JP2002037683A - Plasma resistant element and its manufacturing method - Google Patents

Plasma resistant element and its manufacturing method

Info

Publication number
JP2002037683A
JP2002037683A JP2000221844A JP2000221844A JP2002037683A JP 2002037683 A JP2002037683 A JP 2002037683A JP 2000221844 A JP2000221844 A JP 2000221844A JP 2000221844 A JP2000221844 A JP 2000221844A JP 2002037683 A JP2002037683 A JP 2002037683A
Authority
JP
Japan
Prior art keywords
plasma
fluoride
sintered body
resistant member
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000221844A
Other languages
Japanese (ja)
Inventor
Tomonori Uchimaru
知紀 内丸
Takashi Morita
敬司 森田
Masahiko Ichijima
雅彦 市島
Hiroko Ueno
宏子 上野
Shuichi Saito
秀一 齋藤
Katsuaki Aoki
克明 青木
Eriko Nishimura
絵里子 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Toshiba Corp
Original Assignee
Toshiba Corp
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Ceramics Co Ltd filed Critical Toshiba Corp
Priority to JP2000221844A priority Critical patent/JP2002037683A/en
Publication of JP2002037683A publication Critical patent/JP2002037683A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a low cost plasma resistant element and its manufacturing method having high plasma resistant property also excellent in mechanical properties such as bending strength and toughness. SOLUTION: This plasma resistant element 15 is characterized by having a base material 13 consisting of a ceramics group sintered body and a fluoride layer 14 of the thickness 1 to 100 μm containing not less than one kind of element selected from the periodic table IIA group elements and IIIA group elements formed on the surface of the above base material 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐プラズマ性部材
およびその製造方法に係り、さらに詳しくはハロゲン系
腐食性ガス雰囲気下で、すぐれた耐プラズマ性を呈する
耐プラズマ性部材およびその製造方法に関する。
The present invention relates to a plasma-resistant member and a method of manufacturing the same, and more particularly, to a plasma-resistant member exhibiting excellent plasma resistance in a halogen-based corrosive gas atmosphere and a method of manufacturing the same. .

【0002】[0002]

【従来の技術】半導体装置の製造工程においては、半導
体ウエハーに微細な加工を施すエッチング装置やスパッ
タリング装置、あるいは半導体ウエハーに成膜を施すC
VD装置などが使用されている。そして、これらの製造
装置では、高集積化を目的としてプラズマ発生機構を備
えた構成が採られている。たとえば、図2に構成の概略
を示すように、ヘリコン波プラズマエッチング装置が知
られている。
2. Description of the Related Art In a semiconductor device manufacturing process, an etching apparatus or a sputtering apparatus for performing fine processing on a semiconductor wafer or a C for forming a film on a semiconductor wafer is used.
VD devices and the like are used. These manufacturing apparatuses employ a configuration having a plasma generating mechanism for the purpose of high integration. For example, as schematically shown in FIG. 2, a helicon wave plasma etching apparatus is known.

【0003】図3において、1はエッチングガス供給口
2および真空排気口3を有するエッチング処理室で、そ
の外周には、アンテナ4、電磁石5、および永久磁石6
が設置されている。また、処理室1内には、半導体ウエ
ハー7を支持する下部電極8が配置されている。なお、
前記アンテナ4は、第1のマッチングネットワーク9を
介して第1の高周波電源10に接続し、下部電極8は、
第2のマッチングネットワーク11を介して第2の高周
波電源に12に接続している。
In FIG. 3, reference numeral 1 denotes an etching chamber having an etching gas supply port 2 and a vacuum exhaust port 3, and an antenna 4, an electromagnet 5, and a permanent magnet 6
Is installed. In the processing chamber 1, a lower electrode 8 supporting a semiconductor wafer 7 is disposed. In addition,
The antenna 4 is connected to a first high-frequency power supply 10 via a first matching network 9, and the lower electrode 8 is
A second high frequency power supply 12 is connected to a second high frequency power supply 12 via a second matching network 11.

【0004】そして、このエッチング装置によるエッチ
ングは、次のように行われる。すなわち、下部電極8面
に半導体ウエハー7を載置し、処理室1内を真空化した
後に、エッチングガスを供給する。その後、対応するマ
ッチングネットワーク9、11を介して各高周波電源に
10、12から、アンテナ4および下部電極8に、周波
数13.56MHzの高周波電流を流す。一方、電磁石
5に電流を流して、処理室1内に磁界を発生させること
により、高密度のプラズマを発生させる。このプラズマ
エネルギーによって、エッチングガスを原子状態に分解
し、半導体ウエハー8面に形成された膜のエッチングが
行われる。
[0004] Etching by this etching apparatus is performed as follows. That is, after the semiconductor wafer 7 is placed on the surface of the lower electrode 8 and the inside of the processing chamber 1 is evacuated, an etching gas is supplied. Thereafter, a high-frequency current having a frequency of 13.56 MHz flows from the high-frequency power supply 10 and 12 to the antenna 4 and the lower electrode 8 via the corresponding matching networks 9 and 11. On the other hand, a high-density plasma is generated by applying a current to the electromagnet 5 to generate a magnetic field in the processing chamber 1. The etching energy is decomposed into an atomic state by the plasma energy, and the film formed on the surface of the semiconductor wafer 8 is etched.

【0005】ところで、この種の製造装置では、エッチ
ングガスとして塩化ホウ素(BCl)などの塩素系ガ
ス、もしくはフッ化炭素(CF)などのフッ素系ガス
などの腐食性ガスを使用するため、処理室1の内壁部、
マイクロ波導入窓、監視窓、下部電極8など、腐食性ガ
ス雰囲気下でプラズマに曝される構成部材について、耐
プラズマ性が要求される。このような要求に対応して、
上記耐プラズマ性部材として、アルミナ系燒結体、窒化
ケイ素系燒結体、窒化アルミニウム系焼結体などが使用
されている。
In this type of manufacturing apparatus, a corrosive gas such as a chlorine-based gas such as boron chloride (BCl) or a fluorine-based gas such as fluorocarbon (CF 4 ) is used as an etching gas. The inner wall of room 1,
Components that are exposed to plasma in a corrosive gas atmosphere, such as a microwave introduction window, a monitoring window, and a lower electrode 8, are required to have plasma resistance. In response to such demands,
Alumina-based sintered bodies, silicon nitride-based sintered bodies, aluminum nitride-based sintered bodies, and the like are used as the plasma-resistant members.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記ア
ルミナ系燒結体、窒化ケイ素系燒結体、窒化アルミニウ
ム系焼結体などの耐プラズマ性部材は、腐食性ガス雰囲
気下でプラズマに曝されると徐々に腐食が進行して、表
面を構成する結晶粒子が離脱するため、いわゆるパーテ
ィクル汚染を生じる。すなわち、離脱したパーティクル
が、半導体ウエハー7面や下部電極8などに付着し、成
膜の質や精度などに悪影響を与え、半導体の性能や信頼
性が損なわれ易いという問題がある。
However, plasma-resistant members such as the above-mentioned alumina-based sintered bodies, silicon-nitride-based sintered bodies, and aluminum-nitride-based sintered bodies gradually become exposed to plasma in a corrosive gas atmosphere. Corrosion progresses, and crystal particles constituting the surface are detached, so-called particle contamination occurs. That is, there is a problem that the detached particles adhere to the surface of the semiconductor wafer 7, the lower electrode 8, and the like, adversely affect the quality and precision of the film formation, and the performance and reliability of the semiconductor are easily impaired.

【0007】また、CVD装置においても、クリーニン
グ時に窒化フッ素(NF)などのフッ素系ガスにプラ
ズマ下で曝されるため、耐食性ガ必要とされている。
[0007] Further, in a CVD apparatus, corrosion resistance is required since the CVD apparatus is exposed to a fluorine-based gas such as fluorine nitride (NF 3 ) during cleaning.

【0008】上記耐食性の問題に対し、イットリウムア
ルミン酸ガーネット(いわゆるYAG)系焼結体を素材
とする耐プラズマ性部材が提案されている(特開平10
−236871号公報)。すなわち、ハロゲン系腐食性
ガス雰囲気下でプラズマに曝される表面が、気孔率3%
以下のイットリウムアルミン酸ガーネット系焼結体で形
成され、かつ表面を中心線平均粗さ(Ra)1μm以下
とした耐プラズマ性部材が知られている。
In order to solve the above-mentioned problem of corrosion resistance, a plasma-resistant member made of a sintered body of yttrium aluminate garnet (so-called YAG) has been proposed (Japanese Unexamined Patent Publication No. Hei 10 (1998)).
No. 236871). That is, the surface exposed to plasma in a halogen-based corrosive gas atmosphere has a porosity of 3%.
A plasma-resistant member formed of the following yttrium aluminate garnet-based sintered body and having a surface having a center line average roughness (Ra) of 1 μm or less is known.

【0009】しかし、このイットリウムアルミン酸ガー
ネット系焼結体は、耐プラズマ性の点ではすぐれている
が、曲げ強度および破壊靱性など機械的な強度が劣ると
いう問題がある。ここで、機械的強度が劣ること(脆さ
など)は、たとえば洗浄操作などの過程で、部材が損傷
・損壊を発生し易いことを意味し、素材自体が比較的高
価であることと相俟って、製造装置ないし半導体の製造
コストアップを招来する。
However, this yttrium aluminate garnet-based sintered body is excellent in plasma resistance, but has a problem that mechanical strength such as bending strength and fracture toughness is poor. Here, the poor mechanical strength (brittleness, etc.) means that the member is liable to be damaged or damaged in the course of, for example, a cleaning operation, and is combined with the fact that the material itself is relatively expensive. This leads to an increase in the manufacturing cost of the manufacturing apparatus or the semiconductor.

【0010】本発明は、上記事情に対処してなされたも
ので、高い耐プラズマ性を有するとともに、曲げ強度や
強靱性などの機械的な強度もすぐれた低コスト型の耐プ
ラズマ性部材およびその製造方法の提供を目的とする。
The present invention has been made in view of the above circumstances, and a low-cost type plasma-resistant member having high plasma resistance and excellent mechanical strength such as bending strength and toughness, and the like. The purpose is to provide a manufacturing method.

【0011】[0011]

【課題を解決するための手段】請求項1の発明は、セラ
ミックス系燒結体から成る基材と、前記基材表面に形成
された周期律表IIA族元素およびIIIA族元素の群から
選ばれた少なくとも1種の元素を含む厚さ1〜1000
μmのフッ化物層とを有することを特徴とする耐プラズ
マ性部材である。
Means for Solving the Problems According to the present invention, there is provided a substrate selected from the group consisting of a group IIA element and a group IIIA element of a periodic table formed on a surface of the substrate. Thickness 1 to 1000 containing at least one element
A plasma-resistant member having a fluoride layer of μm.

【0012】請求項2の発明は、請求項1記載の耐プラ
ズマ性部材において、セラミックス系燒結体がアルミナ
質系燒結体であることを特徴とする。
According to a second aspect of the present invention, in the plasma resistant member according to the first aspect, the ceramic-based sintered body is an alumina-based sintered body.

【0013】請求項3の発明は、請求項1もしくは請求
項2記載の耐プラズマ性部材において、フッ化物層がフ
ッ化イットリウムを主体として形成されていることを特
徴とする。
According to a third aspect of the present invention, in the plasma resistant member according to the first or second aspect, the fluoride layer is formed mainly of yttrium fluoride.

【0014】請求項4の発明は、セラミックス系焼結体
の表面に、周期律表IIA族元素およびIIIA族元素の群
から選ばれた少なくとも1種の元素を含むフッ化物を厚
さ1〜1000μmの膜厚に堆積させることを特徴とす
る耐プラズマ性部材の製造方法である。
According to a fourth aspect of the present invention, there is provided a ceramic sintered body on which a fluoride containing at least one element selected from the group consisting of a group IIA element and a group IIIA element of the periodic table has a thickness of 1 to 1000 μm. A method for manufacturing a plasma-resistant member, characterized in that the member is deposited to a film thickness of:

【0015】請求項5の発明は、請求項4記載の耐プラ
ズマ性部材の製造方法において、フッ化物膜の堆積手段
がプラズマ溶射法であることを特徴とする。
According to a fifth aspect of the present invention, in the method for manufacturing a plasma-resistant member according to the fourth aspect, the means for depositing the fluoride film is a plasma spraying method.

【0016】請求項1ないし5の発明は、次のような知
見に基づいている。(a)たとえばイットリウムアルミ
ン酸ガーネットなどの酸化物は、フッ素系プラズマに曝
すと表面にフッ化イットリウムが生成・堆積し、そのフ
ッ化イットリウムが堆積・残留していると、アルミニウ
ム−酸素結合が維持されて、結果的に、高耐食性呈す
る。(b)前記フッ化物層の堆積による耐食性は、セラ
ミックス焼結体(基材)の数倍程度になる。(c)堆積
するフッ化物層の厚さ(表面からの深さ)が1μmを超
える程度で十分な耐食性が得られる。(d)フッ化物層
の堆積は、スパッタリング法、プラズマ溶射法、蒸着法
などで容易に形成できる。
The inventions of claims 1 to 5 are based on the following findings. (A) For oxides such as yttrium aluminate garnet, yttrium fluoride is formed and deposited on the surface when exposed to fluorine-based plasma, and aluminum-oxygen bonds are maintained if the yttrium fluoride is deposited and remaining. As a result, it exhibits high corrosion resistance. (B) The corrosion resistance due to the deposition of the fluoride layer is about several times that of the ceramic sintered body (base material). (C) Sufficient corrosion resistance is obtained when the thickness (depth from the surface) of the deposited fluoride layer exceeds about 1 μm. (D) The fluoride layer can be easily deposited by a sputtering method, a plasma spraying method, a vapor deposition method, or the like.

【0017】請求項1〜6の発明において、セラミック
ス系基材は、たとえばアルミナ系焼結体、ジルコニア系
焼結体、窒化ケイ素系焼結体、窒化アルミニウム系焼結
体など、ある程度の機械的な強度を要求されるものであ
る。そして、その形状・寸法、材質などは、使用目的や
使用箇所などによって、適宜選択・設定される。
In the first to sixth aspects of the present invention, the ceramic base material may be, for example, an alumina-based sintered body, a zirconia-based sintered body, a silicon nitride-based sintered body, or an aluminum nitride-based sintered body. High strength is required. The shape, size, material and the like are appropriately selected and set depending on the purpose of use, the place of use, and the like.

【0018】ここで、代表的なアルミナ質系基材(燒結
体)は、たとえばマグネシアなどの燒結助剤を0.01
〜1重量%程度含有する実質的にアルミナ質から成るも
のであり、また、その燒結体結晶の平均粒径が5μm以
上であることが好ましく、より好ましくは5.5〜20
0μm程度、さらに好ましくは10〜40μmの範囲で
ある。このように、粒径を適宜調整して、溶射膜などが
形成され易いようにすることが望ましい。
Here, a typical alumina-based base material (sintered body) is a sintering aid such as magnesia, for example.
ア ル ミ ナ 1% by weight, and is substantially composed of alumina, and the average grain size of the sintered body crystal is preferably 5 μm or more, more preferably 5.5 to 20%.
It is about 0 μm, more preferably in the range of 10 to 40 μm. Thus, it is desirable to appropriately adjust the particle size so that a sprayed film or the like can be easily formed.

【0019】なお、この種のセラミックス系基材は、次
のような手段で製造できる。たとえば、平均粒径0.1
〜1.0μmのアルミナ粒子に、焼結助剤などを添加配
合して原料粉を調製する。次いで、前記原料粉を造粒
後、たとえば静水圧プレス、押し出し成形、射出成形、
鋳込み成形などの成形手段で成形し、その成形体に仮焼
・脱脂処理を施す。その後、前記仮焼・脱脂処理した成
形体に、水素ガスを含む雰囲気中で加熱処理を施すこと
によって、前記成形体を焼成・燒結する。
Incidentally, this kind of ceramic base material can be manufactured by the following means. For example, an average particle size of 0.1
A raw material powder is prepared by adding and compounding a sintering aid and the like to alumina particles of about 1.0 μm. Next, after granulating the raw material powder, for example, isostatic pressing, extrusion molding, injection molding,
It is molded by molding means such as casting, and the molded body is subjected to calcination and degreasing. Thereafter, the molded body subjected to the calcining and degreasing treatment is subjected to a heat treatment in an atmosphere containing hydrogen gas, thereby firing and sintering the molded body.

【0020】請求項1ないし5の発明において、上記セ
ラミックス系基材表面に、堆積ないし被覆・形成されフ
ッ素化物は、周期律表IIA族元素およびIIIA族元素の
群から選ばれた少なくとも1種の元素を含むフッ素化合
物である。ここで、フッ素化合物としては、たとえばフ
ッ化カルシウム、フッ化マグネシウム、フッ化バリウ
ム、フッ化イットリウム、フッ化スカンジウム、フッ化
ランタン、フッ化セシウム、フッ化イットリウムアルミ
ン酸ガーネット、およびこれらの2種以上の混合系が挙
げられる。
In the first to fifth aspects of the present invention, the fluorinated substance deposited, coated and formed on the surface of the ceramic base material is at least one member selected from the group consisting of a group IIA element and a group IIIA element of the periodic table. It is a fluorine compound containing an element. Here, examples of the fluorine compound include calcium fluoride, magnesium fluoride, barium fluoride, yttrium fluoride, scandium fluoride, lanthanum fluoride, cesium fluoride, yttrium fluoride aluminate garnet, and two or more of these. Of mixed systems.

【0021】そして、この種のフッ化物層の堆積・形成
は、一般的な、スパッタリング法、プラズマ溶射法、蒸
着法などで行われる。すなわち、対応するフッ化物をス
パッタリング源、プラズマ溶射源、あるいは蒸発源と
し、所要のエネルギーを与えてフッ化物層をセラミック
ス系基材面に堆積・形成する。しかし、十分な膜厚を容
易に確保するためには、プラズマ溶射法が好ましい。
The deposition and formation of this kind of fluoride layer is performed by a general sputtering method, plasma spraying method, vapor deposition method, or the like. That is, the corresponding fluoride is used as a sputtering source, a plasma spraying source, or an evaporation source, and the required energy is applied to deposit and form a fluoride layer on the surface of the ceramic base material. However, in order to easily secure a sufficient film thickness, a plasma spraying method is preferable.

【0022】請求項1ないし5の発明において、セラミ
ックス系基材の表面に堆積・形成されたフッ素化物層
は、その厚さが1〜1000μmの範囲内で選択する必
要がある。すなわち、厚さ1μm未満では、所要の耐プ
ラズマ性を十分に付与できないし、また、1000μm
を超えても同効的で、却って低コスト化の支障となるの
で、フッ化物層の厚さは、上記範囲内、より好ましくは
10〜150μmの範囲で選択される。
In the first to fifth aspects of the present invention, the thickness of the fluorinated layer deposited and formed on the surface of the ceramic base material must be selected within the range of 1 to 1000 μm. That is, if the thickness is less than 1 μm, the required plasma resistance cannot be sufficiently provided, and
The thickness of the fluoride layer is selected within the above range, more preferably in the range of 10 to 150 μm, since the effect is the same even if the thickness exceeds the above, which hinders the cost reduction.

【0023】請求項1ないし3の発明では、基材がセラ
ミックス系燒結体で形成され、プラズマに曝される表面
がフッ化物層で被覆された構造を採っている。つまり、
曲げ強度や破壊靱性など機械的強度のすぐれているセラ
ミックス系燒結体層を基材とする一方、耐プラズマ性の
すぐれたフッ化物層でプラズマに曝される表面を被覆し
た構成としたことにより、洗浄操作などでの損傷・損壊
の発生が解消され、また、パーティクル汚染を生じる恐
れもなくなる。
According to the first to third aspects of the present invention, a structure is employed in which the substrate is formed of a ceramic sintered body and the surface exposed to plasma is coated with a fluoride layer. That is,
By using a ceramic-based sintered layer with excellent mechanical strength such as bending strength and fracture toughness as the base material, the surface exposed to plasma is covered with a fluoride layer with excellent plasma resistance, The occurrence of damage or breakage in a cleaning operation or the like is eliminated, and the possibility of particle contamination is also eliminated.

【0024】したがって、製造装置ないし半導体の製造
コストアップを抑制防止しながら、成膜の質や精度など
に悪影響を与えることなく、性能や信頼性の高い半導体
の製造・加工に、効果的に寄与する。
Therefore, the present invention effectively contributes to the production and processing of semiconductors having high performance and reliability without adversely affecting the quality and precision of film formation, while suppressing the increase in the production cost of the production apparatus or semiconductor. I do.

【0025】請求項4ないし5の発明では、曲げ強度や
破壊靱性など機械的強度のすぐれているセラミックス系
燒結体を基材とする一方、耐プラズマ性のすぐれたフッ
化物層でプラズマに曝される表面が被覆された構成の耐
プラズマ性部材を歩留まりよく、かつ量産的に提供する
ことが可能となる。
According to the fourth and fifth aspects of the present invention, a ceramic-based sintered body having excellent mechanical strength such as bending strength and fracture toughness is used as a base material, while a fluoride layer having excellent plasma resistance is exposed to plasma. It is possible to provide a plasma-resistant member having a configuration in which the surface is covered with good yield and mass production.

【0026】[0026]

【発明の実施形態】以下、図1を参照して実施例を説明
する。
An embodiment will be described below with reference to FIG.

【0027】平均粒子径0.3μmアルミナ粒子100
重量%に対し、MgSO・7HOをマグネシアに換
算して750ppmを添加配合した組成系に、適量のイ
オン交換水およびポリビニルアルコラート2重量%を加
え、撹拌・混合してスラリーを調製する。次いで、前記
調製したスラリーをスプレードライヤーで造粒し、得ら
れた造粒粉を静水圧プレス(CIPプレス)にて、9.
807x10MPa(1000kgf/cm)の
圧力で成形し、厚さ30mm、幅30mm、長さ30m
mの成形体をそれぞれ得た。
Alumina particles 100 having an average particle diameter of 0.3 μm
An appropriate amount of ion-exchanged water and 2% by weight of polyvinyl alcoholate are added to a composition system in which MgSO 4 .7H 2 O is converted to magnesia with respect to the weight%, and the mixture is stirred and mixed to prepare a slurry. Next, the prepared slurry was granulated with a spray drier, and the obtained granulated powder was subjected to isostatic pressing (CIP press).
Formed under a pressure of 807 × 10 5 MPa (1000 kgf / cm 2 ), thickness 30 mm, width 30 mm, length 30 m
m were obtained.

【0028】上記各成形体について、大気中、900℃
の温度で仮焼・脱脂の処理を施した後、水素ガス雰囲気
中、1790℃の温度で燒結・焼成処理を行って、アル
ミナ質焼結体(基材)を作製した。このアルミナ質焼結
体は、X線回折(XRD)で同定したところ、平均結晶
粒子径が10〜40μm程度で、緻密な焼結体であっ
た。
Each of the above-mentioned molded products was exposed to air at 900 ° C.
After the calcination and degreasing treatments were performed at a temperature of, a sintering and firing treatment was performed at a temperature of 1790 ° C in a hydrogen gas atmosphere to produce an alumina-based sintered body (base material). The alumina sintered body was identified by X-ray diffraction (XRD), and was a dense sintered body having an average crystal particle diameter of about 10 to 40 μm.

【0029】次ぎに、プラズマ溶射装置を用いて、アル
ミナ質燒結体13面にフッ化イットリウム層14を堆積
・形成する。図1は、このようにして製造した耐プラズ
マ性部材15の概略構成を示す断面図である。
Next, a yttrium fluoride layer 14 is deposited and formed on the alumina sintered body 13 using a plasma spraying apparatus. FIG. 1 is a cross-sectional view illustrating a schematic configuration of the plasma resistant member 15 manufactured as described above.

【0030】上記、フッ化イットリウム層を表面に堆積
・形成したアルミナ質燒結体の断面について、電子顕微
鏡で観察・撮像したところ、実質的にアルミナ系燒結体
である基材1の表面全体が、ほぼ一様な厚さのフッ化イ
ットリウム層で覆われた耐プラズマ性部材であることが
確認された。なお、上記フッ化イットリウムの堆積・形
成層の厚さは、1μmの緻密な層であった。
The cross section of the alumina sintered body having the yttrium fluoride layer deposited and formed on the surface was observed and imaged with an electron microscope. As a result, the entire surface of the substrate 1, which was substantially an alumina sintered body, It was confirmed that the plasma-resistant member was covered with the yttrium fluoride layer having a substantially uniform thickness. The thickness of the deposited / formed layer of yttrium fluoride was a dense layer of 1 μm.

【0031】また、上記フッ化イットリウム層で被覆し
た燒結体から、10x10mm角の試験片を切り出し、
破壊靱性を測定したところ、4MN/m3/2程度であ
り、アルミナ系燒結体の破壊靱性値に匹敵する値であっ
た。さらに、上記燒結体から、一主面がフッ化イットリ
ウム層で被覆された形で、厚さ2mm、10x10mm
角の試験片を切り出し、平行平板型RIE装置に取り付
け、次の条件でプラズマ曝露試験を行った。
A 10 × 10 mm square test piece was cut out from the sintered body covered with the yttrium fluoride layer,
When the fracture toughness was measured, it was about 4 MN / m 3/2 , which was comparable to the fracture toughness value of the alumina-based sintered body. Furthermore, a thickness of 2 mm, 10 × 10 mm was formed from the sintered body, with one main surface being covered with an yttrium fluoride layer.
A corner test piece was cut out, attached to a parallel plate RIE apparatus, and subjected to a plasma exposure test under the following conditions.

【0032】すなわち、フッ化炭素(CF4)ガスの流
量100cc/min、供給電力Ps/Pb=500W
/40W、イオン衝撃エネルギー88eV、プラズマ密
度1.7x1011atoms/cm、ガス圧4x1
33Pa(4mTorr)の条件でプラズマ曝露試験を
行ったところ、エッチングレート(オングストローム/
時間)は、300であった。この値は、アルミナ系焼結
体面にフッ化物層を堆積しなかった場合が約900であ
ったのに較べ1/3であり、約3倍の耐食性を示すこと
になる。
That is, the flow rate of the fluorocarbon (CF4) gas is 100 cc / min, and the supply power Ps / Pb = 500 W
/ 40 W, ion impact energy 88 eV, plasma density 1.7 × 10 11 atoms / cm 3 , gas pressure 4 × 1
When a plasma exposure test was performed under the conditions of 33 Pa (4 mTorr), the etching rate (angstrom / angstrom /
Time) was 300. This value is 1 / of the value obtained when the fluoride layer was not deposited on the surface of the alumina-based sintered body was about 900, indicating about three times the corrosion resistance.

【0033】上記においては、フッ化イットリウムをプ
ラズマ溶射したが、フッ化イットリウムの代わりに、フ
ッ化カルシウム、フッ化マグネシウム、フッ化バリウ
ム、フッ化イットリウム、フッ化スカンジウム、フッ化
ランタン、フッ化セシウムをそれぞれ用いた他は、上記
具体的な例示の場合と同様に、アルミナ系焼結体面に、
対応するフッ化物層を堆積・形成して、6種の耐プラズ
マ性部材を作製した。
In the above, yttrium fluoride was plasma sprayed, but instead of yttrium fluoride, calcium fluoride, magnesium fluoride, barium fluoride, yttrium fluoride, scandium fluoride, lanthanum fluoride, cesium fluoride Except that each was used, as in the case of the above specific example, on the alumina-based sintered body surface,
Corresponding fluoride layers were deposited and formed to produce six types of plasma resistant members.

【0034】また、上記フッ化カルシウム層などで被覆
した各燒結体から、10x10mm角の試験片をそれぞ
れ切り出し、破壊靱性をそれぞれ測定したところ、いず
れも4MN/m3/2程度であり、アルミナ系燒結体の
破壊靱性値に匹敵する値であった。さらに、上記燒結体
から、一主面がフッ化物層で被覆された形で、厚さ2m
m、10x10mm角の試験片をそれぞれ切り出し、平
行平板型RIE装置に取り付け、上記と同様の条件でプ
ラズマ曝露試験を行って、エッチングレート(オングス
トローム/時間)をそれぞれ求めた結果を表1に併せて
示す。この比較試験で耐食性では、フッ化カルシウム、
フッ化マグネシウム、フッ化バリウムが、特にすぐれて
いることが分かる。
A 10 × 10 mm square test piece was cut out from each of the sintered bodies coated with the calcium fluoride layer and the like, and the fracture toughness was measured. The results were all about 4 MN / m 3/2. The value was comparable to the fracture toughness value of the sintered body. Further, from the sintered body, one main surface is coated with a fluoride layer to have a thickness of 2 m.
Each of the test pieces having a size of 10 × 10 mm square was cut out, attached to a parallel plate type RIE apparatus, and subjected to a plasma exposure test under the same conditions as described above, and the etching rate (angstrom / hour) was determined. Show. In this comparative test, the corrosion resistance was calcium fluoride,
It turns out that magnesium fluoride and barium fluoride are particularly excellent.

【0035】[0035]

【表1】 [Table 1]

【0036】なお、実施例2〜7の各耐プラズマ性部材
の断面について、プラズマに曝す前の状態を電子顕微鏡
で観察・撮像したところ、表面全体が対応するフッ化物
の堆積による層で覆われたアルミナ系基材の耐プラズマ
性部材であることが確認された。また、これら各燒結体
は、表面が厚さ1〜10μm程度の緻密なフッ化物層で
被覆され、かつアルミナ系基材の平均結晶粒径が10〜
50μm程度であった。10μm以上のプラズマ溶射を
行えば、全体を十分な膜厚の溶射膜とすることができる
ので、過酷な条件であっても安心して使用できる。
When the cross section of each of the plasma-resistant members of Examples 2 to 7 was observed and imaged with an electron microscope before being exposed to plasma, the entire surface was covered with the corresponding layer of fluoride. It was confirmed that it was an alumina-based plasma resistant member. The surface of each of these sintered bodies is covered with a dense fluoride layer having a thickness of about 1 to 10 μm, and the average crystal grain size of the alumina base material is 10 to 10 μm.
It was about 50 μm. If plasma spraying of 10 μm or more is performed, the entire sprayed film can be formed with a sufficient film thickness, so that it can be used safely even under severe conditions.

【0037】本発明は、上記実施例に限定されるもので
なく、発明の趣旨を逸脱しない範囲でいろいろの変形を
採ることができる。たとえばセラミックス系基材は、ア
ルミナ系焼結体の代わりに、他のセラミックス系焼結体
でもよいし、さらに、燒結助剤の種類、それら添加成分
の組成比などは、耐プラズマ性部材の用途・使用目的に
応じて、適宜選択してもよい。また、フッ化物層の堆積
・形成ないし導入は、プラズマ溶射法によらず、スパッ
タリング法や蒸着法などで行っても同様の耐プラズマ性
部材が得られる。
The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the invention. For example, the ceramic-based substrate may be another ceramic-based sintered body instead of the alumina-based sintered body, and further, the type of the sintering aid, the composition ratio of these additional components, and the like may vary depending on the application of the plasma-resistant member. -It may be appropriately selected according to the purpose of use. Further, the same plasma resistant member can be obtained even if the deposition, formation or introduction of the fluoride layer is performed not by the plasma spraying method but by a sputtering method or an evaporation method.

【0038】[0038]

【発明の効果】請求項1ないし3の発明によれば、曲げ
強度や破壊靱性など機械的強度のすぐれているセラミッ
クス系燒結体を基材とする一方、プラズマに曝される表
面を耐プラズマ性のすぐれたフッ化物層が被覆した構成
となっている。したがって、洗浄操作などでの損傷・損
壊の発生が解消され、また、パーティクル汚染を生じる
恐れもなくなる。
According to the first to third aspects of the present invention, a ceramic-based sintered body having excellent mechanical strength such as bending strength and fracture toughness is used as a base material, while the surface exposed to plasma is made to have plasma resistance. The structure is covered with an excellent fluoride layer. Therefore, the occurrence of damage or breakage in a cleaning operation or the like is eliminated, and there is no possibility of causing particle contamination.

【0039】つまり、半導体製造装置ないし半導体の製
造コストアップを抑制防止する一方、成膜の質や精度な
どに悪影響を与えることなく、性能や信頼性の高い半導
体の製造・加工に効果的に寄与する耐プラズマ性部材を
提供できる。
That is, while suppressing an increase in the cost of manufacturing a semiconductor manufacturing apparatus or a semiconductor, it is possible to effectively contribute to the manufacturing and processing of a semiconductor having high performance and reliability without adversely affecting the quality and precision of film formation. Plasma resistant member can be provided.

【0040】請求項4ないし5の発明によれば、曲げ強
度や破壊靱性など機械的強度がすぐれ、かつ耐プラズマ
性もすぐれており、半導体の製造装置に適する耐プラズ
マ性部材を歩留まりよく、かつ量産的に提供できる。
According to the fourth and fifth aspects of the present invention, the mechanical strength such as bending strength and fracture toughness is excellent, and the plasma resistance is also excellent. It can be offered in mass production.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例に係る耐プラズマ性部材の概略構成を示
す断面図。
FIG. 1 is a cross-sectional view illustrating a schematic configuration of a plasma-resistant member according to an embodiment.

【図2】CVD装置の概略構成を示す断面図。FIG. 2 is a sectional view showing a schematic configuration of a CVD apparatus.

【符号の説明】[Explanation of symbols]

1……エッチング処理室 2……エッチングガス供給口 3……真空排気口 4……アンテナ 5……電磁石 6……永久磁石 7……半導体ウエハー 8……下部電極 9、11……マッチングネートワーク 10、12……高周波電源 13……アルミナ系基材 14……フッ化物 15……耐プラズマ性部材 DESCRIPTION OF SYMBOLS 1 ... Etching chamber 2 ... Etching gas supply port 3 ... Vacuum exhaust port 4 ... Antenna 5 ... Electromagnet 6 ... Permanent magnet 7 ... Semiconductor wafer 8 ... Lower electrode 9,11 ... Mating work 10, 12 high frequency power supply 13 alumina base material 14 fluoride 15 plasma resistant member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森田 敬司 神奈川県秦野市曾屋30番地 東芝セラミッ クス株式会社秦野事業所内 (72)発明者 市島 雅彦 神奈川県秦野市曾屋30番地 東芝セラミッ クス株式会社開発研究所内 (72)発明者 上野 宏子 神奈川県秦野市曾屋30番地 東芝セラミッ クス株式会社秦野事業所内 (72)発明者 齋藤 秀一 神奈川県横浜市磯子区新磯子町33番地 株 式会社東芝生産技術センター内 (72)発明者 青木 克明 神奈川県横浜市磯子区新磯子町33番地 株 式会社東芝生産技術センター内 (72)発明者 西村 絵里子 神奈川県横浜市磯子区新磯子町33番地 株 式会社東芝生産技術センター内 Fターム(参考) 4K029 AA07 BA42 BC01 CA01 CA05 5F004 AA15 AA16 BA20 BB13 BB29 5F045 AA08 AC00 BB15 EB03 EC05 EH08 EM09  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Keiji Morita 30 Soya, Hadano-shi, Kanagawa Toshiba Ceramics Co., Ltd. (72) Inventor Masahiko Ichijima 30 Soya, Hadano-shi, Kanagawa Toshiba Ceramics Co., Ltd. (72) Inventor Hiroko Ueno 30 Soya, Hadano-shi, Kanagawa Toshiba Ceramics Co., Ltd.Hadano Office (72) Inventor Shuichi Saito 33, Shinisogo-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Toshiba Corporation Inside the Technical Center (72) Katsuaki Aoki 33, Shinisogo-cho, Isogo-ku, Yokohama-shi, Kanagawa Prefecture Inside the Toshiba Production Technology Center (72) Eriko Nishimura 33, Shinisogo-cho, Isogo-ku, Yokohama-shi, Kanagawa Corporation F-term in Toshiba Production Technology Center (reference) 4K029 AA07 BA42 BC01 CA01 CA05 5F004 AA15 AA 16 BA20 BB13 BB29 5F045 AA08 AC00 BB15 EB03 EC05 EH08 EM09

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス系燒結体から成る基材と、
前記基材表面に形成された周期律表IIA族元素およびII
IA族元素の群から選ばれた少なくとも1種の元素を含
む厚さ1〜1000μmのフッ化物層とを有することを
特徴とする耐プラズマ性部材。
A substrate comprising a ceramic sintered body,
Group IIA elements and II of the periodic table formed on the substrate surface
A plasma-resistant member having a fluoride layer having a thickness of 1 to 1000 μm containing at least one element selected from the group of IA group elements.
【請求項2】 セラミックス燒結体がアルミナ質系燒結
体であることを特徴とする請求項1記載の耐プラズマ性
部材。
2. The plasma-resistant member according to claim 1, wherein the ceramic sintered body is an alumina-based sintered body.
【請求項3】 フッ化物層がフッ化イットリウムを主体
として形成れていることを特徴とする請求項1もしくは
請求項2記載の耐プラズマ性部材。
3. The plasma resistant member according to claim 1, wherein the fluoride layer is formed mainly of yttrium fluoride.
【請求項4】 セラミックス系焼結体の表面に、周期律
表IIA族元素のおよびIIIA族元素の群から選ばれた少
なくとも1種の元素を含むフッ化物を厚さ1〜1000
μmの膜厚に堆積させることを特徴とする耐プラズマ性
部材の製造方法。
4. A fluoride containing at least one element selected from the group consisting of a group IIA element and a group IIIA element of the periodic table having a thickness of 1 to 1000 on the surface of the ceramic sintered body.
A method for producing a plasma-resistant member, characterized in that the member is deposited to a thickness of μm.
【請求項5】 フッ化物膜の堆積手段がプラズマ溶射法
であることを特徴とする請求項4記載の耐プラズマ性部
材の製造方法。
5. The method according to claim 4, wherein the means for depositing the fluoride film is a plasma spraying method.
JP2000221844A 2000-07-24 2000-07-24 Plasma resistant element and its manufacturing method Pending JP2002037683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000221844A JP2002037683A (en) 2000-07-24 2000-07-24 Plasma resistant element and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000221844A JP2002037683A (en) 2000-07-24 2000-07-24 Plasma resistant element and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2002037683A true JP2002037683A (en) 2002-02-06

Family

ID=18716178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000221844A Pending JP2002037683A (en) 2000-07-24 2000-07-24 Plasma resistant element and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2002037683A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002087878A (en) * 2000-07-11 2002-03-27 Toshiba Ceramics Co Ltd Plasma resistant member and its manufacturing method
WO2002067311A1 (en) * 2001-02-22 2002-08-29 Tokyo Electron Limited Plasma processing system
JP2002293630A (en) * 2001-03-29 2002-10-09 Toshiba Ceramics Co Ltd Plasma resistant member and method of producing the same
JP2005521250A (en) * 2002-03-21 2005-07-14 ラム リサーチ コーポレーション Low contamination component for semiconductor processing equipment and method of manufacturing the same
JP2007063070A (en) * 2005-08-31 2007-03-15 Toshiba Ceramics Co Ltd Method for manufacturing plasma-resistant yttria sintered compact
EP1777317A1 (en) * 2005-10-21 2007-04-25 Shin-Etsu Chemical Co., Ltd. Corrosion resistant member
WO2013114942A1 (en) * 2012-02-03 2013-08-08 トーカロ株式会社 Method for blackening white fluoride spray coating, and fluoride spray coating covering member having black layer on surface
JP2013159812A (en) * 2012-02-03 2013-08-19 Tocalo Co Ltd Method for blackening white fluoride spray coating, and fluoride spray coating-covering member having black layer on surface
JP2013181238A (en) * 2012-03-05 2013-09-12 Tocalo Co Ltd Method of blackening white thermally sprayed fluoride film, and member coated with thermally sprayed fluoride film having black layer on surface thereof
JP2013181239A (en) * 2012-03-05 2013-09-12 Tocalo Co Ltd Method of blackening white thermally sprayed fluoride film, and member coated with thermally sprayed fluoride film having black layer on surface thereof
JP2014159637A (en) * 2007-08-02 2014-09-04 Applied Materials Inc Method of coating semiconductor processor with yttrium-containing protective coating
WO2022124044A1 (en) * 2020-12-10 2022-06-16 トーカロ株式会社 Thermal spray material, thermal spray film, method for forming thermal spray film, and component for plasma etching device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219574A (en) * 1999-01-27 2000-08-08 Taiheiyo Cement Corp Corrosion resistant member

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219574A (en) * 1999-01-27 2000-08-08 Taiheiyo Cement Corp Corrosion resistant member

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4688307B2 (en) * 2000-07-11 2011-05-25 コバレントマテリアル株式会社 Plasma-resistant member for semiconductor manufacturing equipment
JP2002087878A (en) * 2000-07-11 2002-03-27 Toshiba Ceramics Co Ltd Plasma resistant member and its manufacturing method
WO2002067311A1 (en) * 2001-02-22 2002-08-29 Tokyo Electron Limited Plasma processing system
JP2002252209A (en) * 2001-02-22 2002-09-06 Tokyo Electron Ltd Plasma etching apparatus
JP2002293630A (en) * 2001-03-29 2002-10-09 Toshiba Ceramics Co Ltd Plasma resistant member and method of producing the same
JP2005521250A (en) * 2002-03-21 2005-07-14 ラム リサーチ コーポレーション Low contamination component for semiconductor processing equipment and method of manufacturing the same
US8935990B2 (en) 2002-03-21 2015-01-20 Lam Research Corporation Low contamination components for semiconductor processing apparatus and methods for making components
US8318327B2 (en) 2002-03-21 2012-11-27 Lam Research Corporation Low contamination components for semiconductor processing apparatus and methods for making components
JP2010153881A (en) * 2002-03-21 2010-07-08 Lam Res Corp Low contamination component for semiconductor processing apparatus and method for making the same
JP2007063070A (en) * 2005-08-31 2007-03-15 Toshiba Ceramics Co Ltd Method for manufacturing plasma-resistant yttria sintered compact
JP2007115973A (en) * 2005-10-21 2007-05-10 Shin Etsu Chem Co Ltd Corrosion resistant member
EP1777317A1 (en) * 2005-10-21 2007-04-25 Shin-Etsu Chemical Co., Ltd. Corrosion resistant member
JP2014159637A (en) * 2007-08-02 2014-09-04 Applied Materials Inc Method of coating semiconductor processor with yttrium-containing protective coating
WO2013114942A1 (en) * 2012-02-03 2013-08-08 トーカロ株式会社 Method for blackening white fluoride spray coating, and fluoride spray coating covering member having black layer on surface
JP2013159812A (en) * 2012-02-03 2013-08-19 Tocalo Co Ltd Method for blackening white fluoride spray coating, and fluoride spray coating-covering member having black layer on surface
TWI496950B (en) * 2012-02-03 2015-08-21 Tocalo Co Ltd A blackening method of white fluorides thermal spray coating film and fluorides thermal spray coating film coated member having black layer on the surface
US9238863B2 (en) 2012-02-03 2016-01-19 Tocalo Co., Ltd. Method for blackening white fluoride spray coating, and fluoride spray coating covered member having a blackened layer on its surface
JP2013181238A (en) * 2012-03-05 2013-09-12 Tocalo Co Ltd Method of blackening white thermally sprayed fluoride film, and member coated with thermally sprayed fluoride film having black layer on surface thereof
JP2013181239A (en) * 2012-03-05 2013-09-12 Tocalo Co Ltd Method of blackening white thermally sprayed fluoride film, and member coated with thermally sprayed fluoride film having black layer on surface thereof
WO2022124044A1 (en) * 2020-12-10 2022-06-16 トーカロ株式会社 Thermal spray material, thermal spray film, method for forming thermal spray film, and component for plasma etching device

Similar Documents

Publication Publication Date Title
KR100848165B1 (en) Plasma resistant member
US6933254B2 (en) Plasma-resistant articles and production method thereof
TWI381415B (en) Yttria-coated ceramic components of semiconductor material processing apparatuses and methods of manufacturing the components
JP4688307B2 (en) Plasma-resistant member for semiconductor manufacturing equipment
JP2023089069A (en) Nanopowder, nanoceramic material and methods of making and use thereof
JP2008160097A (en) Electrostatic chuck and manufacturing method thereof, and substrate-treating device
JPH10236871A (en) Plasma resistant member
JP3967093B2 (en) Ceramic member and manufacturing method thereof
JP2002037683A (en) Plasma resistant element and its manufacturing method
JP2002068838A (en) Plasma resistant member and method for manufacturing the same
TW201733803A (en) Ceramic laminate
US11760694B2 (en) Alumina sintered body and manufacturing method therefor
JP2002293630A (en) Plasma resistant member and method of producing the same
JP2002068864A (en) Plasma resistant member and method of manufacturing for the same
JP7231367B2 (en) Alumina sintered body
JP2004107718A (en) Stacked body, thermal spray coating and production method for stacked body
JP2004059397A (en) Plasma resistant member
JP4623794B2 (en) Alumina corrosion resistant member and plasma apparatus
JP3784180B2 (en) Corrosion resistant material
KR20040016394A (en) Fabrication method of parts for the plasma processing equipments by slurry or sol processing and its parts
JP4544708B2 (en) Plasma-resistant member and method for producing the same
JP3971539B2 (en) Alumina plasma corrosion resistant material
US11731907B2 (en) Ceramic material with high thermal shock resistance and high erosion resistance
JP2008227190A (en) Electrostatic chuck, method of manufacturing the same, and substrate processing apparatus
JP7154912B2 (en) Alumina sintered body and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070509

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Effective date: 20070711

Free format text: JAPANESE INTERMEDIATE CODE: A712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A02 Decision of refusal

Effective date: 20101005

Free format text: JAPANESE INTERMEDIATE CODE: A02