국재료연구원 Plasma etching device parts for semiconductor manufacturing including yttrium-based composite sintered body and manufacturing method thereof

Also Published As

Publication number Publication date
JP4688307B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
JP2002087878A (en) Plasma resistant member and its manufacturing method
JP4987238B2 (en) Aluminum nitride sintered body, semiconductor manufacturing member, and aluminum nitride sintered body manufacturing method
JPH06172026A (en) Sintered compact of zirconia-based complex ceramic and its production
JP3967093B2 (en) Ceramic member and manufacturing method thereof
EP1373684B1 (en) Environmental and thermal barrier coating for ceramic components
KR100445050B1 (en) Aluminum nitride sintered bodies and members for semiconductor producing apparatus
CN116041051B (en) Granulating powder applied to 3DP printing and printing forming method thereof
JP4514379B2 (en) Aluminum nitride sintered body and member for semiconductor manufacturing apparatus
JP2002068838A (en) Plasma resistant member and method for manufacturing the same
JP2002037683A (en) Plasma resistant element and its manufacturing method
CN111201208B (en) Alumina sintered body and method for producing same
JP2748961B2 (en) Method for producing surface-modified alumina ceramics
JP2585595B2 (en) Manufacturing method of ceramic sintered body
JP2001240482A (en) Plasma resistance material, high-frequency transmission material, and plasma equipment
JP2019069889A (en) Alumina sintered body and production method therefor
JP7231367B2 (en) Alumina sintered body
JP2002293630A (en) Plasma resistant member and method of producing the same
JP2002068864A (en) Plasma resistant member and method of manufacturing for the same
JPH11217272A (en) Silicon nitride sintered member having oriented crystal and its production
JP2004315308A (en) Corrosion-resistant member
JP2001316174A (en) Composite material and its manufacturing method
JP2002293673A (en) Metal-ceramic composite material
JPH10338576A (en) Silicon nitride sintered compact and its production
JP4092122B2 (en) Semiconductor manufacturing apparatus member and manufacturing method thereof
JP2002029832A (en) Plasma resistant member and method for manufacturing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110215

R150 Certificate of patent or registration of utility model

Ref document number: 4688307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees