JP4544708B2 - Plasma-resistant member and method for producing the same - Google Patents

Plasma-resistant member and method for producing the same Download PDF

Info

Publication number
JP4544708B2
JP4544708B2 JP2000218389A JP2000218389A JP4544708B2 JP 4544708 B2 JP4544708 B2 JP 4544708B2 JP 2000218389 A JP2000218389 A JP 2000218389A JP 2000218389 A JP2000218389 A JP 2000218389A JP 4544708 B2 JP4544708 B2 JP 4544708B2
Authority
JP
Japan
Prior art keywords
plasma
sintered body
resistant member
yttrium
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000218389A
Other languages
Japanese (ja)
Other versions
JP2002029832A (en
Inventor
雅彦 市島
光広 藤田
秀一 齋藤
克明 青木
絵里子 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Toshiba Corp
Original Assignee
Toshiba Corp
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Covalent Materials Corp filed Critical Toshiba Corp
Priority to JP2000218389A priority Critical patent/JP4544708B2/en
Publication of JP2002029832A publication Critical patent/JP2002029832A/en
Application granted granted Critical
Publication of JP4544708B2 publication Critical patent/JP4544708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Plasma Technology (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐プラズマ性部材およびその製造方法に係り、さらに詳しくはハロゲン系腐食性ガス雰囲気下で、すぐれた耐プラズマ性を呈する耐プラズマ性部材およびその製造方法に関する。
【0002】
【従来の技術】
半導体装置の製造工程においては、半導体ウエハーに微細な加工を施すエッチング装置やスパッタリング装置、あるいは半導体ウエハーに成膜を施すCVD装置などが使用されている。そして、これらの製造装置では、高集積化を目的としてプラズマ発生機構を備えた構成が採られている。たとえば、図1に構成の概略を示すように、ヘリコン波プラズマエッチング装置が知られている。
【0003】
図1において、1はエッチングガス供給口2および真空排気口3を有するエッチング処理室で、その外周には、アンテナ4、電磁石5および永久磁石6が設置されている。また、処理室1内には、被処理体となる半導体ウエハー7を支持する下部電極8が配置されている。なお、前記アンテナ4は、第1のマッチングネットワーク9を介して第1の高周波電源10に接続し、下部電極8は、第2のマッチングネットワーク11を介して第2の高周波電源12に接続している。
【0004】
そして、このエッチング装置によるエッチングは、次のように行われる。すなわち、下部電極8面に半導体ウエハー7を載置し、処理室1内を真空化した後に、エッチングガス供給口2からエッチングガスを供給する。その後、対応するマッチングネットワーク9、11を介して高周波電源10、12にから、アンテナ4および下部電極8に、たとえば周波数13.56MHzの高周波電流を流す。
一方、電磁石5に所要の電流を流して、処理室1内に磁界を発生させることにより、高密度のプラズマを発生させる。このプラズマエネルギーによって、エッチングガスを原子状態に分解して、半導体ウエハー8面に形成された膜のエッチングが行われる。
【0005】
ところで、この種の製造装置では、エッチングガスとして塩素系ガス(たとえば塩化ホウ素(BCl)など)を、もしくはフッ素系ガス(たとえばフッ化炭素(CF)など)の腐食性ガスを使用する。したがって、処理室1の内壁部、監視窓、マイクロ波導入窓、下部電極8など、腐食性ガス雰囲気下でプラズマに曝される構成部材については、耐プラズマ性が要求される。このような要求に対応して、上記耐プラズマ性部材として、アルミナ系燒結体、窒化ケイ素系燒結体、窒化アルミニウム系焼結体などが使用されている。
【0006】
【発明が解決しようとする課題】
しかしながら、上記アルミナ系燒結体、窒化ケイ素系燒結体、窒化アルミニウム系焼結体などの耐プラズマ性部材は、腐食性ガス雰囲気下でプラズマに曝されると徐々に腐食が進行して、表面を構成する結晶粒子が離脱するため、いわゆるパーティクル汚染を生じる。すなわち、離脱したパーティクルが、半導体ウエハー7や下部電極8などに付着し、エッチングの精度などに悪影響を与え、半導体の性能や信頼性が損なわれ易いという問題がある。
【0007】
また、CVD装置においても、クリーニング時に窒化フッ素(NF)などのフッ素系ガスにプラズマ下で曝されるため、耐食性が必要とされている。
【0008】
上記耐食性の問題に対し、イットリウムアルミン酸ガーネット(いわゆるYAG)焼結体を素材とする耐プラズマ性部材が提案されている(たとえば特開平10−45461号公報、特開平10−236871号公報)。すなわち、ハロゲン系腐食性ガス雰囲気下でプラズマに曝される表面が、気孔率3%以下のスピネル、コージェライト、イットリウムアルミン酸ガーネットなど、複合酸化物を主体とした焼結体で形成され、かつ表面を中心線平均粗さ(Ra)1μm以下とした耐プラズマ性部材が知られている。
【0009】
しかし、このイットリウムアルミン酸ガーネット焼結体などは、耐プラズマ性の点ですぐれているとはいえ、エッチング処理や成膜処理の微細化、あるいは被加工体の大口径化などに対応し得ない。すなわち、半導体の製造におけるドライプロセス、特に、エッチングプロセスにおいて、エッチング処理の微細化、あるいは被加工体の大口径化の際、低圧高密度プラズマが使用されており、従来のプラズマエッチング条件に較べて、さらに、すぐれた耐プラズマ性が望まれる。
【0010】
本発明は、上記事情に対処してなされたもので、低圧高密度プラズマ曝露に対しても十分耐える耐プラズマ性部材およびその製造方法の提供を目的とする。
【0011】
【課題を解決するための手段】
請求項1の発明は、実質的にイットリウムアルミン酸ガーネット燒結体から成り、かつ結晶中の酸素欠陥イオンサイトおよび表面領域のイットリウムにフッ素元素が結合していることを特徴とする耐プラズマ性部材である。
【0012】
請求項2の発明は、請求項1記載の耐プラズマ性部材において、表面粗さRaが5μm以下で、かつ表面の気孔率が1%以下であることを特徴とする。
【0013】
請求項3の発明は、イットリウムアルミン酸ガーネット系成形体を仮焼・脱脂処理する工程と、前記仮焼・脱脂処理した成形体を真空燒結して結晶中の酸素イオンサイトに欠陥を導入する工程と、前記酸素イオンサイトに欠陥を導入した燒結体にフッ化処理を施して酸素欠陥イオンサイトおよび表面領域のイットリウムにフッ素元素を結合させる工程とを有することを特徴とする耐プラズマ性部材の製造方法である。
【0014】
請求項4の発明は、請求項3記載の耐プラズマ性部材の製造方法において、フッ化処理する焼結体は、実質的にイットリウムアルミン酸ガーネット燒結体から成り、かつ表面粗さ(Ra)0.01μm以下におけるL表色系での色差が60以下であることを特徴とする。
【0015】
請求項5の発明は、請求項3もしくは請求項4記載の耐プラズマ性部材の製造方法において、フッ化処理は、フッ素プラズマ中に焼結体を曝して行うことを特徴とする。
【0016】
請求項1ないし5の発明は、次のような知見に基づくものである。すなわち、イットリウムアルミン酸ガーネット系燒結体は、真空燒結により結晶中の酸素イオンサイトに欠陥を導入した状態、より好ましくは表面粗さ(Ra)0.01μm以下におけるL表色系での色差が60以下の状態で、結晶中の酸素欠陥イオンサイトにフッ素元素を結合させ、また、表面領域のイットリウムをフッ化させた場合、低圧高密度プラズマ曝露に対しても十分耐える耐プラズマ性を呈することを見出し、上記発明に至ったものである。
【0017】
さらに言及すると、イットリウムアルミン酸ガーネット系燒結体は、その燒結雰囲気によって外観上呈する色合いが異なり、真空燒結すると結晶中の酸素イオンサイトに欠陥が生じて黒色化する。しかし、大気中で燒結を行うと結晶中の酸素イオンサイトには欠陥が生じないためクリーム色化する。ここで、色合いの相違は、JIS Z8701−1994色の表示方法「L表色系」によるもので、明るさ方向のL軸を縦軸にとり、色相の代わりに、赤緑の方向をa軸、黄と青の方向をb軸で表し、Lは0(黒)〜100(白)、aは+方向が赤、−方向が緑、bは+方向が黄、−方向が青で示される。
【0018】
そして、(a)これら色合いの違ったイットリウムアルミン酸ガーネット系燒結体(黒色、クリーム色)と、(b)真空燒結により結晶中の酸素イオンサイトに欠陥を導入後、結晶中の酸素欠陥イオンサイトにフッ素元素を結合させ、また、フッ化処理を施して表面をフッ化イットリウム化させた焼結体とについて、耐プラズマ性を比較評価したところ、フッ化処理を施した焼結体の場合は、フッ化処理前の焼結体およびクリーム色化している焼結体の10倍以上と耐プラズマ性が大幅に向上していることを確認した。
【0019】
請求項1および2の発明において、本体ないし基材を成すイットリウムアルミン酸ガーネット燒結体は、たとえばマグネシアなどの補助成分を許容範囲内で含有しても支障ない。つまり、イットリウムアルミン酸ガーネット成分を主体とし、実質的に、イットリウムアルミン酸ガーネット燒結体の性能を保持する限り、若干の変性など許容される。
【0020】
なお、この発明に係る耐プラズマ性部材において、フッ化イットリウム系の表面層の粗さRaが5μm以下で、かつ気孔率が1%以下の場合は、さらに、すぐれた耐プラズマ性が認められる。
【0021】
請求項1および2の発明に係る耐プラズマ性部材は、たとえば請求項3の発明に係る手法で製造することができる。すなわち、平均粒径0.1〜1.0μmのイットリウムアルミン酸ガーネット粒子を主体とした原料粉末に、マグネシア成分、バインダー樹脂および媒体液を、たとえば回転式のボールミルなどによる撹拌・混合でスラリーに調製する。また、調製したスラリーから、たとえばスプレードライ法によって造粒し、静水圧プレス法などで成形して、その成形体に仮焼・脱脂処理を施す。なお、原料粉の成形は、静水圧プレスで行う代わりに、たとえば金型成形、押し出し成形、射出成形、鋳込み成形などの成形手段であってもよい。
【0022】
次いで、前記仮焼・脱脂処理した成形体に、真空燒結処理を施して、結晶中の酸素イオンサイトに欠陥を導入・発生させる。つまり、真空燒結によって、燒結するする結晶中に酸素欠陥部を生成させて黒色化した後、フッ素プラズマ中に曝すか、あるいはフッ素雰囲気中で加熱処理を施して、イットリウムアルミン酸ガーネット系燒結体の結晶中の酸素イオンサイトの欠陥にフッ素元素を結合・導入する一方、焼結体表面領域をも併せてフッ化(フッ化イットリウムおよびフッ化アルミニウム)する。
【0023】
なお、前記フッ化処理に当たり、イットリウムアルミン酸ガーネット系結晶中の酸素イオンサイトの欠陥は、イットリウムアルミン酸ガーネット系燒結体の研磨などによる表面粗さ(Ra)が0.01μm以下の状態で、L表色系による色差で判別でき、60以下であればフッ化処理した際に、より容易に、かつ十分なフッ化が行われる。
【0024】
請求項1および2の発明では、黒色もしくはクリーム色のイットリウムアルミン酸ガーネット系燒結体に較べて、より耐プラズマ性のすぐれたイットリウムアルミン酸ガーネット系燒結体から成る耐プラズマ性部材が提供される。すなわち、請求項1および2の発明に係る耐プラズマ性部材は、低圧高密度の腐食性プラズマに曝される領域での使用において、パーティクル汚染を生じる恐れもなくなり、高精度で、信頼性の高い加工などに適した機能を呈する。
【0025】
したがって、製造装置ないし半導体の製造コストアップを抑制防止しながら、成膜の質や精度などに悪影響を与えることなく、性能や信頼性の高い半導体の製造・加工に、効果的に寄与する。
【0026】
請求項3ないし5の発明では、より耐プラズマ性が向上・改善された耐プラズマ性部材を歩留まりよく、かつ量産的に提供することが可能となる。
【0027】
【発明の実施形態】
以下、実施例を説明する。
【0028】
純度99.9%、平均粒径0.5μmのイットリウムアルミン酸ガーネット粒子100重量%に対し、適量のイオン交換水およびポリビニルアルコラール2重量%を加え、撹拌・混合してスラリーを調製する。次いで、前記調製したスラリーをスプレードライヤーで造粒し、得られた造粒粉を静水圧プレス(CIPプレス)にて、9.807x10MPa(1000kgf/cm)の圧力で成形し、厚さ10mm、幅100mm、長さ100mmの成形体をそれぞれ得た。
【0029】
上記成形体について、大気中、900℃の温度で仮焼・脱脂の処理を施した後、1.33Pa(0.01Torr)以下の真空中、1750℃の温度で燒結・焼成処理(真空焼結)を行って、結晶中の酸素イオンサイトに欠陥を導入したイットリウムアルミン酸ガーネット系燒結体を得た。この酸素イオンサイトに欠陥を導入した焼結体は、その研磨面(表面粗さRa0.01μm以下)のL表色系での色差が48.63であった。
【0030】
次いで、予め用意しておいたCDE装置に、上記酸素イオンサイトに欠陥を導入した焼結体をセットし、フッ素プラズマ中に約1時間曝(フッ化処理)して、結晶中の酸素イオンサイトの欠陥にフッ素元素を結合する一方、焼結体の表面をフッ化物層化した。この焼結体の表面フッ化物層は、気孔率1%以下で緻密なものであった。
【0031】
その後、上記フッ化処理した燒結体から、厚さ2mm、10x10mm角の試験片を切り出し、平行平板型RIE装置に取り付け、周波数13.56MHz、高周波ソース500W、高周波バイアス300W、CF/O/Ar=30:20:50sccm、ガス圧5x133Pa(5Torr)の条件でプラズマ曝露試験を行ったところ、エッチングレート(オングストローム/時間)が10以下であった。なお、フッ化処理は、フッ素雰囲気中、600℃程度の温度で加熱する方式を採った場合も同様の結果が得られた。
【0032】
比較例1、2
【0033】
純度99.9%、平均粒子径0.5μmのイットリウムアルミン酸ガーネット粒子100重量%に対し、適量のイオン交換水およびポリビニルアルコール2重量%を加え、撹拌・混合してスラリーを調製する。次いで、前記調製したスラリーをスプレードライヤーで造粒し、得られた造粒粉を静水圧プレス(CIPプレス)にて、9.807x10MPa(1000kgf/cm)の圧力で成形し、厚さ10mm、幅100mm、長さ100mmの成形体をそれぞれ得た。
【0034】
上記成形体について、大気中、900℃の温度で仮焼・脱脂の処理を施した後、大気中、1750℃の温度で燒結・焼成処理を行って、クリーム色のイットリウムアルミン酸ガーネット系燒結体を得た。このクリーム色化した焼結体(比較例1)は、その研磨面(表面粗さRa0.01μm以下)のL表色系での色差が70.57であった。
【0035】
また、上記クリーム色化した焼結体(比較例1)をCDE装置にセットし、フッ素プラズマ中に約1時間曝(フッ化処理)して、表面をフッ化物層化して、フッ化処理焼結体(比較例2)を得た。
【0036】
その後、上記両燒結体(比較例1、2)から、それぞれ厚さ2mm、10x10mm角の試験片を切り出し、平行平板型RIE装置に取り付け、周波数13.56MHz、高周波ソース500W、高周波バイアス300W、CF/O/Ar=30:20:50sccm、ガス圧5x133Pa(5Torr)の条件でプラズマ曝露試験を行ったところ、エッチングレート(オングストローム/時間)は、比較例1の場合101、比較例2の場合88であった。
【0037】
上記実施例および比較例に係る耐プラズマ性部材のL表色系での色差、エッチングレートを表1に併せて表示する。
【0038】
【表1】

Figure 0004544708
【0039】
上記表1から分かるように、実施例に係る耐プラズマ性部材は、比較例に係る耐プラズマ性部材に較べて約10倍以上のプラズマ耐食性を有しており、腐食性ガス下におけるプラズマによる損傷、フッ化アルミニウムなどのパーティクルなども大幅に抑制される。つまり、半導体の製造工程などにおいて、精度の高い加工などを行えるだけでなく、被加工体に悪影響を及ぼす恐れの解消も図られる。
【0040】
本発明は、上記実施例に限定されるものでなく、発明の趣旨を逸脱しない範囲でいろいろの変形を採ることができる。たとえば真空焼成・燒結温度、フッ化処理手段、イットリウムアルミン酸ガーネット原料組成など、許容される範囲で適宜変更できる。
【0041】
【発明の効果】
請求項1および2の発明によれば、耐プラズマ性のすぐれたイットリウムアルミン酸ガーネット系燒結体で、さらに、耐プラズマ性のすぐれた耐プラズマ性部材が提供される。つまり、腐食性のガスを含むプラズマに曝される領域の構成において、すぐれた耐久性を有する部材として機能するので、半導体製造装置の長寿命化などに寄与する。また、パーティクル汚染を生じる恐れもなくなるため、半導体の信頼性の向上、歩留まりの向上なども図れる。
【0042】
請求項3ないし5の発明によれば、耐プラズマ性がすぐれており、半導体の製造装置に適する耐プラズマ性部材を歩留まりよく、かつ量産的に提供できる。
【図面の簡単な説明】
【図1】プラズマエッチング装置の概略構成を示す断面図。
【符号の説明】
1……エッチング処理室
2……エッチングガス供給口
3……真空排気口
4……アンテナ
5……電磁石
6……永久磁石
7……半導体ウエハー
8……下部電極
9、11……マッチングネットワーク
10、12……高周波電源[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plasma-resistant member and a method for manufacturing the same, and more particularly to a plasma-resistant member that exhibits excellent plasma resistance in a halogen-based corrosive gas atmosphere and a method for manufacturing the same.
[0002]
[Prior art]
In the manufacturing process of a semiconductor device, an etching device or a sputtering device that performs fine processing on a semiconductor wafer, or a CVD device that forms a film on a semiconductor wafer is used. And in these manufacturing apparatuses, the structure provided with the plasma generation mechanism is taken for the purpose of high integration. For example, as shown schematically in FIG. 1, a helicon wave plasma etching apparatus is known.
[0003]
In FIG. 1, reference numeral 1 denotes an etching processing chamber having an etching gas supply port 2 and a vacuum exhaust port 3, and an antenna 4, an electromagnet 5 and a permanent magnet 6 are installed on the outer periphery thereof. In the processing chamber 1, a lower electrode 8 that supports a semiconductor wafer 7 to be processed is disposed. The antenna 4 is connected to the first high-frequency power source 10 via the first matching network 9, and the lower electrode 8 is connected to the second high-frequency power source 12 via the second matching network 11. Yes.
[0004]
Etching by this etching apparatus is performed as follows. That is, the semiconductor wafer 7 is placed on the surface of the lower electrode 8 and the inside of the processing chamber 1 is evacuated, and then the etching gas is supplied from the etching gas supply port 2. Thereafter, a high-frequency current having a frequency of 13.56 MHz, for example, is supplied to the antenna 4 and the lower electrode 8 from the high-frequency power sources 10 and 12 through the corresponding matching networks 9 and 11.
On the other hand, a high-density plasma is generated by causing a required current to flow through the electromagnet 5 to generate a magnetic field in the processing chamber 1. With this plasma energy, the etching gas is decomposed into an atomic state, and the film formed on the surface of the semiconductor wafer 8 is etched.
[0005]
By the way, in this type of manufacturing apparatus, a chlorine-based gas (for example, boron chloride (BCl)) or a corrosive gas such as a fluorine-based gas (for example, fluorocarbon (CF 4 )) is used as an etching gas. Therefore, plasma resistance is required for components exposed to plasma in a corrosive gas atmosphere, such as the inner wall of the processing chamber 1, the monitoring window, the microwave introduction window, and the lower electrode 8. In response to such demands, alumina-based sintered bodies, silicon nitride-based sintered bodies, aluminum nitride-based sintered bodies, and the like are used as the plasma-resistant member.
[0006]
[Problems to be solved by the invention]
However, plasma-resistant members such as the above-mentioned alumina-based sintered bodies, silicon nitride-based sintered bodies, and aluminum nitride-based sintered bodies gradually corrode when exposed to plasma in a corrosive gas atmosphere. Since the constituting crystal particles are detached, so-called particle contamination occurs. That is, the detached particles adhere to the semiconductor wafer 7, the lower electrode 8, and the like, adversely affect the etching accuracy and the like, and there is a problem that the performance and reliability of the semiconductor are easily impaired.
[0007]
In addition, the CVD apparatus is also required to have corrosion resistance because it is exposed to a fluorine-based gas such as fluorine nitride (NF 3 ) under plasma during cleaning.
[0008]
In order to cope with the corrosion resistance problem, plasma resistant members made of a sintered body of yttrium aluminate garnet (so-called YAG) have been proposed (for example, Japanese Patent Laid-Open Nos. 10-45461 and 10-236871). That is, the surface exposed to plasma in a halogen-based corrosive gas atmosphere is formed of a sintered body mainly composed of a composite oxide such as spinel having a porosity of 3% or less, cordierite, yttrium aluminate garnet, and the like. A plasma-resistant member having a surface with a center line average roughness (Ra) of 1 μm or less is known.
[0009]
However, although this yttrium aluminate garnet sintered body is excellent in terms of plasma resistance, it cannot cope with the miniaturization of the etching process and the film forming process, or the enlargement of the workpiece. . In other words, low-pressure, high-density plasma is used in dry processes in semiconductor manufacturing, particularly in etching processes, when the etching process is miniaturized or the workpiece is increased in diameter, compared with conventional plasma etching conditions. Furthermore, excellent plasma resistance is desired.
[0010]
The present invention has been made in view of the above circumstances, and an object thereof is to provide a plasma-resistant member that can sufficiently withstand exposure to low-pressure and high-density plasma and a method for manufacturing the same.
[0011]
[Means for Solving the Problems]
The invention of claim 1 is a plasma-resistant member characterized in that it is substantially composed of a yttrium aluminate garnet sintered body, and fluorine elements are bonded to oxygen-deficient ion sites in the crystal and yttrium in the surface region. is there.
[0012]
The invention of claim 2 is characterized in that in the plasma-resistant member of claim 1, the surface roughness Ra is 5 μm or less and the surface porosity is 1% or less.
[0013]
The invention of claim 3 includes a step of calcining and degreasing the yttrium aluminate garnet-based molded body, and a step of vacuum-sintering the calcined and degreased molded body to introduce defects into oxygen ion sites in the crystal. And a step of subjecting the sintered body having defects introduced into the oxygen ion sites to a fluorination treatment to bond fluorine elements to the oxygen defect ion sites and yttrium in the surface region. Is the method.
[0014]
The invention according to claim 4 is the method for producing a plasma-resistant member according to claim 3, wherein the sintered body to be fluorinated is substantially composed of a sintered body of yttrium aluminate garnet and has a surface roughness (Ra) of 0. The color difference in the L * a * b * color system at .01 μm or less is 60 or less.
[0015]
According to a fifth aspect of the present invention, in the method for producing a plasma-resistant member according to the third or fourth aspect, the fluorination treatment is performed by exposing the sintered body to fluorine plasma.
[0016]
The inventions of claims 1 to 5 are based on the following knowledge. That is, the yttrium aluminate garnet-based sintered body is in a state in which defects are introduced into oxygen ion sites in the crystal by vacuum sintering, more preferably L * a * b * color system in a surface roughness (Ra) of 0.01 μm or less. In a state where the color difference at 60 is less than or equal to 60, when fluorine element is bonded to the oxygen defect ion site in the crystal and yttrium in the surface region is fluorinated, the plasma resistance is sufficient to withstand low-pressure and high-density plasma exposure. The present invention has been found to exhibit the above properties.
[0017]
More specifically, the yttrium aluminate garnet-based sintered body has a different appearance in color depending on the sintering atmosphere, and when vacuum-sintered, the oxygen ion sites in the crystal are defective and blackened. However, when it is sintered in the atmosphere, the oxygen ion site in the crystal does not have a defect, so it becomes a cream color. Here, the difference in hue is due to the display method “L * a * b * color system” of JIS Z8701-1994 color. The L * axis in the brightness direction is taken as the vertical axis, and instead of hue, red green The a * direction is represented by the a * axis, the yellow and blue directions are represented by the b * axis, L * is 0 (black) to 100 (white), a * is red in the positive direction, green is in the negative direction, and b * is in the positive direction. Is yellow and the-direction is blue.
[0018]
And (a) yttrium aluminate garnet-based sintered body (black, cream color) having different colors, and (b) oxygen defect ion sites in the crystal after introducing defects into the oxygen ion sites in the crystal by vacuum sintering. We compared the plasma resistance of the sintered body with the fluorine element bonded to it and the surface treated with fluorination treatment to form yttrium fluoride. In the case of the sintered body with fluorination treatment, It was confirmed that the plasma resistance was significantly improved by 10 times or more of the sintered body before the fluorination treatment and the sintered body colored in cream.
[0019]
In the first and second aspects of the invention, the yttrium aluminate garnet sintered body constituting the main body or the base material may contain an auxiliary component such as magnesia within an allowable range. That is, as long as the yttrium aluminate garnet component is the main component and the performance of the yttrium aluminate garnet sintered body is substantially maintained, slight modification or the like is allowed.
[0020]
In the plasma-resistant member according to the present invention, when the roughness Ra of the yttrium fluoride-based surface layer is 5 μm or less and the porosity is 1% or less, further excellent plasma resistance is recognized.
[0021]
The plasma-resistant member according to the first and second aspects of the invention can be manufactured, for example, by the technique according to the third aspect of the invention. That is, a magnesia component, a binder resin, and a medium liquid are prepared into a slurry by stirring and mixing with, for example, a rotary ball mill, etc., into a raw material powder mainly composed of yttrium aluminate garnet particles having an average particle size of 0.1 to 1.0 μm. To do. Further, the prepared slurry is granulated by, for example, a spray drying method, molded by an isostatic pressing method, and the molded body is subjected to calcination / degreasing treatment. Note that the raw material powder may be molded by a molding means such as die molding, extrusion molding, injection molding, cast molding, or the like, instead of being performed by an isostatic press.
[0022]
Next, the calcined and degreased molded body is subjected to vacuum sintering treatment to introduce and generate defects at oxygen ion sites in the crystal. In other words, by vacuum sintering, oxygen defects are generated in the crystal to be sintered and blackened, and then exposed to fluorine plasma or subjected to heat treatment in a fluorine atmosphere, so that the yttrium aluminate garnet sintered body is While fluorine element is bonded / introduced into defects of oxygen ion sites in the crystal, the surface area of the sintered body is also fluorinated (yttrium fluoride and aluminum fluoride).
[0023]
In the fluorination treatment, defects in oxygen ion sites in the yttrium aluminate garnet-based crystal have a surface roughness (Ra) of 0.01 μm or less due to polishing of the yttrium aluminate garnet-based sintered body. * A * b * It can be discriminated by the color difference based on the color system, and if it is 60 or less, sufficient fluorination can be performed more easily when fluoridation is performed.
[0024]
According to the first and second aspects of the present invention, there is provided a plasma-resistant member made of a yttrium aluminate garnet-based sintered body which is more plasma-resistant than a black or cream-colored yttrium aluminate garnet-based sintered body. That is, the plasma-resistant member according to the first and second aspects of the present invention eliminates the possibility of causing particle contamination when used in a region exposed to low-pressure and high-density corrosive plasma, and is highly accurate and highly reliable. It exhibits functions suitable for processing.
[0025]
Therefore, it contributes effectively to the manufacture and processing of a semiconductor with high performance and reliability without adversely affecting the quality and accuracy of the film formation while preventing the increase in the manufacturing cost of the manufacturing apparatus or semiconductor.
[0026]
According to the third to fifth aspects of the present invention, it is possible to provide a plasma-resistant member whose plasma resistance is further improved / improved with high yield and mass production.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Examples will be described below.
[0028]
An appropriate amount of ion-exchanged water and 2% by weight of polyvinyl alcohol are added to 100% by weight of yttrium aluminate garnet particles having a purity of 99.9% and an average particle size of 0.5 μm, and a slurry is prepared by stirring and mixing. Next, the prepared slurry is granulated with a spray dryer, and the resulting granulated powder is molded with a hydrostatic pressure press (CIP press) at a pressure of 9.807 × 10 5 MPa (1000 kgf / cm 2 ) Molded bodies each having a size of 10 mm, a width of 100 mm, and a length of 100 mm were obtained.
[0029]
The molded body is subjected to calcining and degreasing treatment at 900 ° C. in the atmosphere, and then sintered and fired at a temperature of 1750 ° C. in a vacuum of 1.33 Pa (0.01 Torr) or less (vacuum sintering). ) To obtain an yttrium aluminate garnet-based sintered body having defects introduced into oxygen ion sites in the crystal. The sintered body having defects introduced into the oxygen ion sites had a color difference of 48.63 in the L * a * b * color system of the polished surface (surface roughness Ra 0.01 μm or less).
[0030]
Next, a sintered body in which defects are introduced into the oxygen ion site is set in a CDE apparatus prepared in advance, and is exposed to fluorine plasma for about 1 hour (fluorination treatment), so that the oxygen ion site in the crystal. While the fluorine element was bonded to the defects, the surface of the sintered body was made into a fluoride layer. The surface fluoride layer of this sintered body was dense with a porosity of 1% or less.
[0031]
Thereafter, a test piece having a thickness of 2 mm and a 10 × 10 mm square was cut out from the sintered body subjected to the fluorination treatment, and attached to a parallel plate RIE apparatus. The frequency was 13.56 MHz, the high-frequency source 500 W, the high-frequency bias 300 W, CF 4 / O 2 / When a plasma exposure test was performed under the conditions of Ar = 30: 20: 50 sccm and a gas pressure of 5 × 133 Pa (5 Torr), the etching rate (angstrom / hour) was 10 or less. In addition, the same result was obtained when the fluorination treatment adopts a method of heating at a temperature of about 600 ° C. in a fluorine atmosphere.
[0032]
Comparative Examples 1 and 2
[0033]
An appropriate amount of ion-exchanged water and 2% by weight of polyvinyl alcohol are added to 100% by weight of yttrium aluminate garnet particles having a purity of 99.9% and an average particle size of 0.5 μm, and a slurry is prepared by stirring and mixing. Next, the prepared slurry is granulated with a spray dryer, and the resulting granulated powder is molded with a hydrostatic pressure press (CIP press) at a pressure of 9.807 × 10 5 MPa (1000 kgf / cm 2 ) Molded bodies each having a size of 10 mm, a width of 100 mm, and a length of 100 mm were obtained.
[0034]
About the said molded object, after giving a calcination and a degreasing process at the temperature of 900 degreeC in air | atmosphere, performing sintering and a baking process at the temperature of 1750 degreeC in air | atmosphere, a cream-colored yttrium aluminate garnet type sintered body Got. This cream-colored sintered body (Comparative Example 1) had a color difference of 70.57 in the L * a * b * color system of its polished surface (surface roughness Ra 0.01 μm or less).
[0035]
Moreover, the cream-colored sintered body (Comparative Example 1) is set in a CDE apparatus, and is exposed to fluorine plasma for about 1 hour (fluorination treatment) to form a fluoride layer on the surface. A ligation (Comparative Example 2) was obtained.
[0036]
Thereafter, test pieces each having a thickness of 2 mm and a 10 × 10 mm square were cut out from both the above-mentioned sintered bodies (Comparative Examples 1 and 2) and attached to a parallel plate type RIE apparatus, with a frequency of 13.56 MHz, a high-frequency source 500 W, a high-frequency bias 300 W, CF When a plasma exposure test was performed under the conditions of 4 / O 2 / Ar = 30: 20: 50 sccm and a gas pressure of 5 × 133 Pa (5 Torr), the etching rate (angstrom / hour) was 101 in Comparative Example 1 and Comparative Example 2 Case 88.
[0037]
Table 1 shows the color difference and the etching rate in the L * a * b * color system of the plasma-resistant members according to the examples and comparative examples.
[0038]
[Table 1]
Figure 0004544708
[0039]
As can be seen from Table 1 above, the plasma-resistant member according to the example has about 10 times or more plasma corrosion resistance as compared with the plasma-resistant member according to the comparative example, and is damaged by plasma under corrosive gas. Also, particles such as aluminum fluoride are greatly suppressed. In other words, not only high-precision processing can be performed in the semiconductor manufacturing process, but also the possibility of adversely affecting the workpiece is eliminated.
[0040]
The present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the invention. For example, it can be appropriately changed within an allowable range such as vacuum firing / sintering temperature, fluorination treatment means, yttrium aluminate garnet raw material composition, and the like.
[0041]
【The invention's effect】
According to the first and second aspects of the present invention, a plasma-resistant member having excellent plasma resistance and a plasma-resistant member having excellent plasma resistance is provided. That is, in the configuration of the region exposed to the plasma containing corrosive gas, it functions as a member having excellent durability, which contributes to a long life of the semiconductor manufacturing apparatus. In addition, since there is no possibility of causing particle contamination, it is possible to improve the reliability of the semiconductor and the yield.
[0042]
According to the third to fifth aspects of the present invention, plasma resistance is excellent, and a plasma resistance member suitable for a semiconductor manufacturing apparatus can be provided with high yield and mass production.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a schematic configuration of a plasma etching apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Etching chamber 2 ... Etching gas supply port 3 ... Vacuum exhaust port 4 ... Antenna 5 ... Electromagnet 6 ... Permanent magnet 7 ... Semiconductor wafer 8 ... Lower electrode 9, 11 ... Matching network 10 , 12 ... High frequency power supply

Claims (5)

実質的にイットリウムアルミン酸ガーネット燒結体から成り、かつ結晶中の酸素欠陥イオンサイトおよび表面領域のイットリウムにフッ素元素が結合していることを特徴とする耐プラズマ性部材。A plasma-resistant member, which is substantially composed of a sintered body of yttrium aluminate garnet, and fluorine elements are bonded to oxygen-deficient ion sites in the crystal and yttrium in the surface region. 表面粗さRaが5μm以下で、かつ表面の気孔率が1%以下であることを特徴とする請求項1記載の耐プラズマ性部材。2. The plasma-resistant member according to claim 1, wherein the surface roughness Ra is 5 [mu] m or less and the surface porosity is 1% or less. イットリウムアルミン酸ガーネット系成形体を仮焼・脱脂処理する工程と、
前記仮焼・脱脂処理した成形体を真空燒結して結晶中の酸素イオンサイトに欠陥を導入する工程と、
前記酸素イオンサイトに欠陥を導入した燒結体にフッ化処理を施して酸素欠陥イオンサイトおよび表面領域のイットリウムにフッ素元素を結合させる工程と、
を有することを特徴とする耐プラズマ性部材の製造方法。
Calcination and degreasing treatment of yttrium aluminate garnet-based molded body,
A step of vacuum-sintering the calcined and degreased molded body to introduce defects into oxygen ion sites in the crystal;
Performing a fluorination treatment on the sintered body in which defects are introduced into the oxygen ion sites to bind fluorine elements to the oxygen defect ion sites and yttrium in the surface region;
A method for producing a plasma-resistant member, comprising:
フッ化処理する焼結体は、実質的にイットリウムアルミン酸ガーネット燒結体から成り、かつ表面粗さ(Ra)0.01μm以下におけるL表色系での色差が60以下であることを特徴とする請求項3記載の耐プラズマ性部材の製造方法。The sintered body to be fluorinated is substantially composed of a yttrium aluminate garnet sintered body, and has a color difference of 60 or less in the L * a * b * color system at a surface roughness (Ra) of 0.01 μm or less. The method for producing a plasma-resistant member according to claim 3. フッ化処理はフッ素プラズマ中に焼結体を曝して行うことを特徴とする請求項3もしくは請求項4記載の耐プラズマ性部材の製造方法。The method for producing a plasma-resistant member according to claim 3 or 4, wherein the fluorination treatment is performed by exposing the sintered body to fluorine plasma.
JP2000218389A 2000-07-19 2000-07-19 Plasma-resistant member and method for producing the same Expired - Fee Related JP4544708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000218389A JP4544708B2 (en) 2000-07-19 2000-07-19 Plasma-resistant member and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000218389A JP4544708B2 (en) 2000-07-19 2000-07-19 Plasma-resistant member and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002029832A JP2002029832A (en) 2002-01-29
JP4544708B2 true JP4544708B2 (en) 2010-09-15

Family

ID=18713348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000218389A Expired - Fee Related JP4544708B2 (en) 2000-07-19 2000-07-19 Plasma-resistant member and method for producing the same

Country Status (1)

Country Link
JP (1) JP4544708B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002293630A (en) * 2001-03-29 2002-10-09 Toshiba Ceramics Co Ltd Plasma resistant member and method of producing the same
JP2007063070A (en) * 2005-08-31 2007-03-15 Toshiba Ceramics Co Ltd Method for manufacturing plasma-resistant yttria sintered compact
JP6034156B2 (en) 2011-12-05 2016-11-30 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
CN114649179A (en) * 2020-12-18 2022-06-21 中微半导体设备(上海)股份有限公司 Semiconductor component, plasma processing apparatus, and method for forming corrosion-resistant coating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10236871A (en) * 1997-02-26 1998-09-08 Kyocera Corp Plasma resistant member
JPH1180925A (en) * 1997-07-15 1999-03-26 Ngk Insulators Ltd Corrosion resistant member, wafer mounting member, and manufacture of corrosion resistant member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10236871A (en) * 1997-02-26 1998-09-08 Kyocera Corp Plasma resistant member
JPH1180925A (en) * 1997-07-15 1999-03-26 Ngk Insulators Ltd Corrosion resistant member, wafer mounting member, and manufacture of corrosion resistant member

Also Published As

Publication number Publication date
JP2002029832A (en) 2002-01-29

Similar Documents

Publication Publication Date Title
KR100848165B1 (en) Plasma resistant member
US6933254B2 (en) Plasma-resistant articles and production method thereof
JP3967093B2 (en) Ceramic member and manufacturing method thereof
JP4679366B2 (en) Y2O3 sintered body, corrosion-resistant member, method for producing the same, and member for semiconductor / liquid crystal production apparatus
JPH10236871A (en) Plasma resistant member
JP4688307B2 (en) Plasma-resistant member for semiconductor manufacturing equipment
JPH1045461A (en) Corrosion resistant member
JP2006273584A (en) Aluminum nitride sintered compact, member for manufacturing semiconductor, and method for manufacturing aluminum nitride sintered compact
JP2002068838A (en) Plasma resistant member and method for manufacturing the same
JPH11214365A (en) Member for semiconductor element manufacturing device
JP4544708B2 (en) Plasma-resistant member and method for producing the same
JP2002037683A (en) Plasma resistant element and its manufacturing method
JP2000103689A (en) Alumina sintered compact, its production and plasma- resistant member
JP2002293630A (en) Plasma resistant member and method of producing the same
US20040234824A1 (en) Ceramic member
JP2004059397A (en) Plasma resistant member
JP2002029830A (en) Plasma resistant member and method for manufacturing the same
JP2002068864A (en) Plasma resistant member and method of manufacturing for the same
JP4623794B2 (en) Alumina corrosion resistant member and plasma apparatus
JP2003048783A (en) Alumina ceramics joined body and method for manufacturing the same
JP3225962B2 (en) Arc tube sealing structure
JP2006315955A (en) Ceramic member
JP3971539B2 (en) Alumina plasma corrosion resistant material
JP2002029831A (en) Plasma resistant member and method for manufacturing the same
TWI852155B (en) Method of manufacturing chamber component for processing chamber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070509

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100629

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees