JP2002252209A - Plasma etching apparatus - Google Patents

Plasma etching apparatus

Info

Publication number
JP2002252209A
JP2002252209A JP2001047278A JP2001047278A JP2002252209A JP 2002252209 A JP2002252209 A JP 2002252209A JP 2001047278 A JP2001047278 A JP 2001047278A JP 2001047278 A JP2001047278 A JP 2001047278A JP 2002252209 A JP2002252209 A JP 2002252209A
Authority
JP
Japan
Prior art keywords
plasma
resistant member
etching apparatus
alf
plasma etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001047278A
Other languages
Japanese (ja)
Other versions
JP2002252209A5 (en
Inventor
Masayuki Nagayama
将之 長山
Yasushi Mihashi
康至 三橋
Hiroyuki Nakayama
博之 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2001047278A priority Critical patent/JP2002252209A/en
Priority to PCT/JP2002/001526 priority patent/WO2002067311A1/en
Publication of JP2002252209A publication Critical patent/JP2002252209A/en
Publication of JP2002252209A5 publication Critical patent/JP2002252209A5/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32467Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/3255Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plasma etching apparatus equipped with plasma proof members that can further improve the durability. SOLUTION: Plasma proof members such as a baffle plate 12, an insulating ring 13 and first and second bellows covers 14 and 15 are formed using yttrium fluoride (YF3 ).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はプラズマエッチング
装置に関し、より詳しくは半導体ウエハ等の被処理物に
ドライエッチング処理を施して該被処理物に微細加工を
行うプラズマエッチング装置に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a plasma etching apparatus, and more particularly, to a plasma etching apparatus for subjecting an object such as a semiconductor wafer to a dry etching process and performing fine processing on the object.

【0002】[0002]

【従来の技術】従来より、半導体製造工程ではプラズマ
エッチング装置を使用することにより、半導体ウエハ等
の被処理物に微細加工を施すことが行われている。
2. Description of the Related Art Conventionally, in a semiconductor manufacturing process, an object to be processed such as a semiconductor wafer is finely processed by using a plasma etching apparatus.

【0003】すなわち、この種のプラズマエッチング装
置では、気密な処理室内に上部電極と下部電極とを対向
状に配設すると共に、上部電極及び下部電極の周辺に耐
プラズマ性部材を配設し、被処理物が載置された下部電
極及び上部電極に高周波電力を印加して下部電極と上部
電極との間にグロー放電を生じさせると共に処理室内に
処理ガスを供給し、これにより前記処理ガスを上部電極
及び下部電極間に閉じ込めて高密度プラズマを生成し、
該高密度プラズマにより被処理物にエッチング加工を施
している。また、処理ガスとしては、従来より、CF
(フロロカーボン)系ガスが広く使用されている。
That is, in this type of plasma etching apparatus, an upper electrode and a lower electrode are disposed in an airtight processing chamber so as to face each other, and a plasma-resistant member is disposed around the upper electrode and the lower electrode. A high-frequency power is applied to the lower electrode and the upper electrode on which the object is placed to generate a glow discharge between the lower electrode and the upper electrode, and a processing gas is supplied into the processing chamber. Generates high density plasma by confining between upper electrode and lower electrode,
The object to be processed is etched by the high-density plasma. As a processing gas, conventionally, CF
(Fluorocarbon) -based gases are widely used.

【0004】前記耐プラズマ性部材に使用される材料と
しては、従来は、表面に酸化処理が施されたAl(アル
ミアルマイト)やAl23(アルミナ)製の焼結セラミ
ックスが使用されていたが、斯かるAl成分を含有した
材料は、上記CF系ガスと反応してAlF3(フッ化ア
ルミニウム)を生成し、斯かるAlF3が固体微粒子と
なって処理室内を飛散するため、該固体微粒子が前記被
処理物の表面に固着して所謂Al汚染を招来するという
欠点があった。
As a material used for the plasma-resistant member, conventionally, sintered ceramics made of Al (aluminum alumite) or Al 2 O 3 (alumina) whose surface has been subjected to an oxidation treatment have been used. However, such a material containing an Al component reacts with the CF-based gas to generate AlF 3 (aluminum fluoride), and the AlF 3 becomes solid fine particles and scatters in the processing chamber. There is a drawback that the fine particles adhere to the surface of the object to be treated and cause so-called Al contamination.

【0005】そこで、最近では、耐プラズマ性に優れた
酸化イットリウム(Y23)をAl等の素材表面に溶射
したY23溶射材が採用されつつある。
Therefore, recently, a Y 2 O 3 sprayed material in which yttrium oxide (Y 2 O 3 ) having excellent plasma resistance is sprayed on the surface of a material such as Al has been adopted.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記プ
ラズマエッチング装置では、Y23溶射材を耐プラズマ
性部材として使用した場合であっても、Y23がCF系
ガスと反応するため、その表層面がフッ化してフッ化イ
ットリウム(YF3)を生成し、このYF3が固体微粒子
となってプラズマ雰囲気中を飛散する。すなわち、Y2
3溶射材を耐プラズマ性部材として使用した場合は被
処理物へのAl汚染は回避することができるものの、C
F系ガスとの反応生成物であるYF3が固体微粒子とな
ってプラズマ雰囲気中を飛散し、その結果、Y23溶射
材である耐プラズマ性部材の表面が削り取られることと
なって該耐プラズマ性部材が容易に消耗してしまうとい
う問題点があった。
[0007] However, in the plasma etching apparatus, even when using Y 2 O 3 thermal spray material as a plasma resistant member, since Y 2 O 3 reacts with CF gas, The surface layer is fluorinated to generate yttrium fluoride (YF 3 ), and the YF 3 becomes solid fine particles and scatters in the plasma atmosphere. That is, Y 2
When the O 3 sprayed material is used as a plasma-resistant member, although the Al contamination on the workpiece can be avoided,
Scattered through the plasma atmosphere YF 3 is a reaction product of an F-based gas is a solid particulate, as a result, the become the surface of the plasma-resistant member is a Y 2 O 3 thermal spraying material is scraped off There is a problem that the plasma resistant member is easily consumed.

【0007】本発明はこのような問題点に鑑みなされた
ものであって、より一層の耐久性を向上させることので
きる耐プラズマ性部材を具備したプラズマエッチング装
置を提供することを目的とする。
[0007] The present invention has been made in view of the above problems, and has as its object to provide a plasma etching apparatus provided with a plasma-resistant member capable of further improving the durability.

【0008】[0008]

【課題を解決するための手段】耐プラズマ性部材の耐久
性向上を図るためには、当該耐プラズマ性部材から飛散
し得る固体微粒子の発生を抑制する必要があり、そのた
めには処理ガスであるCF系ガスとの間で化学反応が生
じ難く、CF系ガスに対し化学的に安定した材料種を選
定する必要がある。
In order to improve the durability of the plasma-resistant member, it is necessary to suppress the generation of solid fine particles that can be scattered from the plasma-resistant member. It is necessary to select a material type that does not easily cause a chemical reaction with the CF-based gas and is chemically stable with respect to the CF-based gas.

【0009】そして、このような観点からは、例えばA
lF3自体を耐プラズマ性部材の部品材料として選定す
ることが考えられる。すなわち、AlF3は、上述した
ようにCF系ガスとアルミアルマイトやAl23焼結体
との反応生成物であることから、アルミアルマイトやA
23焼結体に比べて化学的に安定した物質と考えら
れ、したがって、AlF3自体を直接耐プラズマ性部材
として使用することにより固体微粒子を効果的に低減す
ることができると考えられる。
From such a viewpoint, for example, A
It is conceivable to select lF 3 itself as part material plasma resistance member. That is, since AlF 3 is a reaction product between the CF-based gas and aluminum alumite or Al 2 O 3 sintered body as described above, aluminum alumite or A
compared to l 2 O 3 sintered body is considered chemically stable material, therefore, is considered possible to effectively reduce the fine solid particles by the use of AlF 3 itself as a direct plasma-resistant member .

【0010】しかしながら、本発明者らの実験結果によ
り、AlF3は蒸気圧が高く、プラズマエッチング装置
の運転条件によってはAlF3の蒸気圧が処理室内の圧
力に近付き、その結果AlF3が固体微粒子として脱落
し、プラズマ雰囲気中を飛散し易くなるということが判
明した。
[0010] However, the experimental results of the present inventors, AlF 3 has a high vapor pressure, the operating conditions of the plasma etching apparatus approaches the pressure in the processing chamber vapor pressure of AlF 3, as a result AlF 3 solid particles It was found that it was easy to scatter in the plasma atmosphere.

【0011】そこで、本発明者らは、AlF3よりも蒸
気圧が低く、しかもCF系ガスに対し化学的に安定した
材料を得るべく鋭意研究したところ、YF3が斯かる条
件に適合し、該YF3を耐プラズマ性部材の部品材料と
して使用することにより、表層面でのフッ化反応を抑制
すると共に、プラズマ雰囲気中でのフッ化物の飛散を低
減することができ、これにより耐プラズマ性部材の耐久
性向上を図ることができるという知見を得た。
The present inventors have conducted intensive studies to obtain a material which has a lower vapor pressure than AlF 3 and is chemically stable with respect to a CF-based gas, and YF 3 conforms to such conditions. By using YF 3 as a component material of the plasma-resistant member, it is possible to suppress the fluorination reaction on the surface layer and to reduce the scattering of fluoride in the plasma atmosphere. It has been found that the durability of the member can be improved.

【0012】本発明はこのような知見に基づきなされた
ものであって、本発明に係るプラズマエッチング装置
は、処理室内に配設されている耐プラズマ性部材は、少
なくとも表面がフッ化イットリウムで形成されているこ
とを特徴としている。
The present invention has been made based on such knowledge. In the plasma etching apparatus according to the present invention, at least the surface of the plasma-resistant member provided in the processing chamber is made of yttrium fluoride. It is characterized by being.

【0013】上記構成によれば、耐プラズマ性部材をフ
ッ化イットリウム(YF3)で形成しているので、固体
微粒子の発生が抑制され、処理室内の耐プラズマ性部材
の消耗度合を低減することができ、耐久性の向上を図る
ことができる。
According to the above structure, since the plasma-resistant member is formed of yttrium fluoride (YF 3 ), the generation of solid fine particles is suppressed, and the degree of wear of the plasma-resistant member in the processing chamber is reduced. And durability can be improved.

【0014】また、本発明は、素材表面にフッ化イット
リウムを溶射して耐プラズマ性部材を形成してもよく、
また前記耐プラズマ性部材をフッ化イットリウムの焼結
体で形成するのも好ましい。
In the present invention, a plasma-resistant member may be formed by spraying yttrium fluoride on the surface of the material.
It is also preferable that the plasma resistant member is formed of a sintered body of yttrium fluoride.

【0015】[0015]

【発明の実施の形態】次に、本発明の実施の形態を詳説
する。
Next, embodiments of the present invention will be described in detail.

【0016】図1は本発明に係るプラズマエッチング装
置の内部構造図であって、装置本体1には導電性材料で
形成された下部電極2が配設されている。該下部電極2
の上面には被処理物としての半導体ウエハ3を吸着保持
する静電チャック4が載設されると共に、該下部電極2
の下方には矢印A方向に昇降可能な昇降軸5が配設さ
れ、下部電極2は該昇降軸5に支持されている。また、
昇降軸5は整合器6を介して高周波電源7に接続されて
いる。
FIG. 1 is a diagram showing the internal structure of a plasma etching apparatus according to the present invention. A lower electrode 2 made of a conductive material is provided on a main body 1 of the apparatus. The lower electrode 2
An electrostatic chuck 4 for attracting and holding a semiconductor wafer 3 as an object to be processed is mounted on the upper surface of the lower electrode 2.
The lower electrode 2 is supported by the elevating shaft 5 which can be moved up and down in the direction of arrow A. Also,
The elevating shaft 5 is connected to a high-frequency power source 7 via a matching unit 6.

【0017】また、前記下部電極5の底面及び側面は電
極保護部材8で保護されると共に、該電極保護部材8の
側面及び底面は導電性部材9で覆われ、さらに導電性部
材9と装置本体1の底面との間にはステンレス等の導電
性材料で形成された伸縮自在なベローズ10が着座され
ている。尚、電極保護部材8の下面には酸化処理された
Al等の導電性材料からなる管状部材11が設けられ、
前記昇降軸5は前記管状部材11に貫挿されている。
The bottom and side surfaces of the lower electrode 5 are protected by an electrode protection member 8, and the side and bottom surfaces of the electrode protection member 8 are covered by a conductive member 9. A stretchable bellows 10 made of a conductive material such as stainless steel is seated between the bottom surface of the bellows 1 and the bottom surface of the bellows. A tubular member 11 made of a conductive material such as oxidized Al is provided on the lower surface of the electrode protection member 8.
The elevating shaft 5 is inserted through the tubular member 11.

【0018】また、電極保護部材8の側面にはバッフル
板12が鍔状に固着され、さらに、電極保護部材8の端
面と静電チャック4の側面との間には絶縁リング13が
介装されている。また、バッフル板12の下面からは第
1のベローズカバー14が垂設され、さらに装置本体1
の底面からは第1のベローズカバー14と一部が重なり
合うように第2のベローズカバー15が立設されてい
る。
A baffle plate 12 is fixed to the side surface of the electrode protection member 8 in a flange shape, and an insulating ring 13 is interposed between the end surface of the electrode protection member 8 and the side surface of the electrostatic chuck 4. ing. Further, a first bellows cover 14 is vertically provided from the lower surface of the baffle plate 12, and
A second bellows cover 15 is erected from the bottom surface of the first bellows so as to partially overlap the first bellows cover 14.

【0019】また、装置本体1の上方には導電性材料で
形成された上部電極16が前記下部電極2と対向状に配
設されている。該上部電極16には多数のガス吐出孔1
7が貫設され、装置本体1の上面に設けられたガス供給
口18からCF系ガスを含む処理ガスがガス吐出孔17
を介して処理室22に供給される。すなわち、ガス供給
口18は流量調整弁19及び開閉弁20を介してガス供
給源21に接続され、ガス供給源21からの処理ガスが
開閉弁20及び流量調整弁19を介してガス供給口18
に供給され、処理ガスはガス吐出孔17から吐出されて
処理室22に導入される。
An upper electrode 16 made of a conductive material is disposed above the apparatus main body 1 so as to face the lower electrode 2. The upper electrode 16 has many gas discharge holes 1.
7, and a processing gas containing a CF-based gas is supplied from a gas supply port 18 provided on the upper surface of the apparatus body 1 to a gas discharge hole 17.
Is supplied to the processing chamber 22 via the That is, the gas supply port 18 is connected to the gas supply source 21 via the flow control valve 19 and the opening / closing valve 20, and the processing gas from the gas supply source 21 is supplied to the gas supply port 18 via the opening / closing valve 20 and the flow control valve 19.
The processing gas is discharged from the gas discharge holes 17 and introduced into the processing chamber 22.

【0020】また、装置本体1の底部には排出口23が
貫設されると共に、該排出口23は真空ポンプ24に接
続され、さらに装置本体1の下方側面には被処理物搬送
口25が貫設され、半導体ウエハ3の搬入・搬出を行
う。
A discharge port 23 is provided through the bottom of the apparatus main body 1, and the discharge port 23 is connected to a vacuum pump 24, and a workpiece transfer port 25 is provided on a lower side surface of the apparatus main body 1. The semiconductor wafer 3 is carried in and out.

【0021】そして、装置本体1の外周には被処理物で
ある半導体ウエハ3に対し磁場が水平となるように永久
磁石26が配設されている。
A permanent magnet 26 is provided on the outer periphery of the apparatus main body 1 so that the magnetic field is horizontal with respect to the semiconductor wafer 3 as an object to be processed.

【0022】このように構成されたプラズマエッチング
装置においては、不図示の駆動機構により昇降軸5を矢
印A方向に移動させて半導体ウエハ3の位置調整を行っ
た後、該昇降軸5は給電棒としての作用をなし、高周波
電源7から、例えば、27.12MHzの高周波電力が
下部電極2に印加されると、グロー放電が生じて電場と
磁場とが直交する直交磁界が形成される。
In the plasma etching apparatus having the above-described configuration, the position of the semiconductor wafer 3 is adjusted by moving the elevating shaft 5 in the direction of arrow A by a driving mechanism (not shown), and then the elevating shaft 5 is connected to the power supply rod. When high-frequency power of, for example, 27.12 MHz is applied to the lower electrode 2 from the high-frequency power supply 7, a glow discharge occurs, and an orthogonal magnetic field in which an electric field and a magnetic field are orthogonal to each other is formed.

【0023】そして、処理室22が真空ポンプ24によ
り所定の真空雰囲気に減圧され、ガス供給源21からの
処理ガスが処理室22に供給されると、該処理ガスがプ
ラズマ化し、マスキングされている半導体ウエハ3に所
望の微細加工が施される。
When the pressure in the processing chamber 22 is reduced to a predetermined vacuum atmosphere by the vacuum pump 24 and the processing gas from the gas supply source 21 is supplied to the processing chamber 22, the processing gas is turned into plasma and masked. Desired fine processing is performed on the semiconductor wafer 3.

【0024】しかして、本実施の形態では、絶縁リング
13、電極保護部材8、バッフル板12、及び第1及び
第2のベローズカバー14、15等、耐プラズマ性能が
要求される部材(耐プラズマ性部材)が、YF3で形成
されている。
In the present embodiment, however, members requiring plasma resistance (such as plasma resistance) such as the insulating ring 13, the electrode protection member 8, the baffle plate 12, and the first and second bellows covers 14 and 15 are provided. ) Is formed of YF 3 .

【0025】すなわち、耐プラズマ性部材の消耗度合を
低減して耐久性向上を図るためには耐プラズマ性部材か
ら飛散する固体微粒子の発生を抑制する必要があり、そ
のためには処理ガスであるCF系ガスとの間で化学反応
の起こり難い材料を耐プラズマ性部材の部品材料に選定
する必要がある。
That is, in order to reduce the degree of wear of the plasma-resistant member and improve the durability, it is necessary to suppress the generation of solid fine particles scattered from the plasma-resistant member. It is necessary to select a material that does not easily cause a chemical reaction with the system gas as a component material of the plasma-resistant member.

【0026】そして、このような観点からは、例えばA
lF3自体を耐プラズマ性部材の部品材料として選定す
ることが考えられる。すなわち、従来より、耐プラズマ
性部材としてアルミアルマイトやAl23焼結体が使用
されていたが、これらアルミアルマイトやAl23焼結
体とCF系ガスとが反応することにより、AlF3が生
成される。すなわち、AlF3は、CF系ガスとアルミ
アルマイトやAl23焼結体との反応生成物であること
から、アルミアルマイトやAl23焼結体に比べCF系
ガスに対し化学的に安定した物質と考えられ、したがっ
て、AlF3自体を直接耐プラズマ性部材として使用す
ることにより固体微粒子を効果的に低減することができ
ると考えられる。
From such a viewpoint, for example, A
It is conceivable to select lF 3 itself as part material plasma resistance member. That is, conventionally, aluminum alumite or Al 2 O 3 sintered body has been used as a plasma-resistant member, but the aluminum alumite or Al 2 O 3 sintered body reacts with the CF-based gas to form an AlF 3 is generated. That, AlF 3, since the reaction product of a CF-based gas and aluminum anodized, Al 2 O 3, or the sintered body, to CF gas compared to aluminum anodized, Al 2 O 3, or the sintered body chemically It is considered to be a stable substance. Therefore, it is considered that solid fine particles can be effectively reduced by directly using AlF 3 as a plasma-resistant member.

【0027】しかしながら、本発明者らの実験結果によ
り、AlF3は蒸気圧が高く、プラズマエッチング装置
の運転条件によってはAlF3は蒸気圧が処理室内の圧
力に近付き、その結果AlF3が固体微粒子として脱落
し、プラズマ雰囲気中を飛散し易くなるということが判
明した。
[0027] However, the experimental results of the present inventors, AlF 3 has a high vapor pressure, the operating conditions of the plasma etching apparatus AlF 3 approaches the pressure in the processing chamber vapor pressure, resulting AlF 3 solid particles It was found that it was easy to scatter in the plasma atmosphere.

【0028】一方、YF3も、AlF3と略同様、Y23
溶射材を耐プラズマ性部材として使用した場合にY23
とCF系ガスとの間で生成される反応生成物であり、し
たがってYF3はY23に比べて化学的に安定した材料
であるが、YF3はAlF3よりも蒸気圧が低く、したが
って処理室内の圧力との圧力差がAlF3の場合に比べ
て大きいため、結晶粒子がその表層面から脱落し難く、
固体微粒子となってプラズマ雰囲気中を飛散するのを抑
制することができることが判明した。
On the other hand, YF 3 is also substantially the same as AlF 3, Y 2 O 3
When the sprayed material is used as a plasma resistant member, Y 2 O 3
YF 3 is a chemically stable material as compared with Y 2 O 3 , but YF 3 has a lower vapor pressure than AlF 3 , Therefore, since the pressure difference from the pressure in the processing chamber is larger than that in the case of AlF 3 , the crystal particles are less likely to fall from the surface layer,
It has been found that it is possible to suppress the particles from being scattered in the plasma atmosphere as solid fine particles.

【0029】表1はYF3とAlF3と室温(20℃)、
100℃、200℃における各蒸気圧を示している。
Table 1 shows that YF 3 , AlF 3 and room temperature (20 ° C.)
Each vapor pressure at 100 ° C. and 200 ° C. is shown.

【0030】[0030]

【表1】 [Table 1]

【0031】この表1から明らかなようにAlF3の蒸
気圧はYF3の蒸気圧に比べて高く、運転条件によって
は処理室22の圧力(4〜5×10-2Pa)に近付き、
このためAlF3が表層部から脱落して飛散し易くな
る。換言すると、YF3の蒸気圧はAlF3の蒸気圧に比
べて低く、処理室22との圧力差が大きいため、YF3
はAlF3に比べて固体微粒子の発生が抑制され、その
結果固体微粒子のプラズマ雰囲気中での飛散を低減する
ことができる。
As is apparent from Table 1, the vapor pressure of AlF 3 is higher than that of YF 3 , and approaches the pressure of the processing chamber 22 (4 to 5 × 10 -2 Pa) depending on the operating conditions.
For this reason, AlF 3 easily falls off the surface layer and scatters. In other words, since the vapor pressure of YF 3 is lower than the vapor pressure of AlF 3 and the pressure difference with the processing chamber 22 is large, YF 3
As compared with AlF 3 , generation of solid fine particles is suppressed, and as a result, scattering of solid fine particles in a plasma atmosphere can be reduced.

【0032】そこで、本実施の形態では、耐プラズマ性
部材の部品材料として、AlF3に比べて蒸気圧が低
く、またY23よりも化学的に安定したYF3を使用す
ることとし、耐プラズマ性部材の消耗を極力回避して耐
久性向上を図っている。
Therefore, in the present embodiment, YF 3, which has a lower vapor pressure than AlF 3 and is more chemically stable than Y 2 O 3 , is used as a component material of the plasma-resistant member. The durability of the plasma-resistant member is reduced by minimizing wear.

【0033】このように本実施の形態では、耐プラズマ
性部材をYF3で形成しているので、固体微粒子の発生
を低減させることができ、耐プラズマ性部材の消耗度合
をより一層抑制することができ、更なる耐久性向上を図
ることができる。
As described above, in this embodiment, since the plasma-resistant member is formed of YF 3 , the generation of solid fine particles can be reduced, and the degree of wear of the plasma-resistant member can be further suppressed. Thus, the durability can be further improved.

【0034】尚、本発明は上記実施の形態に限定される
ものではない。上述した耐プラズマ性部材は、少なくと
も表層面がYF3で形成されていればプラズマ雰囲気中
での固体微粒子の発生を抑制することができ、所期の目
的を達成することができる。したがって、耐プラズマ性
部材は、Al等の素材表面にYF3を溶射したYF3溶射
品でもよく、或いはYF3の焼結体で形成してもよい。
The present invention is not limited to the above embodiment. In the above-described plasma resistant member, if at least the surface layer is formed of YF 3 , the generation of solid fine particles in a plasma atmosphere can be suppressed, and the intended purpose can be achieved. Therefore, the plasma resistant member may be a YF 3 sprayed product in which YF 3 is sprayed on the surface of a material such as Al, or may be formed of a sintered body of YF 3 .

【0035】また、上記実施の形態では装置本体1の外
周に永久磁石26を配設した磁場アシスト方式のプラズ
マエッチング装置を例に説明したが、他の方式、例え
ば、永久磁石26を設ける代わりに、上部電極及び下部
電極の双方に高周波電力を印加してプラズマを発生させ
るイオンアシスト方式のプラズマエッチング装置につい
ても同様に適用することができるのはいうまでもない。
In the above-described embodiment, the magnetic field assist type plasma etching apparatus in which the permanent magnet 26 is disposed on the outer periphery of the apparatus body 1 has been described as an example. However, other methods, for example, instead of providing the permanent magnet 26, Needless to say, the present invention can be similarly applied to an ion assist type plasma etching apparatus that generates plasma by applying high frequency power to both the upper electrode and the lower electrode.

【0036】[0036]

【実施例】次に、本発明の実施例を具体的に説明する。Next, embodiments of the present invention will be described specifically.

【0037】〔第1の実施例〕本発明者らは、Y2Al5
12(イットリウム−アルミニウム−ガーネット;以
下、「YAG」という)及び焼結助剤としてY(イット
リウム)を添加したSi 34焼結体(以下、単に「Si
34」という)を試験片とし、高周波電力1400W、
処理室内の圧力5.3Pa(4.0×10-2Torr)の
下、CF4ガスを処理室に供給して前記試験片にプラズ
マ照射を行い、プラズマ照射前後の表面組成をX線光電
子分光法で測定した。
[First Embodiment] The present inventors consider that YTwoAlFive
O12(Yttrium-aluminum-garnet; hereinafter
Below, referred to as “YAG”) and Y (it) as a sintering aid.
(Li) -added Si ThreeNFourA sintered body (hereinafter simply referred to as “Si
ThreeNFour") As a test piece, a high-frequency power of 1400 W,
The pressure in the processing chamber is 5.3 Pa (4.0 × 10-2Torr)
Bottom, CFFourGas is supplied to the processing chamber and plasma is added to the test piece.
Irradiation and surface composition before and after plasma irradiation
Measured by proton spectroscopy.

【0038】表2はYAGのプラズマ照射前後の表面元
素の組成比を示し、表3はSi34のプラスマ照射前後
の表面元素の組成比を示している。
Table 2 shows the composition ratio of the surface elements before and after YAG plasma irradiation, and Table 3 shows the composition ratio of the surface elements before and after plasma irradiation of Si 3 N 4 .

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【表3】 [Table 3]

【0041】表2から明らかなように、プラスマ照射前
後において、Al成分は16%から12%に減少してい
るのに対し、Y成分は12%から20%に増加し、F成
分は2%から47%に増加している。
As is apparent from Table 2, before and after plasma irradiation, the Al component decreased from 16% to 12%, the Y component increased from 12% to 20%, and the F component increased by 2%. To 47%.

【0042】すなわち、AlF3はYF3に比べて蒸気圧
が高く処理室内の圧力との圧力差が小さくなり、その結
果表層面のAlF3が固体微粒子となって飛散し、Al
成分の減少を招いている。
That is, AlF 3 has a higher vapor pressure than YF 3 and a smaller pressure difference from the pressure in the processing chamber. As a result, AlF 3 on the surface layer scatters as solid fine particles, and AlF 3 scatters.
This leads to a decrease in components.

【0043】これに対し、YF3はAlF3に比べて蒸気
圧が低く、処理室内との圧力差も十分にあるため、表層
面のYF3は固体微粒子として飛散することなく残存
し、その結果、Y成分及びF成分はプラズマ照射後にお
いて増加している。
On the other hand, since YF 3 has a lower vapor pressure than AlF 3 and a sufficient pressure difference from the processing chamber, YF 3 on the surface layer remains without scattering as solid fine particles. , Y component and F component increase after plasma irradiation.

【0044】また、表3においてもプラズマ照射前後で
Y成分は2%から8%に増加しており、F成分も8%か
ら46%に増加しており、YF3が試験片の表層面から
脱落することなく残存していることが分かる。
Also in Table 3, before and after the plasma irradiation, the Y component increased from 2% to 8%, the F component also increased from 8% to 46%, and YF 3 increased from the surface of the test piece. It can be seen that it remains without falling off.

【0045】すなわち、YF3の蒸気圧と処理室の圧力
との間には十分な圧力差があり、YF3はプラズマ雰囲
気中を固体微粒子となって飛散することなく試験片の表
層面に残存していることが確認された。
That is, there is a sufficient pressure difference between the vapor pressure of YF 3 and the pressure of the processing chamber, and YF 3 remains on the surface of the test piece without being scattered as solid fine particles in the plasma atmosphere. It was confirmed that.

【0046】〔第2の実施例〕本発明者らは、YF3
23、及びSiO2の3種類の各材料について、縦2
0mm、横20mm、厚さ2mmの試験片を作製し、図
2に示すように、該試験片の外周部30をポリイミドフ
ィルム(デュポン社、登録商標「カプトン」)でマスク
し、中央部31に縦10mm、横10mmの照射面を設
け、下記の放電条件でもってプラズマを照射し、表面粗
度計でX軸方向及びY軸方向の削れ量を計測した。 〔放電条件〕 高周波電力:1400W 電源周波数:27.12MHz 処理室の圧力:5.32Pa(40mTorr) 反応ガス種:CF4 /Ar/O2 運転時間:20時間 表4は測定結果を示し、図3は各種試験片の削れ量の平
均値を棒グラフで示している。
[Second Embodiment] The present inventors have proposed YF 3 ,
For each of the three types of materials Y 2 O 3 and SiO 2 ,
A test piece having a thickness of 0 mm, a width of 20 mm, and a thickness of 2 mm was prepared. As shown in FIG. 2, an outer peripheral portion 30 of the test piece was masked with a polyimide film (Dupont, registered trademark “Kapton”). An irradiation surface having a length of 10 mm and a width of 10 mm was provided, plasma was irradiated under the following discharge conditions, and the shaving amount in the X-axis direction and the Y-axis direction was measured with a surface roughness meter. [Discharge conditions] High-frequency power: 1400 W Power supply frequency: 27.12 MHz Processing chamber pressure: 5.32 Pa (40 mTorr) Reactive gas type: CF 4 / Ar / O 2 Operating time: 20 hours Table 4 shows the measurement results, and FIG. 3 shows a bar graph of the average value of the amount of shaving of each test piece.

【0047】[0047]

【表4】 [Table 4]

【0048】この表4及び図3から明らかなように、S
iO2は耐プラズマ性に劣るため削れ量が大きいのに対
し、YF3は、耐プラズマ性に優れているとされるY2
3と同等以上の耐プラズマ性を有しており、削れ量も少
なく耐久性に優れていることが確認された。
As is apparent from Table 4 and FIG.
While iO 2 is inferior in plasma resistance, the shaving amount is large, whereas YF 3 is Y 2 O, which is considered to have excellent plasma resistance.
It was confirmed that it had plasma resistance equal to or higher than that of 3, and had a small amount of scraping and excellent durability.

【0049】[0049]

【発明の効果】以上詳述したように本発明に係るプラズ
マエッチング装置は、被処理物にドライエッチング処理
を施して該被処理物の表面を微細加工するプラズマエッ
チング装置において、装置本体の内部に配設されている
耐プラズマ性部材は、少なくとも表面がフッ化イットリ
ウムで形成されているので、耐プラズマ性部材の表面は
処理ガス(CF系ガス)に対して化学的に安定したもの
となり、固体微粒子の飛散が抑制され、耐プラズマ性部
材の消耗を低減させることができ耐久性向上を図ること
ができる。
As described above in detail, the plasma etching apparatus according to the present invention is a plasma etching apparatus which performs dry etching on an object to be processed to finely process the surface of the object. Since at least the surface of the provided plasma-resistant member is formed of yttrium fluoride, the surface of the plasma-resistant member becomes chemically stable with respect to the processing gas (CF-based gas), The scattering of the fine particles is suppressed, the consumption of the plasma resistant member can be reduced, and the durability can be improved.

【0050】また、前記耐プラズマ性部材は、素材表面
にフッ化イットリウムを溶射して形成することができ、
またフッ化イットリウムの焼結体で形成することもで
き、いずれの方法で形成しても上記効果を容易に奏する
ことができる。
The plasma-resistant member can be formed by spraying yttrium fluoride on the surface of the material.
Further, it can be formed of a sintered body of yttrium fluoride, and the above-described effects can be easily obtained by any method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るプラズマエッチング装置の一実施
の形態を示す内部構造図である。
FIG. 1 is an internal structural view showing one embodiment of a plasma etching apparatus according to the present invention.

【図2】本発明の実施例の削れ量の測定方法を説明する
ための図である。
FIG. 2 is a diagram for explaining a method of measuring a shaving amount according to an embodiment of the present invention.

【図3】本発明実施例の削れ量を比較例と共に示した棒
グラフである。
FIG. 3 is a bar graph showing the shaving amount of an example of the present invention together with a comparative example.

【符号の説明】[Explanation of symbols]

3 半導体ウエハ(被処理物) 12 バッフル板(耐プラズマ性部材) 13 絶縁リング(耐プラズマ性部材) 14 第1のベローズカバー(耐プラズマ性部材) 15 第2のベローズカバー(耐プラズマ性部材) Reference Signs List 3 semiconductor wafer (object to be processed) 12 baffle plate (plasma resistant member) 13 insulating ring (plasma resistant member) 14 first bellows cover (plasma resistant member) 15 second bellows cover (plasma resistant member)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中山 博之 山梨県韮崎市藤井町北下条2381番地の1 東京エレクトロン山梨株式会社内 Fターム(参考) 4K031 AA08 AB02 AB09 CB50 5F004 AA15 BA04 BB28 BB29 CA05 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hiroyuki Nakayama 2381, Kita-Shimojo, Fujii-machi, Nirasaki-shi, Yamanashi Prefecture F-term in Tokyo Electron Yamanashi Co., Ltd. 4K031 AA08 AB02 AB09 CB50 5F004 AA15 BA04 BB28 BB29 CA05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被処理物にドライエッチング処理を施し
て該被処理物の表面を微細加工するプラズマエッチング
装置において、 処理室内に配設されている耐プラズマ性部材は、少なく
とも表面がフッ化イットリウムで形成されていることを
特徴とするプラズマエッチング装置。
1. A plasma etching apparatus for subjecting an object to be subjected to dry etching to finely process the surface of the object, wherein at least the surface of the plasma-resistant member provided in the processing chamber has a surface of yttrium fluoride. A plasma etching apparatus characterized by being formed by:
【請求項2】 前記耐プラズマ性部材は、素材表面にフ
ッ化イットリウムが溶射されて形成されていることを特
徴とする請求項1記載のプラズマエッチング装置。
2. The plasma etching apparatus according to claim 1, wherein the plasma-resistant member is formed by spraying yttrium fluoride on a surface of a material.
【請求項3】 前記耐プラズマ性部材は、フッ化イット
リウムの焼結体で形成されていることを特徴とする請求
項1記載のプラズマエッチング装置。
3. The plasma etching apparatus according to claim 1, wherein the plasma-resistant member is formed of a sintered body of yttrium fluoride.
JP2001047278A 2001-02-22 2001-02-22 Plasma etching apparatus Pending JP2002252209A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001047278A JP2002252209A (en) 2001-02-22 2001-02-22 Plasma etching apparatus
PCT/JP2002/001526 WO2002067311A1 (en) 2001-02-22 2002-02-21 Plasma processing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001047278A JP2002252209A (en) 2001-02-22 2001-02-22 Plasma etching apparatus

Publications (2)

Publication Number Publication Date
JP2002252209A true JP2002252209A (en) 2002-09-06
JP2002252209A5 JP2002252209A5 (en) 2008-04-03

Family

ID=18908741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001047278A Pending JP2002252209A (en) 2001-02-22 2001-02-22 Plasma etching apparatus

Country Status (2)

Country Link
JP (1) JP2002252209A (en)
WO (1) WO2002067311A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005048322A2 (en) * 2003-11-12 2005-05-26 Tokyo Electron Limited Method and apparatus for improved baffle plate
JP2007063070A (en) * 2005-08-31 2007-03-15 Toshiba Ceramics Co Ltd Method for manufacturing plasma-resistant yttria sintered compact
JP2007138288A (en) * 2005-10-21 2007-06-07 Shin Etsu Chem Co Ltd Corrosion resistant multilayer member
JP2007197835A (en) * 2007-02-26 2007-08-09 Tocalo Co Ltd Halogen gas-resistant member for semiconductor working apparatus
JP2007308794A (en) * 2006-04-20 2007-11-29 Shin Etsu Chem Co Ltd Conductive, plasma-resistant member
US7462407B2 (en) 2002-12-19 2008-12-09 Shin-Etsu Chemical Co., Ltd. Fluoride-containing coating and coated member
JP2009174000A (en) * 2008-01-24 2009-08-06 Shin Etsu Chem Co Ltd Ceramic-sprayed member, method for producing the same, and polishing medium for ceramic-sprayed member
JP2009185391A (en) * 2002-11-28 2009-08-20 Tokyo Electron Ltd Member inside plasma treatment vessel
JP2013122086A (en) * 2011-11-10 2013-06-20 Shin-Etsu Chemical Co Ltd Rare earth element fluoride spray powder and rare earth element fluoride-sprayed article
US8896210B2 (en) 2011-12-05 2014-11-25 Tokyo Electron Limited Plasma processing apparatus and method
US9238863B2 (en) 2012-02-03 2016-01-19 Tocalo Co., Ltd. Method for blackening white fluoride spray coating, and fluoride spray coating covered member having a blackened layer on its surface

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219574A (en) * 1999-01-27 2000-08-08 Taiheiyo Cement Corp Corrosion resistant member
JP2000252351A (en) * 1999-02-26 2000-09-14 Taiheiyo Cement Corp Electrostatic chuck and its manufacture
JP2000306845A (en) * 1999-04-19 2000-11-02 Tokyo Electron Ltd Magnetron plasma treatment apparatus and treatment method
JP2002037683A (en) * 2000-07-24 2002-02-06 Toshiba Ceramics Co Ltd Plasma resistant element and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11229185A (en) * 1998-02-13 1999-08-24 Kobe Steel Ltd Aluminum material excellent in resistance to heat cracking and corrosion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219574A (en) * 1999-01-27 2000-08-08 Taiheiyo Cement Corp Corrosion resistant member
JP2000252351A (en) * 1999-02-26 2000-09-14 Taiheiyo Cement Corp Electrostatic chuck and its manufacture
JP2000306845A (en) * 1999-04-19 2000-11-02 Tokyo Electron Ltd Magnetron plasma treatment apparatus and treatment method
JP2002037683A (en) * 2000-07-24 2002-02-06 Toshiba Ceramics Co Ltd Plasma resistant element and its manufacturing method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009185391A (en) * 2002-11-28 2009-08-20 Tokyo Electron Ltd Member inside plasma treatment vessel
KR100995998B1 (en) 2002-12-19 2010-11-22 신에쓰 가가꾸 고교 가부시끼가이샤 Fluoride-Containing Film and Coating Material
US7462407B2 (en) 2002-12-19 2008-12-09 Shin-Etsu Chemical Co., Ltd. Fluoride-containing coating and coated member
WO2005048322A3 (en) * 2003-11-12 2005-11-24 Tokyo Electron Ltd Method and apparatus for improved baffle plate
US7461614B2 (en) 2003-11-12 2008-12-09 Tokyo Electron Limited Method and apparatus for improved baffle plate
WO2005048322A2 (en) * 2003-11-12 2005-05-26 Tokyo Electron Limited Method and apparatus for improved baffle plate
JP2007063070A (en) * 2005-08-31 2007-03-15 Toshiba Ceramics Co Ltd Method for manufacturing plasma-resistant yttria sintered compact
JP2007138288A (en) * 2005-10-21 2007-06-07 Shin Etsu Chem Co Ltd Corrosion resistant multilayer member
JP2007308794A (en) * 2006-04-20 2007-11-29 Shin Etsu Chem Co Ltd Conductive, plasma-resistant member
JP2007197835A (en) * 2007-02-26 2007-08-09 Tocalo Co Ltd Halogen gas-resistant member for semiconductor working apparatus
JP4512603B2 (en) * 2007-02-26 2010-07-28 トーカロ株式会社 Halogen gas resistant semiconductor processing equipment components
JP2009174000A (en) * 2008-01-24 2009-08-06 Shin Etsu Chem Co Ltd Ceramic-sprayed member, method for producing the same, and polishing medium for ceramic-sprayed member
JP4591722B2 (en) * 2008-01-24 2010-12-01 信越化学工業株式会社 Manufacturing method of ceramic sprayed member
JP2013122086A (en) * 2011-11-10 2013-06-20 Shin-Etsu Chemical Co Ltd Rare earth element fluoride spray powder and rare earth element fluoride-sprayed article
US8896210B2 (en) 2011-12-05 2014-11-25 Tokyo Electron Limited Plasma processing apparatus and method
US9238863B2 (en) 2012-02-03 2016-01-19 Tocalo Co., Ltd. Method for blackening white fluoride spray coating, and fluoride spray coating covered member having a blackened layer on its surface

Also Published As

Publication number Publication date
WO2002067311A1 (en) 2002-08-29

Similar Documents

Publication Publication Date Title
JP4486372B2 (en) Plasma processing equipment
US5895586A (en) Plasma processing apparatus and plasma processing method in which a part of the processing chamber is formed using a pre-fluorinated material of aluminum
JP2003146751A (en) Plasma-resistant member and method of producing the same
JP2004190136A (en) Member inside plasma treatment vessel
TW202034399A (en) Plasma processing method
JP2008251765A (en) Plasma etching equipment
JP2002252209A (en) Plasma etching apparatus
JP2003264169A (en) Plasma treatment device
TWI380360B (en)
JP2002068838A (en) Plasma resistant member and method for manufacturing the same
JP4038599B2 (en) Cleaning method
JP4181069B2 (en) Plasma processing equipment
JP3905462B2 (en) Plasma processing method and plasma processing apparatus
JP2018049896A (en) Plasma processing method
JP3148878B2 (en) Aluminum plate, method of manufacturing the same, and anti-adhesive cover using the aluminum plate
JP2002252209A5 (en) Plasma etching apparatus and plasma resistant member
JPH05114582A (en) Vacuum processor
CN112899617B (en) Method, device, component and plasma processing device for forming plasma-resistant coating
JP4381694B2 (en) Sample surface treatment method
JP2002293630A (en) Plasma resistant member and method of producing the same
JP4113406B2 (en) Method for manufacturing component in plasma processing apparatus and component in plasma processing apparatus
JP4021325B2 (en) Manufacturing method of parts for plasma processing apparatus
JP2001240461A (en) Corrosion resistant alumina material and plasma device
JP2007142175A (en) Plasma processing method and plasma processing device
JP2002241971A (en) Plasma resistant member

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308