JP4601136B2 - Corrosion resistant material - Google Patents

Corrosion resistant material Download PDF

Info

Publication number
JP4601136B2
JP4601136B2 JP2000244674A JP2000244674A JP4601136B2 JP 4601136 B2 JP4601136 B2 JP 4601136B2 JP 2000244674 A JP2000244674 A JP 2000244674A JP 2000244674 A JP2000244674 A JP 2000244674A JP 4601136 B2 JP4601136 B2 JP 4601136B2
Authority
JP
Japan
Prior art keywords
corrosion
resistant material
resistant
ceramic substrate
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000244674A
Other languages
Japanese (ja)
Other versions
JP2002052651A (en
Inventor
敏幸 濱田
正博 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000244674A priority Critical patent/JP4601136B2/en
Publication of JP2002052651A publication Critical patent/JP2002052651A/en
Application granted granted Critical
Publication of JP4601136B2 publication Critical patent/JP4601136B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Laminated Bodies (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Drying Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フッ素系塩素系等の腐食性ガスまたはそのプラズマに対して高い耐食性が要求される例えば、半導体素子を製造するのに用いられるプラズマ処理装置成膜装置内の内壁材Si基板を支持する支持部材等の冶具に適した耐食性部材に関するものである。
【0002】
【従来の技術】
半導体製造のドライエッチングプロセスやプラズマコーティング等、プラズマの利用は近年急速に進んでいる。例えば、半導体製造プロセスでは、プラズマプロセスにおいて、特にデポジションエッチング用やクリーニング用として、フッ素系塩素系等のハロゲン系腐食性ガスがその反応性の高さから多用されている。
【0003】
また、装置内の内壁等のハロゲン系腐食性ガスやそのプラズマに接触する部分では、ハロゲン系腐食性ガスやそのプラズマによる腐食を防止するために、従来からアルミ質焼結体から成るセラミック基材の表面に周期律表第2a族もしくは第3a族元素化合物からる耐食材を接合させた耐食性部材が使用されている。
【0004】
なお、このような耐食性部材は一般にアルミ質焼結体から成るセラミック基材の表面に第2a族もしくは第3a族元素化合物を溶射やCVDの方法により20〜100μmの厚みに被着させることによって形成されている。
【0005】
【発明が解決しようとする課題】
しかしながら、従来使用されている耐食性部材は、アルミ質焼結体から成るセラミック基材の表面に溶射やCVDによって周期律表第2a族もしくは第3a族元素化合物から成る耐食材を被着させて形成した場合、耐食材の相対密度が90%程度、最大でも95%程度であり、多数の開気孔を有することから耐食性が不十分であるという問題を有していた。
【0006】
また、セラミック基材表面に溶射やCVD等の方法により被着される耐食材は、その厚みが20〜100μm程度と薄いことから短時間で消耗してしまい、その結果長期間の使用に供さないという問題も有していた。
【0007】
さらに、セラミック基材表面に溶射やCVD等の方法により耐食材を被着させた場合、セラミック基材と耐食材との密着性が低いこと、セラミック基材と耐食材との間に熱膨張係数差があること等から、使用時にセラミック基材と耐食材に熱が印加されると、セラミック基材と耐食材との間に両者の熱膨張係数差に起因して熱応力が発生するとともに、この熱応力によって耐食材がセラミック基材表面より容易に剥離してしまって耐食性部材としての機能喪失してしまうという問題も有してい
【0008】
本発明は上述の問題点に鑑み案出されたものであり、その目的はセラミック基材表面に相対密度が高い、厚みのある耐食材を強固に接合させ、長時間の使用に供することができる耐食性部材を提供することにある。
【0009】
【課題を解決するための手段】
本発明の耐食性部材は、アルミナ質焼結体から成るセラミック基材YAG(イットリウム・アルミニウム・ガーネット),イットリアおよびスピネルいずれか1種を主成分とする焼結体から成る耐食材、前記セラミック基材と前記耐食材との間に配置されるセラミック基材成分と耐食材成分とを含有する焼結体から成る複数の中間層、セラミック基材成形体上に複数の中間層成形体および耐食材成形体を順次成形して形成した複合成形体を焼成することによって接合して成り、前記セラミック基材と該セラミック基材に接する前記中間層との間、前記耐食材と該耐食材に接する前記中間層との間およそれぞれが接する前記中間層間の熱膨張係数差0.9ppm/℃以下であることを特徴とするものである。
【0010】
また本発明の耐食性部材は、好ましくは、前記耐食材の相対密度が98%以上であることを特徴とするものである。
【0011】
さら本発明の耐食性部材は、好ましくは、前記耐食材の厚みが200μm以上であることを特徴とするものである。
【0012】
【発明の実施の形態】
以下に本発明の実施の形態を詳しく説明する。
【0013】
図1は、本発明の耐食性部材の実形態の一例を示す斜視図である。この耐食性部材1は、アルミナ質焼結体から成るセラミック基材2と、YAG(イットリウム・アルミニウム・ガーネット),イットリアおよびスピネルいずれか1種を主成分とする焼結体から成る耐食材3と、セラミック基材2と耐食材3との間に配置されるセラミック基材成分 と耐食材成分とを含有する焼結体から成る3つの中間層4a4b4cとを、セラミック基材成形体上に複数の中間層成形体および耐食材成形体を順次成形して形成した複合成形体を焼成することによって接合して成る。
【0014】
ラミック基材2は、アルミ質焼結体等から成り、耐食性部材1に強度および靱性をたせるための基材となるものであり、半導体製造装置等への取付け時もしくは洗浄時に欠けや割れが生じるのを防止する。
【0015】
ラミック基材2は、その3点曲げ強度が150MPa以上、破壊靭性が2MPa・√m以上であるものとしておくと、耐食性部材1の機械的強度が優れているので、半導体製造装置等への取付け時に欠けや割れ等が発生するのを有効に防止することができる。従って、セラミック基材2はその3点曲げ強度を150MPa以上、破壊靭性が2MPa・√m以上としておくことが好ましい。
【0016】
また、セラミック基材2は、アルミナの純度を95量%以上としておくと、耐食性部材1として半導体製造装置等に用いる際、半導体素子に不純物が混入して半導体素子の特性に悪影響を与えるのを有効に防止できる。従って、アルミ質焼結体から成るセラミック基材2は、アルミナの純度95量%以上としておくことが好ましい。
【0017】
食材3は、YAG(イットリウム・アルミニウム・ガーネット)イットリアスピネルのいずれか1種を主成分とする焼結体から成る。
【0018】
AGイットリアスピネルのいずれか1種を主成分とする焼結体から成る耐食材3は、SF CF CHF ClF NF C4F HF等のフッ素系ガス、Cl HClBCl CCl 等の塩素系ガス、あるいはBr HBrBBr 等の臭素系ガス等のハロゲン系腐食性ガスやこれらハロゲン系腐食性ガスのプラズマに対して優れた耐食性を具備し、半導体製造装置等に使用することによって、半導体製造装置の壁材等が腐食を受けるのを有効に防止することができる。
【0019】
食材3は、YAG(イットリウム・アルミニウム・ガーネット)、イットリアおよびスピネルいずれか1種を主成分とする焼結体で形成されていることから、耐食材3の相対密度を98%以上とすることができ、耐食材3の相対密度を98%以上であれば、開気孔の存在がほとんどなくなって耐食性が極めて優れたものとなる。従って、耐食材3の相対密度を98%以上としておくことが好ましい。
【0020】
また、耐食材3は、YAG(イットリウム・アルミニウム・ガーネット)、イットリアおよびスピネルいずれか1種を主成分とする焼結体で形成されていることから、耐食材3の厚みを200μm以上することができ、耐食材3の厚み200μm以上であれば、耐食材3の消耗に時間を要することから長期間の使用に供することが可能となる。
【0021】
数の中間層4a4b4cは、その各々がセラミック基材成分と耐食材成分とを含有した焼結体で形成されており、セラミック基材2および耐食材3の両者に対して接合性がく、また各中間層4a4b4c間の接合性もいことから、耐食材3を中間層4a4b4cを介してセラミック基材2に極めて強固に接合することが可能となる。
【0022】
また、中間層4aはセラミック基材2と接し、セラミック基材2との熱膨張係数差が0.9ppm/℃以下あり、中間層4cは耐食材3と接し、耐食材3との熱膨張係数差が0.9ppm/℃以下であり、つ中間層4a4b間、中間層4b,4c間の熱膨張係数差も0.9ppm/℃以下ある。従って、使用時に耐食性部材1に熱が印加されセラミック基材2耐食材3および各中間層4a4b4cの各々に熱が作用したとしても、セラミック基材2と中間層4aとの間、耐食材3と中間層4cとの間中間層4a4b間、中間層4b,4c間に大きな熱応力が発生することはなく、その結果、耐食材3がセラミック基材2より剥離するのが有効に防止されて、耐食性部材1をより一層安定に使用することが可能となる。
【0023】
なお、セラミック基材2と中間層4aとの熱膨張係数差が0.9ppm/℃を超えたものとなると、耐食性部材1に熱が印加された際にセラミック基材2と中間層4aとの間に剥離が発生してしまう。従って、セラミック基材2と中間層4aとの熱膨張係数差0.9ppm/℃以下であることが重要である。
【0024】
また、耐食材3と中間層4cとの熱膨張係数差が0.9ppm/℃を超えたものとなると、耐食性部材1に熱が印加された際に耐食材3と中間層4cとの間に剥離が発生してしまう。従って、耐食材3と中間層4cとの熱膨張係数差0.9ppm/℃以下であることが重要である。
【0025】
さら、中間層4a4b4cは隣接する中間層間の熱膨張係数差が0.9ppm/℃を超えたものとなると、隣接する中間層間で剥離が発生してしまう。従って、中間層4a4b4cはその隣接する中間層間の熱膨張係数差が0.9ppm/℃以下であることが重要である。
【0026】
次に耐食性部材1の具体的な製造方法について説明する。
【0027】
ず、セラミック基材2耐食材3および中間層4a4b4cとなる原料粉末を調する。
【0028】
(セラミック基材用原料の調
主成分としての酸化アルミニウムに焼結助剤としての酸化珪素酸化マグネシウム酸化カルシウム等を0.1〜10量%含有させた原料粉末にパラフィンワックスワックスエマルジョン(ワックス+乳化剤)PVA(ポリビニルアルコール)PEG(ポリエチレングリコール)等の所望の有機バインダーを添加して混合した後に、スプレードライにて造粒して原料を調する。
【0029】
(耐食材用原料の調
酸化アルミニウム粉末とイットリア粉末とを下式の割合で混合して1000〜1600℃で仮焼した後、これらを粉砕して平均粒子径0.6〜1.2μm、BET比表面積2〜5m/gのYAG粉末を作製する。
【0030】
A+B=1
0.365≦A≦0.385
0.615≦B≦0.635
A:イットリアのモル量
B:酸化アルミニウムのモル量
次に、このYAG粉末にパラフィンワックスPVA(ポリビニルアルコール)ワックスエマルジョン(ワックス+乳化剤)PEG(ポリエチレングリコール)等の所望の有機バインダーを添加して混合した後、スプレードライにて造粒して原料を調する。
【0031】
(中間層用原料の調
上述のセラミック基材用原料と耐食材用原料を所望の体積%つ添加混合して各中間層用原料を調整する。
【0032】
次に、上述の各原料を用いて金型プレス成形により所定の形状に成形する。この金型プレスによる成形は、まず金型プレス成形機内にセラミック基材用原料を充填した後に一定の圧力で押圧して、セラミック基材成形体を形成する。次に、このセラミック基材成形体上に中間層4a4b4cを形成する各中間層用原料を順次充填するとともにこれをそれぞれ一定の圧力で押圧してセラミック基材成形体上に複数の中間層成形体を形成し、さらに中間層成形体上に耐食材用原料を充填するとともにこれを一定の圧力で押圧して中間層成形体上に耐食材成形体を形成し、これによってセラミック基材成形体中間層成形体および耐食材成形体から成る複合成形体を得る。
【0033】
そして、この複合成形体を必要に応じて300〜600℃で脱脂し、しかる後、大気雰囲気中で約1500〜1750℃で焼成し、アルミナ質焼結体から成るセラミック基材2と、YAG(イットリウム・アルミニウム・ガーネット)、イットリアおよびスピネルのいずれか1種を主成分とする焼結体から成る耐食材3とが、中間層4a,4b,4cを介して接合された耐食性部材1が完成する。
【0034】
この場合、耐食材3の厚みは耐食材用原料の充填量を調整することによって厚みを200μm以上とすることができ、耐食材3の厚みを200μm以上とすると、耐食材3の消耗に時間を要することから長期間の使用に供することが可能となる。
【0035】
なお、耐食材3はその厚みが200μm未満となると、中間層4c上に耐食材3を均一厚みに、且つ中間層4cの表面を完全に覆うように形成することが困難となり、耐食性部材1の耐食性が劣化してしまう危険性がある。また耐食材3の厚みが30mmを超えると、耐食材用原料を焼成して焼結体から成る耐食材3を形成する際、耐食材用原料に含まれている有機バインダーを完全に脱脂するのが困難となって耐食材3の機械的強度を弱くしてしまう危険性がある。従って、耐食材3はその厚みを200μm以上としておくことが好ましく、より好適には200μm〜30mmの範囲としておくのがい。
【0036】
かかる耐食性部材1は、半導体製造装置等の内壁材(チャンバー)、マイクロ波導入窓フォーカスリング等に好適に使用することができる。例えば図2に示すようなエッチング装置においては、チャンバー5の中にハロゲン系腐食性ガスを注入し、周りに巻かれている誘導コイル9にRF電力を印してガスをプラズマ化し、下部電極7にも同様にRF電力を与えバイアスを発生させ、フォーカスリング6にてプラズマをウハー8近傍に集めて所望のエッチング加工なわれる。本装置にて発生したプラズマはチャンバー5やフォーカスリング6に接触するため、これらの部品は特に腐食を受けやすい。そこでチャンバー5やフォーカスリング6を本発明の耐食性部材1で形成することによって優れた耐食性を具備し、取付け時や洗浄時に欠けや割れ等が生じるのを防止することができる。
【0037】
なお、本発明は上述の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば、種々の変更は可能であり、例えば上述の実施形態では中間層を3つの層で形成したが、2つの層であっても、4つ以上の層であってもい。
【0038】
【実施例】
次に、本発明の実施例を説明する。
(実施例1)
セラミック基材用原料
主成分として平均粒径が1〜15μm、純度が95〜99量%の酸化アルミニウムに、焼結助剤として酸化珪素(SiO酸化マグネシウム(MgO)および酸化カルシウム(CaO)を含有し、有機バインダーとしてポリビニルアルコール(PVA)ポリエチレングリコール(PEG)およびワックスエマルジョンをそれぞれ添加して混合した後、スプレードライにて造粒して原料を調製した
【0039】
耐食材用原料
主成分としてYAG(イットリウム・アルミニウム・ガーネット)イットリア(Y スピネル(MgOAl)の一種に焼結助剤として酸化セリウム(CeO)を添加し、有機バインダーとしてPVAPEGおよびワックスエマルジョンを添加して混合した後に、スプレードライにて造粒して各原料を調製した
【0040】
中間層用原料
セラミック基材用原料と耐食材用原料を表1に示す割合で添加混合して、中間層用原料を調製した
【0041】
次に、金型プレス成形にてセラミック基材用原料中間層用原料および耐食材用原料を用いて順次成形し、各々直径30mm、厚みが2mmのセラミック基材成形体中間層成形体および耐食材成形体から成る複合成形体を得
【0042】
次に、複合成形体を350℃で2時間脱脂した後、1500〜1750℃で5時間焼成してセラミック基材中間層および耐食材が表1に示す成分から成る各耐食性部材試料を製作した。
【0043】
また、従来例としてアルミ質焼結体から成るセラミック基材(直径30mm、厚みが5mm)上に、YAGを主成分とする耐食材を直径30mmみが1mmとなるように溶射またはCVDによって形成した試料(試料No.13、14)を製作した。
【0044】
なお、各試料の耐食材の相対密度は次式で求めた。
【0045】
(焼結密度/理論密度)×100=相対密度(%)
さらに、各試料のセラミック基材中間層および耐食材の熱膨張係数は、JIS R 1618に準拠して測定した(測定範囲は、室温〜1500℃)。
【0046】
そして、各試料の接合状態を評価するため、各試料に熱サイクル(室温〜1400℃)を繰り返し印加し、熱サイクルの印加が20回未満において耐食材がセラミック基材より剥離したものは××、20〜30回未満で剥離したものを×、90回未満で剥離したものを○、100回でも剥離しなかったものを◎とした。
【0047】
次いで、各試料の耐食性評価ため、各試料の耐食材をラップ加工により鏡面にするとともにRIE(Reactive Ion Etching)装置にセットしてClガス雰囲気下でプラズマ中に3時間曝し、その前後の耐食材の量の減少量から1分間当たりのエッチングレートを算出した。
【0048】
このエッチングレートの数値は、純度99.9量%の酸化アルミニウム質焼結体を基準試料とし、そのエッチングレートを1としたときの相対比較した値を示した。
【0049】
評価結果を表1に示す。
【0050】
【表1】

Figure 0004601136
【0051】
表1から明らかなように、アルミナ質焼結体から成るセラミック基材と、YAG(イットリウム・アルミニウム・ガーネット)、イットリアおよびスピネルのいずれか1種を主成分とする焼結体から成る耐食材と、セラミック基材と耐食材との間に配置されるセラミック基材成分と耐食材成分とを含有する焼結体から成る複数の中間層、セラミック基材成形体上に複数の中間層成形体および耐食材成形体を順次成形して形成した複合成形体を焼成することによって接合して成り、セラミック基材とセラミック基材に接する中間層との間、耐食材と耐食材に接する中間層との間およそれぞれが接する中間層間の熱膨張係数差0.9ppm/℃以下である本発明の実施例(試料No.4〜12)の場合、セラミック基材と中間層、耐食材と中間層およそれぞれが接する中間層間の接合が強いこと、セラミック基材とセラミック基材に接する中間層との間、耐食材と耐食材に接する中間層との間およそれぞれが接する中間層間の熱膨張係数差が非常に小さいことから、セラミック基材と耐食材とは極めて強固に接合されており、熱サイクルが繰り返し印加されたとしても耐食材がセラミック基材より剥離することはなく長期間の使用に供することができる。
【0052】
また、本発明の実施例の試料耐食材の相対密度が98%以上で、且つエッチングレートが0.48(Å/min)以下であり極めて耐食性に優れていることから、耐食材の消耗が少なく長期間の使用に供することができる。
【0053】
これに対し、セラミック基材に耐食材を溶射やCVDで被着させた従来例(試料No.13、14)は、セラミック基材と耐食材の接合が弱く、且つ熱膨張係数差が大きいことから、熱サイクルの印加が30回未満で耐食材がセラミック基材より剥離してしまい長期間の使用に供することができないことがわかる。
【0054】
また、従来品(試料No.13、14)はエッチングレートが0.87(Å/min)以上で耐食性に劣り短期間に消耗してしまうことがわかった
【0055】
【発明の効果】
本発明の耐食性部材によれば、アルミナ質焼結体から成るセラミック基材と、YAG(イットリウム・アルミニウム・ガーネット),イットリアおよびスピネルいずれか1種を主成分とする焼結体からる耐食材と、セラミック基材と耐食材との間に配置されるセラミック基材成分と耐食材成分とを含有する焼結体から成る複数の中間層とを、セラミック基材成形体上に複数の中間層成形体および耐食材成形体を順次成形して形成した複合成形体を焼成することによって接合して成り、セラミック基材とセラミック基材に接する中間層との間、耐食材と耐食材に接する中間層との間およそれぞれが接する中間層間の熱膨張係数差0.9ppm/℃以下であるとから、セラミック基材耐食材とが中間層を介して強固に接合されているとともに、熱膨張係数差に起因する熱応力発生が抑制されているので、これによって耐食性部材に使用時の熱が印加されたとしても耐食材がセラミック基材より剥離することはなく、耐食性部材を常に安定して使用することができる。
【0056】
また、本発明の耐食性部によれば、耐食材の相対密度98%以上であるときには、開気孔の存在がほとんどなくなって耐食性が極めて優れたものとなる。
【0057】
さらに、本発明の耐食性部によれば、耐食材の厚み200μm以上であるときには、耐食材の消耗に時間を要することから長期間の使用に供することが可能となる。
【図面の簡単な説明】
【図1】 本発明の耐食性部材の実形態の一例を示す斜視図である。
【図2】 本発明の耐食性部材を備えたエッチング装置内部の概略図である。
【符号の説明】
1:耐食性部材
2:セラミック基材
3:耐食材
4:中間層
5:チャンバー
6:フォーカスリング
7:下部電極
8:ウエハー
9:誘導コイル[0001]
BACKGROUND OF THE INVENTION
The present invention, fluorine-based, high corrosion resistance is required to corrosive gas or its plasma chlorine-based or the like, for example, a plasma processing apparatus for use in manufacturing semiconductor devices, the inner wall material in the film-forming apparatus, The present invention relates to a corrosion-resistant member suitable for a jig such as a support member that supports a Si substrate.
[0002]
[Prior art]
In recent years, the use of plasma, such as dry etching processes and plasma coating in semiconductor manufacturing, has been progressing rapidly. For example, in semiconductor manufacturing processes, halogen-based corrosive gases such as fluorine and chlorine are frequently used in plasma processes, particularly for deposition , etching, and cleaning because of their high reactivity.
[0003]
Further, in a portion in contact with the halogen-based corrosive gas and its plasma of the inner wall or the like in the apparatus, in order to prevent corrosion caused by halogen-based corrosive gas or plasma thereof, consisting of conventional or Raa Rumi na sintered body periodic table group 2a or group 3a corrosion member from element compound is bonded to formed Ru corrosion resistant material is used on the surface of the ceramic substrate.
[0004]
Such a corrosion-resistant member is generally applied to the Group 2a or Group 3a element compound thermal spraying, CVD method by 20~100μm thickness on the surface of the ceramic substrate consisting of A Rumi Na sintered body It is formed by letting.
[0005]
[Problems to be solved by the invention]
However, corrosion-resistant member being for slave alkoxy may be a corrosion-resistant material made of A Rumi the Group 2a of the periodic table by thermal spraying or CVD on the surface of the ceramic substrate consisting of Na sintered body or an element of the group 3a compound In the case of being formed, the relative density of the corrosion resistant material is about 90%, and the maximum is about 95%, and it has a problem that the corrosion resistance is insufficient because it has many open pores.
[0006]
Further, the corrosion-resistant material deposited on the ceramic substrate surface by a method such as thermal spraying or CVD is consumed in a short time because its thickness is as thin as about 20 to 100 μm, and as a result , it can be used for a long time. It also had the problem of not.
[0007]
In addition, if the corrosion-resistant material was deposited by the method of thermal spraying, CVD or the like on the ceramic substrate surface, it is low adhesion between the ceramic substrate and the corrosion resistant material, the thermal expansion between the ceramic substrate and the corrosion resistant material since such that there is difference in the coefficient, the heat is applied to the ceramic substrate and the corrosion resistant material in use, the thermal stress is generated due to the thermal expansion coefficient difference therebetween between the ceramic substrate and the corrosion resistant material , a problem that in the corrosion-resistant material is accidentally easily peeled off from the ceramic substrate surface resulting in loss of function as a corrosion resistant member is also had by this thermal stress.
[0008]
The present invention has been devised in view of the above-mentioned problems, and its purpose is to strongly bond a thick corrosion-resistant material having a high relative density to the surface of the ceramic base material and to provide it for a long time use. It is in providing the corrosion-resistant member which can be performed.
[0009]
[Means for Solving the Problems]
Corrosion resistant member of the present invention, a ceramic substrate made of alumina sintered body, YAG (yttrium aluminum garnet), and corrosion-resistant material made of a sintered body mainly composed of any one of yttria and spinel, and a plurality of intermediate layers made of a sintered body containing a ceramic base material component and corrosion-resistant material component is disposed between the ceramic substrate and the corrosion-resistant material, a plurality of intermediate layers on the ceramic substrate molded body on become joined by firing compacts and corrosion-resistant material formed body sequentially molded to form composite compacts, between the intermediate layer in contact with said ceramic substrate and said ceramic substrate, said corrosion resistant material and said in which the thermal expansion coefficient difference between the intermediate layers respectively between and is in contact with the intermediate layer in contact with the corrosion resistant material is equal to or less than 0.9 ppm / ° C..
[0010]
Further, corrosion-resistant member of the present invention are preferably those that relative density of the corrosion-resistant material is characterized in that 98% or more.
[0011]
In addition, corrosion resistant member of the present invention are preferably those wherein the thickness of the corrosion resistant material is 200μm or more.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0013]
Figure 1 is a Ru perspective view showing an example of implementation in the form of a corrosion-resistant member of the present invention. The corrosion-resistant member 1 includes a ceramic substrate 2 made of an alumina sintered body, a corrosion-resistant material 3 made of a sintered body mainly composed of any one of YAG (yttrium, aluminum, garnet), yttria, and spinel. , three intermediate layers 4a comprising a sintered body containing a ceramic base material component and corrosion-resistant material component is disposed between the ceramic substrate 2 and the corrosion resistant member 3, 4b, and 4c, the ceramic substrate molded forming Ru and joined by baking a plurality of intermediate layers compacts and composite compacts formed by sequentially forming a corrosion-resistant material formed body on the body.
[0014]
Ceramic substrate 2 is made of A Rumi Na sintered body or the like, which is a base material for Taseru lifting strength and toughness and corrosion resistance member 1, chipping at the time of installation at or cleaning of the semiconductor manufacturing apparatus Prevents cracking.
[0015]
Ceramic substrate 2, the three-point bending strength is more than 150 MPa, the fracture toughness keep shall be 2 MPa · √m or higher, the mechanical strength of the corrosion resistant member 1 is better, to a semiconductor manufacturing device or the like mounting only chipping or cracking or the like when it is possible to effectively prevent occurrence. Therefore, ceramic substrate 2, the three-point bending strength 150MPa or more, fracture toughness it is preferable to a 2 MPa · √m or higher.
[0016]
Furthermore, ceramic substrate 2 and keep the purity of the alumina and 95 mass% or more, when used in a semiconductor manufacturing device or the like as a corrosion resistant member 1, affect the properties of the semiconductor element impurities are mixed into the semiconductor element It can effectively prevent giving. Therefore, the ceramic substrate 2 made of A Rumi Na sintered body is preferably a purity alumina keep the 95 mass% or more.
[0017]
Resistant ingredients 3, Y AG (yttrium aluminum garnet), Ru yttria, from sintered material mainly composed of any one of spinel formed.
[0018]
Y AG, yttria, corrosion resistant material 3 made of a sintered body mainly composed of any one of spinel Le is, SF 6, CF 4, CHF 3, ClF 3, NF 3, C4F 8, fluorine-based, such as HF Against halogen-based corrosive gases such as gases, chlorine-based gases such as Cl 2 , HCl , BCl 3 and CCl 4 , or bromine-based gases such as Br 2 , HBr and BBr 3 , and plasmas of these halogen-based corrosive gases By having excellent corrosion resistance and being used in a semiconductor manufacturing apparatus or the like, it is possible to effectively prevent the wall material or the like of the semiconductor manufacturing apparatus from being corroded.
[0019]
Resistant ingredients 3 YAG (yttrium aluminum garnet), because it is formed of a sintered body mainly composed of any one of yttria and spinel, the relative density of the corrosion resistant material 3 and 98% it can, if the relative density of the resistance foodstuffs 3 98%, and that the presence of open pores corrosion resistance was extremely excellent almost gone. Therefore, the relative density of resistant ingredients 3 it is preferable to 98% or more.
[0020]
Also, resistant ingredients 3, YAG (yttrium aluminum garnet), any one of yttria and spinel because it is formed of a sintered body composed mainly, and more 200μm thickness of corrosion-resistant material 3 If the thickness of the corrosion-resistant material 3 is 200 μm or more , it takes time for the corrosion-resistant material 3 to be consumed, so that it can be used for a long time.
[0021]
Multiple intermediate layer 4a, 4b, 4c are both each are formed of a sintered body containing a ceramic base material 2 component and corrosion resistant material 3 component, the ceramic substrate 2 and the corrosion resistant member 3 bondability rather good, and each intermediate layer 4a respect, 4b, also from good Ikoto bondability between 4c, a corrosion resistant material 3 intermediate layer 4a, 4b, very tightly to the ceramic substrate 2 through 4c It becomes possible to join.
[0022]
Moreover, middle-layer 4a is ceramic substrate 2 and the contact, the thermal expansion coefficient difference between the ceramic substrate 2 is not more than 0.9 ppm / ° C., the intermediate layer 4c is in contact with corrosion resistant material 3, the corrosion resistant material 3 difference of thermal expansion coefficient of not more than 0.9 ppm / ° C., while layer 4a in one且, inter 4b, the intermediate layer 4b, the thermal expansion coefficient difference between 4c also below 0.9 ppm / ° C.. Therefore, the ceramic substrate 2 heat is applied to the corrosion-resistant member 1 during use, corrosion resistant material 3 and the intermediate layers 4a, 4b, in each of 4c as heat is applied, between the middle and the ceramic substrate 2 layers between 4a, between the middle-layer 4c and the corrosion resistant member 3, an intermediate layer 4a, inter 4b, not the intermediate layer 4b, a large thermal stress between 4c occurs, the result, corrosion resistant material 3 ceramic group Peeling from the material 2 is effectively prevented, and the corrosion-resistant member 1 can be used more stably.
[0023]
Incidentally, the difference in thermal expansion coefficient between the ceramic substrate 2 and the intermediate layer 4a is that exceed 0.9 ppm / ° C., and the ceramic substrate 2 and the intermediate layer 4a when heat is applied to the corrosion-resistant member 1 Peeling occurs between the two. Thus, Se difference in thermal expansion coefficient between the ceramic substrate 2 and the intermediate layer 4a is Ru important not more than 0.9 ppm / ° C..
[0024]
Also, when it comes to that the difference in thermal expansion coefficient between the resistance ingredients 3 and the intermediate layer 4c exceeds 0.9 ppm / ° C., when the corrosion resistance member 1 heat is applied between the corrosion resistant material 3 and the intermediate layer 4c Peeling will occur. Thus, the thermal expansion coefficient difference between the resistance ingredients 3 and the intermediate layer 4c is Ru important not more than 0.9 ppm / ° C..
[0025]
In addition, middle-layer 4a, 4b, when 4c is assumed that the thermal expansion coefficient difference between adjacent intermediate layers exceeds 0.9 ppm / ° C., peeling the adjacent intermediate layers occurs. Therefore, middle-layer 4a, 4b, 4c is Ru important that the thermal expansion coefficient difference of the intermediate layers is less than 0.9 ppm / ° C. As the adjacent.
[0026]
Next, a specific manufacturing how the anti-corrosion member 1.
[0027]
Also not a ceramic substrate 2, the corrosion resistant material 3 and the intermediate layer 4a, 4b, to, prepare raw material powder becomes 4c.
[0028]
(Manufactured by adjusting the raw material for the ceramic substrate)
Silicon oxide as a sintering aid to aluminum oxide as a main component, magnesium oxide, paraffin wax oxide calcium, and the like to the raw material powder which contains 0.1 to 10 mass%, wax emulsion (wax + emulsifier), PVA ( polyvinyl alcohol), after mixing by adding a desired organic binder such PEG (polyethylene glycol), it is made by adjusting the raw material was granulated by spray drying.
[0029]
(Produced by tone of raw materials for corrosion-resistant material)
After mixing aluminum oxide powder and yttria powder in the ratio of the following formula and calcining at 1000-1600 ° C., they are pulverized to have an average particle size of 0.6-1.2 μm and a BET specific surface area of 2-5 m. 2 / g YAG powder is prepared .
[0030]
A + B = 1
0.365 ≦ A ≦ 0.385
0.615 ≦ B ≦ 0.635
A: molar amount of yttria B: molar amount of aluminum oxide Next, a desired organic binder such as paraffin wax , PVA (polyvinyl alcohol) , wax emulsion (wax + emulsifier) , PEG (polyethylene glycol), etc. is added to this YAG powder. after mixing and, to, prepare raw material was granulated by spray drying.
[0031]
(Produced by tone of raw materials for the intermediate layer)
The above-mentioned ceramic substrate material for a corrosion-resistant material for a raw material by mixing the desired One not a volume percent added to adjust the raw material for the intermediate layer.
[0032]
Next, it shape | molds to a predetermined shape by metal mold | die molding using each above-mentioned raw material. The molding using a die press, first pressed with a constant pressure after filling the raw material for ceramic substrates in the mold press forming machine to form a ceramic substrate molded body. Next , the intermediate layer raw materials for forming the intermediate layers 4a , 4b , and 4c are sequentially filled on the ceramic base material molded body, and each of the raw materials is pressed with a certain pressure, and a plurality of the raw materials are formed on the ceramic base material molded body . forming a middle-layer molded article, which was a corrosion-resistant material shaped body formed in the intermediate layer formed body on the pressing at a predetermined pressure to fill the raw material for corrosion-resistant material middle tier moldings on further, whereby ceramic substrate molded body to obtain a composite molded article composed of the intermediate layer formed body and the corrosion-resistant molded article.
[0033]
Then , the composite molded body is degreased at 300 to 600 ° C. as necessary, and then fired at about 1500 to 1750 ° C. in an air atmosphere to obtain a ceramic base 2 made of an alumina sintered body , YAG ( yttrium aluminum garnet), and corrosion resistant material 3 comprising any one of yttria and a spinel sintered body composed mainly found intermediate layer 4a, 4b, the corrosion resistance member 1 which is bonded via the 4c Complete.
[0034]
In this case, the thickness of the resistant ingredients 3, the thickness by adjusting the filling amount of the raw material for the corrosion-resistant material can be the 200 [mu] m or more, the thickness of the resistance ingredients 3 When more than 200 [mu] m, the consumption of the corrosion resistant material 3 Since it takes time, it can be used for a long time.
[0035]
Incidentally, the resistance ingredients 3 has a thickness less than 200 [mu] m, a uniform thickness of the corrosion resistant material 3 on the intermediate layer 4c, and it is difficult to form a surface of the intermediate layer 4c to fully cover, the anti-corrosion member 1 There is a risk that the corrosion resistance will deteriorate. When the thickness of the corrosion-resistant material 3 exceeds 30 mm, the organic binder contained in the corrosion-resistant material is completely degreased when the corrosion-resistant material is baked to form the sintered corrosion-resistant material 3. it becomes difficult, there is a danger that weaken the mechanical strength of the corrosion-resistant material 3. Thus, resistant food 3 is preferably to keep the thickness thereof or 200 [mu] m, more preferably not good to leave the range of 200Myuemu~30mm.
[0036]
Such a corrosion-resistant member 1 can be suitably used for an inner wall material (chamber), a microwave introduction window , a focus ring and the like of a semiconductor manufacturing apparatus or the like . For example, Oite the etching apparatus shown in FIG. 2, by injecting a halogen-based corrosive gas into the chamber 5, to mark pressurized RF power gas into plasma in the induction coil 9 is wound around to generate a bias applied RF power as well to the lower electrode 7, the desired etching plasma in the focus ring 6 c d Ha 8 collected in the vicinity are rope lines. Plasma generated in the present apparatus, for contacting the chamber 5 and full Okasuringu 6, these components are particularly susceptible to corrosion. So equipped with excellent corrosion resistance by forming a chamber 5 and the focus ring 6 in corrosion-resistant member of the present invention, that the attachment only time or chipping during cleaning or fractures may occur can be prevented.
[0037]
It should be noted that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the gist of the present invention. For example, in the above-described embodiments, the intermediate layer has three layers. one of was formed in the layer, but even in two layers, but it may also be a four or more layers.
[0038]
【Example】
Next, examples of the present invention will be described.
Example 1
( Raw material for ceramic substrate )
Average particle diameter of 1~15μm as a main component, the purity of 95 to 99 mass% of aluminum oxide, silicon oxide as a sintering aid (SiO 2), magnesium oxide (MgO) and calcium oxide (CaO) containing, polyvinyl alcohol (PVA) as an organic binder, was added and mixed, respectively polyethylene glycol (PEG) and wax emulsion were, prepare granulated with material by a spray drying.
[0039]
( Raw material for corrosion resistant materials )
One of YAG (yttrium, aluminum, garnet) , yttria (Y 2 O 3 ) and spinel (MgOAl 2 O 3 ) as a main component is added with cerium oxide (CeO) as a sintering aid, and PVA , PEG as organic binders and after adding and mixing a wax emulsion were, prepare granulated with the material in spray drying.
[0040]
( Raw material for intermediate layer )
The raw material and the raw material for the corrosion-resistant material for a ceramic substrate was added and mixed in proportions shown in Table 1, and the raw material for the intermediate layer was made of tone.
[0041]
Next, a ceramic substrate at a die press forming raw material, and successively molded using an intermediate layer material and material for corrosion-resistant material, each of a diameter of 30 mm, Thickness is 2mm ceramic substrate molded body, to obtain a composite molded article composed of the intermediate layer formed body and the corrosion-resistant molded article.
[0042]
Then, degreased 2 hours double synthetic form at 350 ° C., the ceramic substrate was fired for 5 hours at 1500-1750 ° C., each corrosion-resistant member sample intermediate layer and the corrosion-resistant material consists of components shown in Table 1 Produced.
[0043]
Further, the conventional example and to the ceramic substrate (diameter 30mm, is 5mm Thickness) consisting of A Rumi Na sintered body on the corrosion-resistant material consisting mainly of YAG, and 1mm are Thickness in 30mm diameter It becomes so were fabricated spraying or sample formed by CVD (sample No.13,14).
[0044]
In addition, the relative density of the corrosion resistant material of each sample was calculated | required by following Formula.
[0045]
(Sintering density / theoretical density) × 100 = relative density (%)
In addition, the ceramic base material of each sample, the thermal expansion coefficient of the intermediate layer and the corrosion-resistant material, was measured in accordance with JIS R 1618 (measuring range, room temperature to 1500 ° C.).
[0046]
And in order to evaluate the joining state of each sample , the thermal cycle (room temperature-1400 degreeC) was repeatedly applied to each sample, and what applied the heat cycle to less than 20 times and the corrosion-resistant material peeled from the ceramic base material is XX. What peeled less than 20-30 times was set to x, what peeled less than 90 times was set to (circle), and what was not peeled even 100 times was set to (double-circle).
[0047]
Next, in order to evaluate the corrosion resistance of each sample, the corrosion resistant material of each sample was made into a mirror surface by lapping and set in a RIE (Reactive Ion Etching) apparatus, and exposed to plasma in a Cl 2 gas atmosphere for 3 hours. It was calculated etching rate per minute from the decrease of the quality of corrosion resistant material.
[0048]
The numbers in this etching rate, and the reference sample purity 99.9 mass% of sintered aluminum oxide, shows the relative comparison value upon the etching rate and 1.
[0049]
The evaluation results are shown in Table 1.
[0050]
[Table 1]
Figure 0004601136
[0051]
As is apparent from Table 1, a ceramic base material made of an alumina sintered body , and a corrosion-resistant material made of a sintered body mainly containing any one of YAG (yttrium, aluminum, garnet), yttria and spinel, and a plurality of intermediate layers made of a sintered body containing a ceramic base material component and corrosion-resistant material component is disposed between the ceramic substrate and the corrosion resistant material, a plurality of intermediate layers formed on the ceramic substrate molded body on become bonded by baking the body and corrosion-resistant material formed body sequentially molded to form composite compacts, between the intermediate layer in contact with the ceramic substrate and the ceramic substrate, an intermediate in contact with the corrosion-resistant material and resistant ingredients the embodiment of the present invention that the thermal expansion coefficient difference of the intermediate layers each beauty contact between Oyo the layer is less than 0.9 ppm / ° C. (sample Nanba4~12), ceramic substrate and the intermediate layer, resistance Foodstuff And that the bonding of the intermediate layers each intermediate layer and is in contact is strong, between the intermediate layer in contact with the ceramic substrate and the ceramic substrate, respectively between and the intermediate layer in contact with the corrosion-resistant material and resistant ingredients Because the thermal expansion coefficient difference between the contacting interlayers is very small, the ceramic substrate and the corrosion-resistant material are extremely firmly bonded , and the corrosion-resistant material is peeled off from the ceramic substrate even when repeated thermal cycles are applied. It can be used for a long time.
[0052]
Also, samples of Examples of the present invention is the relative density of the corrosion-resistant material is 98% or more, and the etching rate is at 0.48 (Å / min) or less, since it is very excellent in corrosion resistance, the corrosion-resistant material There is little consumption and it can be used for a long time.
[0053]
On the other hand, in the conventional examples (sample Nos. 13 and 14) in which the corrosion-resistant material is deposited on the ceramic substrate by thermal spraying or CVD, the ceramic substrate and the corrosion-resistant material are weakly bonded and the difference in thermal expansion coefficient is large. Thus, it can be seen that when the heat cycle is applied less than 30 times, the corrosion-resistant material peels off from the ceramic base material and cannot be used for a long time.
[0054]
Further, conventional (Sample Nanba13,14), the etching rate is inferior in corrosion resistance at 0.87 (Å / min) or more, it was found that would exhausted in a short period of time.
[0055]
【The invention's effect】
According to corrosion resistant member of the present invention, a ceramic substrate made of alumina sintered body, YAG (yttrium aluminum garnet), Ru formed of a sintered body mainly composed of any one of yttria and spinel resistant ingredients and, a plurality of intermediate layers Ru formed of a sintered body containing a ceramic base material component and corrosion-resistant material component is disposed between the ceramic substrate and the corrosion resistant material, the plurality of ceramic substrates formed body on become joined by firing the intermediate layer formed body and the corrosion-resistant material formed body sequentially molded to form composite compacts, between the intermediate layer in contact with the ceramic substrate and the ceramic substrate, corrosion materials and anti ingredients during Oyo thermal expansion coefficient difference of the intermediate layers each beauty is in contact is less than 0.9 ppm / ° C. this Toka et the intermediate layer, and the ceramic substrate and the corrosion resistant material is firmly bonded through the intermediate layer in contact with the Ru Tei In addition , since the occurrence of thermal stress due to the difference in thermal expansion coefficient is suppressed, even when heat during use is applied to the corrosion-resistant member, the corrosion-resistant material does not peel from the ceramic substrate, and the corrosion-resistant member Can always be used stably.
[0056]
Further, according to the corrosion resistance member of the present invention, when the relative density of the corrosion-resistant material is 98% or more, the presence of open pores is almost gone and corrosion extremely excellent.
[0057]
Furthermore, according to the corrosion resistance member of the present invention, when the thickness of the corrosion resistant material is 200μm or more, it takes time to exhaustion of the corrosion-resistant material, it is possible to provide a long-term use.
[Brief description of the drawings]
1 is a perspective view showing an example of implementation in the form of a corrosion-resistant member of the present invention.
FIG. 2 is a schematic view of the inside of an etching apparatus provided with the corrosion-resistant member of the present invention.
[Explanation of symbols]
1: Corrosion-resistant member 2: Ceramic substrate 3: Corrosion-resistant material 4: Intermediate layer 5: Chamber 6: Focus ring 7: Lower electrode 8: Wafer 9: Induction coil

Claims (3)

アルミナ質焼結体から成るセラミック基材YAG(イットリウム・アルミニウム・ガーネット),イットリアおよびスピネルいずれか1種を主成分とする焼結体から成る耐食材、前記セラミック基材と前記耐食材との間に配置されるセラミック基材成分と耐食材成分とを含有する焼結体から成る複数の中間層、セラミック基材成形体上に複数の中間層成形体および耐食材成形体を順次成形して形成した複合成形体を焼成することによって接合して成り、前記セラミック基材と該セラミック基材に接する前記中間層との間、前記耐食材と該耐食材に接する前記中間層との間およそれぞれが接する前記中間層間の熱膨張係数差0.9ppm/℃以下であることを特徴とする耐食性部材。 Wherein a ceramic substrate made of alumina sintered body, YAG (yttrium aluminum garnet), and corrosion-resistant material made of any one of yttria and a spinel sintered body mainly composed, and the ceramic base material resistant and a plurality of intermediate layers made of a sintered body containing a ceramic base material component and corrosion-resistant material component is disposed between the food, a plurality of intermediate layers compacts and corrosion-resistant material molded body into a ceramic substrate formed body on become joined by firing sequentially molded to form a composite molded article, between the intermediate layer in contact with said ceramic substrate and said ceramic substrate, said intermediate layer in contact with the corrosion-resistant material and resistant ingredients corrosion-resistant member characterized by difference in thermal expansion coefficient between and respectively contact the intermediate layers is not more than 0.9 ppm / ° C. with. 前記耐食材は相対密度が98%以上であることを特徴とする請求項1に記載の耐食性部材。The corrosion-resistant member according to claim 1, wherein the corrosion-resistant material has a relative density of 98% or more. 前記耐食材は厚みが200μm以上であることを特徴とする請求項1または請求項2に記載の耐食性部材。The corrosion-resistant member according to claim 1 or 2, wherein the corrosion-resistant material has a thickness of 200 µm or more.
JP2000244674A 2000-08-11 2000-08-11 Corrosion resistant material Expired - Fee Related JP4601136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000244674A JP4601136B2 (en) 2000-08-11 2000-08-11 Corrosion resistant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000244674A JP4601136B2 (en) 2000-08-11 2000-08-11 Corrosion resistant material

Publications (2)

Publication Number Publication Date
JP2002052651A JP2002052651A (en) 2002-02-19
JP4601136B2 true JP4601136B2 (en) 2010-12-22

Family

ID=18735329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000244674A Expired - Fee Related JP4601136B2 (en) 2000-08-11 2000-08-11 Corrosion resistant material

Country Status (1)

Country Link
JP (1) JP4601136B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4092122B2 (en) * 2002-03-28 2008-05-28 京セラ株式会社 Semiconductor manufacturing apparatus member and manufacturing method thereof
DE602005024702D1 (en) * 2004-09-29 2010-12-23 Sekisui Chemical Co Ltd PLASMA PROCESSING SYSTEM
JP4551290B2 (en) * 2005-07-22 2010-09-22 積水化学工業株式会社 Normal pressure plasma treatment equipment for water repellency
JP2016065302A (en) * 2014-09-17 2016-04-28 東京エレクトロン株式会社 Component for plasma treatment apparatus and manufacturing method of the component
JP6625856B2 (en) * 2015-10-07 2019-12-25 株式会社日本触媒 Steam electrolysis cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137777A (en) * 1988-11-18 1990-05-28 Suzuki Motor Co Ltd Bonding of ceramics
JPH11302091A (en) * 1998-04-20 1999-11-02 Ngk Insulators Ltd Corrosion resistant ceramic member
JP2000103689A (en) * 1998-09-28 2000-04-11 Kyocera Corp Alumina sintered compact, its production and plasma- resistant member
JP2000159572A (en) * 1998-11-27 2000-06-13 Kyocera Corp Anticorrosive ceramic member
JP2000164454A (en) * 1998-11-27 2000-06-16 Kyocera Corp Closed capacitor
JP2000191370A (en) * 1998-12-28 2000-07-11 Taiheiyo Cement Corp Member for treatment chamber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137777A (en) * 1988-11-18 1990-05-28 Suzuki Motor Co Ltd Bonding of ceramics
JPH11302091A (en) * 1998-04-20 1999-11-02 Ngk Insulators Ltd Corrosion resistant ceramic member
JP2000103689A (en) * 1998-09-28 2000-04-11 Kyocera Corp Alumina sintered compact, its production and plasma- resistant member
JP2000159572A (en) * 1998-11-27 2000-06-13 Kyocera Corp Anticorrosive ceramic member
JP2000164454A (en) * 1998-11-27 2000-06-16 Kyocera Corp Closed capacitor
JP2000191370A (en) * 1998-12-28 2000-07-11 Taiheiyo Cement Corp Member for treatment chamber

Also Published As

Publication number Publication date
JP2002052651A (en) 2002-02-19

Similar Documents

Publication Publication Date Title
US6783875B2 (en) Halogen gas plasma-resistive members and method for producing the same, laminates, and corrosion-resistant members
KR100489172B1 (en) A film of yittria-alumina complex oxide, a method of producing the same, a sprayed film, a corrosion resistant member, a member effective for reducing particle generation
US6858332B2 (en) Yttria-alumina composite oxide films, laminated bodies having the same, a method for producing the same, and corrosion resistant members and films
JP4651166B2 (en) Corrosion resistant material
JP4540221B2 (en) Laminate, corrosion resistant member and halogen gas plasma member
KR20050088051A (en) Corrosion resistant members
JP4601160B2 (en) Corrosion resistant material
JP4601136B2 (en) Corrosion resistant material
JP2000103689A (en) Alumina sintered compact, its production and plasma- resistant member
JP3659435B2 (en) Corrosion resistant member, plasma processing apparatus, semiconductor manufacturing apparatus, liquid crystal manufacturing apparatus, and discharge vessel.
JP4422044B2 (en) Refractory
US20110220285A1 (en) Methods and systems for texturing ceramic components
US7083846B2 (en) Ceramic member
JP2004136647A (en) Manufacturing method of composite sintered body, manufacturing method of composite molded body, and composite sintered body and composite molded body
JP2019069889A (en) Alumina sintered body and production method therefor
JP7231367B2 (en) Alumina sintered body
JP2007176734A (en) Surface-coated ceramic sintered compact
JP2002037660A (en) Plasma-resistant alumina ceramic and method for producing the same
JP2004059397A (en) Plasma resistant member
JP4092122B2 (en) Semiconductor manufacturing apparatus member and manufacturing method thereof
JP4054098B2 (en) Firing jig
JP2002068864A (en) Plasma resistant member and method of manufacturing for the same
JP2002029832A (en) Plasma resistant member and method for manufacturing the same
JP3936007B2 (en) Firing jig
JP2000169953A (en) Corrosion resistant member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees