JP3784180B2 - Corrosion resistant material - Google Patents

Corrosion resistant material Download PDF

Info

Publication number
JP3784180B2
JP3784180B2 JP30829298A JP30829298A JP3784180B2 JP 3784180 B2 JP3784180 B2 JP 3784180B2 JP 30829298 A JP30829298 A JP 30829298A JP 30829298 A JP30829298 A JP 30829298A JP 3784180 B2 JP3784180 B2 JP 3784180B2
Authority
JP
Japan
Prior art keywords
plasma
oxide film
base material
aluminum nitride
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30829298A
Other languages
Japanese (ja)
Other versions
JP2000129388A (en
Inventor
祥二 高坂
等 松之迫
裕見子 伊東
正博 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP30829298A priority Critical patent/JP3784180B2/en
Publication of JP2000129388A publication Critical patent/JP2000129388A/en
Application granted granted Critical
Publication of JP3784180B2 publication Critical patent/JP3784180B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フッ素系や塩素系ガスのプラズマに対して高い耐食性を有する耐食性部材に関し、特に、半導体製造装置の内壁部材や、ウエハなどの被処理物を支持する静電チャック、サセプタなどの支持部材、フォーカスリング、ヒータ等の治具などの半導体製造装置用部材に好適な耐食性部材に関するものである。
【0002】
【従来の技術】
半導体素子などの高集積回路素子の製造に使用されるドライプロセスやプラズマコーティング等プラズマの利用は、近年急速に進んでいる。半導体製造におけるプラズマプロセスとしては、フッ素、塩素等のハロゲン系腐食ガスおよびそのプラズマがその反応性の高さから、気相成長、エッチングやクリーニングに利用されている。
【0003】
これら腐食性ガスに曝される部材に対しては、高い耐食性が要求され、従来より被処理物以外のプラズマに接触する部材は、一般にガラスや石英などのSiO2 を主成分とする材料や、ステンレス、モネルなどの金属、および、セラミックス材料としてアルミナが使用され始めている。
【0004】
また、半導体製造時において、ウエハを固定するリング材などとして、アルミナ、サファイヤ、炭化ケイ素、窒化アルミニウムなどのセラミックス質焼結体が使用されている。
【0005】
【発明が解決しようとする課題】
しかしながら、従来から用いられているガラスや石英はプラズマ中の耐食性が不十分で消耗が激しく、特にフッ素或いは塩素系プラズマに接すると接触面がエッチングされ、表面性状が変化してエッチング条件に影響する等の問題が生じていた。また、ステンレスなどの金属を使用した部材で耐食性が不十分なため、腐食によって特に半導体製造においては不良品発生の原因となっていた。
【0006】
また、アルミナ、サファイア、炭化ケイ素などのセラミックスは、プラズマに対する耐食性が十分でなく、また、窒化アルミニウムセラミックスは、上記の材料に比較すれば、フッ素系ガスや塩素系ガスに対して耐食性に優れるものの、これらのガスのプラズマに曝されると腐食が徐々に進行して焼結体の表面から結晶粒子の脱粒が生じたり、フッ素ガスとの反応によるフッ化アルミなどのパーティクル発生の原因になるという問題が生じている。
【0007】
このようなパーティクルの発生は、半導体の高集積化、プロセスのさらなるクリーン化に伴い、メタル配線の断線、パターンの欠陥等により素子特性の劣化や歩留りの低下等の不具合を発生させる恐れがあった。
【0008】
従って、本発明は、ハロゲン系腐食性ガスやそのプラズマに対して優れた耐食性と同時にパーティクルの発生が少ない耐プラズマ部材を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
上記問題を解決するために、本研究者らは種々の研究を行った結果、窒化アルミニウム焼結体を母材とし、該母材の少なくともハロゲン系腐食性ガス、あるいはそのプラズマに曝される表面に、一般式RE で表される単一酸化物、3RE ・5Al で表されるガーネット、または2RE −Al で表されるメリライトのうちのいずれかから成る周期律表第3a族元素含有酸化物膜を、化学気相成長法あるいは物理気相成長法等によって形成することにより、ハロゲン化ガスやそのプラズマに対して優れた耐食性が発揮されると同時に、パーティクルの発生を抑制できることを見いだした。
【0010】
【発明の実施の形態】
本発明の耐プラズマ部材は、窒化アルミニウム質焼結体を母材とするものであり、その少なくともフッ素系や塩素系のハロゲン系腐食性ガス、あるいはそのプラズマと接触する表面に、周期律表第3a族元素を含有する酸化物からなる被膜を形成してなるものである。
【0011】
この周期律表第3a族元素(RE)含有酸化物としては、一般式RE2 3 で表される単一酸化物や、3RE2 3 ・5Al2 3 で表されるガーネット、2RE2 3 −Al2 3 で表されるメリライトなどが挙げられるが、ガーネットやメリライトは、母材との熱膨張差が大きいために、母材との界面に亀裂が入りやすく剥離が生じやすいことからRE2 3 膜からなることが最も望ましい。
【0012】
なお、周期律表第3a族元素としては、Y、La、Ce、Nd、Sm、Dy、Ho、Er、Yb、Luなどが挙げられるが、特にY、Er、Yb、Luの群から選ばれる少なくとも1種が耐食性に優れる点で望ましい。
【0013】
上記周期律表第3a族元素含有酸化物膜は、高純度であることが望ましく、その点から、上記酸化物膜は、化学気相成長法、特に減圧CVD法やプラズマCVD法、イオンプレーティング法、スパッタリング法などの物理気相成長法により形成することが望ましい。
【0014】
また、上記酸化物膜の膜厚は、耐食性の長期安定性とともに、酸化物膜と母材との熱膨張差に基づく残留応力を緩和させる観点から、1〜100μm、好ましくは5〜50μmが好ましい。
【0015】
また、腐食性ガスあるいはそのプラズマと接触する酸化物膜の表面が粗いと接触面積が増加するために耐食性およびパーティクルが発生しやすくなるために、酸化物膜表面は表面粗さRmaxが1μm以下であることが望ましい。
【0016】
この酸化物膜表面の性状は、母材表面の影響を受けることから、母材となる窒化アルミニウム質焼結体は、相対密度が97%以上の高密度焼結体からなるとともに、表面粗さRmaxが1μm以下であることが望ましい。
【0017】
母材となる窒化アルミニウム質焼結体は、周知の方法によって作成することができ、好適には、半導体製造時の半導体素子への不純物の混入を避ける上では、窒化アルミニウム含有量が99重量%以上の高純度窒化アルミニウム質焼結体からなることが望ましいが、用途に応じては、焼結助剤として、周期律表第3a族元素化合物、アルカリ土類元素化合物などを添加し、成形後、焼成したものが使用される。
【0018】
具体的には、金属不純物で99.9%以上の高純度窒化アルミニウム粉末、あるいはこの原料粉末に対して、周期律表第3a族元素化合物および/またはアルカリ土類元素化合物を酸化物換算による合計で1〜20重量%の割合で添加した混合粉末を所望の成形手段、例えば、金型プレス、冷間静水圧プレス、射出成形、押出し成形、テープ成形等により任意の形状に成形する。
【0019】
また、耐食性部材として、配線層、電極層などの金属層が形成される場合等においては、この成形体の表面にタングステン、モリブデンなどの高融点金属を含有するペーストを印刷し、適宜、積層する。その後、この成形体を1600〜1900℃の窒素含有雰囲気中で焼成することによって作成することができる。
【0020】
【実施例】
純度99.9%以上、酸素含有量が1.0重量%の高純度窒化アルミニウム粉末に対して助剤を添加することなく、プレス成形し、これを窒素雰囲気中で1900℃で焼成して、相対密度が99%の高純度窒化アルミニウム焼結体を作成した。なお、得られた焼結体の表面は、表面粗さRmax1μm以下に鏡面研磨した。その後、この焼結体表面に減圧熱CVD法により、表1に示す各種の厚みの酸化物膜を形成した。なお、酸化物膜の表面は表面粗さRmax0.5μm以下まで研磨処理した。
【0021】
得られた各試料の表面の酸化物膜をX線回折により同定した。また、EPMA(電子線マイクロアナライザ)によって、酸化物膜の厚みを測定した。
【0022】
この試料に対して、RIEプラズマエッチング装置にて、これらをCF4 +CHF3 +Arのフッ素系プラズマ、および、Cl2 の塩素系プラズマに室温で曝し、エッチング速度を調査した。得られた結果を表1に示す。エッチング条件はいずれも圧力10Pa、RF出力1kW、プラズマ照射時間6時間とした。エッチング速度は試験前後の重量変化を基に算出した。
【0023】
また、パーティクルの発生を暴露面を5000倍のSEM観察して、視野中のパーティクル数を測定した。
【0024】
【表1】

Figure 0003784180
【0025】
表1の結果によれば、酸化物膜を全く形成していない高純度窒化アルミニウム質焼結体である試料No.1に比較して、酸化物膜を形成した本発明の試料は、いずれもいずれもエッチング速度が小さく、耐食性が向上していた。しかも、パーティクルの発生量も非常に少ないものであった。
【0026】
但し、ガーネット型(3Y2 3 ・5Al2 3 )、メリライト型(2Y2 3 ・Al2 3 )の酸化物膜においては、酸化物膜の母材との界面の一部に剥離が認められるのに対して、RE2 3 膜は、母材との密着性にも優れ、安定した特性を発揮した。
【0027】
【発明の効果】
以上詳述した通り、本発明の耐食性部材は、窒化アルミニウム質焼結体からなる母材の表面に周期律表第3a族元素含有酸化物膜を形成することにより、フッ素系や塩素系などのハロゲン系腐食性ガス、あるいはそのプラズマに対して、高い耐食性を有するとともに、パーティクルの発生をも抑制することができ、プラズマ処理装置などの半導体製造装置における内壁部材や、被処理物を支持する支持体、静電チャック、ヒーターなどとして好適な部材を提供できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a corrosion-resistant member having high corrosion resistance against plasma of fluorine-based or chlorine-based gas, and particularly supports an inner wall member of a semiconductor manufacturing apparatus, an electrostatic chuck supporting a workpiece such as a wafer, and a susceptor. The present invention relates to a corrosion-resistant member suitable for a semiconductor manufacturing apparatus member such as a member, a focus ring, a jig such as a heater.
[0002]
[Prior art]
In recent years, the use of plasma such as dry process and plasma coating used in the manufacture of highly integrated circuit elements such as semiconductor elements has advanced rapidly. As a plasma process in semiconductor manufacturing, halogen-based corrosive gases such as fluorine and chlorine and their plasmas are used for vapor phase growth, etching and cleaning because of their high reactivity.
[0003]
For members exposed to these corrosive gases, high corrosion resistance is required, and members that come into contact with plasma other than the object to be treated are generally materials mainly composed of SiO 2 such as glass and quartz, Alumina has begun to be used as a metal such as stainless steel and monel, and as a ceramic material.
[0004]
Further, during the manufacture of semiconductors, ceramic sintered bodies such as alumina, sapphire, silicon carbide, and aluminum nitride are used as a ring material for fixing a wafer.
[0005]
[Problems to be solved by the invention]
However, conventionally used glass and quartz have insufficient corrosion resistance in the plasma and are very exhausted, especially when they come into contact with fluorine or chlorine plasma, the contact surface is etched and the surface properties change to affect the etching conditions. Etc. had occurred. In addition, since corrosion resistance is insufficient with a member using a metal such as stainless steel, corrosion has been a cause of defective products particularly in semiconductor manufacturing.
[0006]
In addition, ceramics such as alumina, sapphire, and silicon carbide do not have sufficient corrosion resistance to plasma, and aluminum nitride ceramics have excellent corrosion resistance against fluorine-based gases and chlorine-based gases compared to the above materials. When exposed to plasma of these gases, corrosion gradually progresses, causing crystal grains to come off from the surface of the sintered body, or causing generation of particles such as aluminum fluoride due to reaction with fluorine gas There is a problem.
[0007]
The generation of such particles may lead to problems such as deterioration of device characteristics and a decrease in yield due to disconnection of metal wiring, pattern defects, etc., due to higher integration of semiconductors and further cleaner processes. .
[0008]
Accordingly, an object of the present invention is to provide a plasma-resistant member that has excellent corrosion resistance against halogen-based corrosive gas and plasma thereof and at the same time generates less particles.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the present inventors conducted various studies. As a result, the surface of the base material exposed to at least a halogen-based corrosive gas or plasma of the base material is an aluminum nitride sintered body. , a single oxide represented by the general formula RE 2 O 3, of the melilite represented by 3re 2 O 3 · 5Al garnet represented by 2 O 3 or 2RE 2 O 3 -Al 2 O 3, By forming the Group 3a element-containing oxide film of any of the periodic tables by chemical vapor deposition or physical vapor deposition, excellent corrosion resistance against halogenated gas and its plasma is exhibited. At the same time, it was found that the generation of particles can be suppressed.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The plasma-resistant member of the present invention is based on an aluminum nitride sintered body, and at least a fluorine-based or chlorine-based halogen-based corrosive gas or a surface in contact with the plasma on the periodic table. A film made of an oxide containing a group 3a element is formed.
[0011]
As the Periodic Table Group 3a elements (RE) containing oxide, and a single oxide represented by the general formula RE 2 O 3, garnet represented by 3RE 2 O 3 · 5Al 2 O 3, 2RE 2 Examples include melilite represented by O 3 —Al 2 O 3 , but garnet and melilite have a large difference in thermal expansion from the base material, so that the interface with the base material is likely to crack and easily peel off. To RE 2 O 3 film.
[0012]
The group 3a element of the periodic table includes Y, La, Ce, Nd, Sm, Dy, Ho, Er, Yb, Lu, and the like, and is particularly selected from the group of Y, Er, Yb, Lu. At least one type is desirable in that it has excellent corrosion resistance.
[0013]
It is desirable that the Group 3a element-containing oxide film of the periodic table has high purity. From this point, the oxide film is formed by chemical vapor deposition, particularly, low pressure CVD, plasma CVD, ion plating. Preferably, it is formed by a physical vapor deposition method such as a sputtering method or a sputtering method.
[0014]
The film thickness of the oxide film is preferably 1 to 100 μm, preferably 5 to 50 μm, from the viewpoint of relieving residual stress based on the difference in thermal expansion between the oxide film and the base material as well as long-term corrosion resistance. .
[0015]
Further, if the surface of the oxide film in contact with the corrosive gas or its plasma is rough, the contact area increases, so that corrosion resistance and particles are likely to be generated. Therefore, the oxide film surface has a surface roughness Rmax of 1 μm or less. It is desirable to be.
[0016]
Since the properties of the oxide film surface are affected by the surface of the base material, the aluminum nitride sintered body as the base material is composed of a high-density sintered body having a relative density of 97% or more and has a surface roughness. Rmax is desirably 1 μm or less.
[0017]
The aluminum nitride sintered body as a base material can be prepared by a well-known method, and preferably the aluminum nitride content is 99% by weight in order to avoid contamination of the semiconductor element during semiconductor manufacturing. It is desirable to consist of the above high-purity aluminum nitride sintered body, but depending on the application, as a sintering aid, a periodic table group 3a element compound, an alkaline earth element compound, etc. are added, and after molding A fired product is used.
[0018]
Specifically, a high-purity aluminum nitride powder of 99.9% or more of metal impurities, or a total of the Group 3a element compound and / or alkaline earth element compound of the periodic table in terms of oxides with respect to this raw material powder The mixed powder added at a ratio of 1 to 20% by weight is formed into a desired shape by a desired forming means such as a die press, cold isostatic pressing, injection molding, extrusion molding, tape molding or the like.
[0019]
In addition, when a metal layer such as a wiring layer or an electrode layer is formed as a corrosion-resistant member, a paste containing a refractory metal such as tungsten or molybdenum is printed on the surface of the molded body and laminated as appropriate. . Then, it can produce by baking this molded object in 1600-1900 degreeC nitrogen containing atmosphere.
[0020]
【Example】
A high-purity aluminum nitride powder having a purity of 99.9% or more and an oxygen content of 1.0% by weight was press-molded without adding an auxiliary agent, and fired at 1900 ° C. in a nitrogen atmosphere. A high-purity aluminum nitride sintered body having a relative density of 99% was prepared. The surface of the obtained sintered body was mirror-polished to a surface roughness Rmax of 1 μm or less. Thereafter, oxide films having various thicknesses shown in Table 1 were formed on the surface of the sintered body by a low pressure thermal CVD method. Note that the surface of the oxide film was polished to a surface roughness Rmax of 0.5 μm or less.
[0021]
The oxide film on the surface of each obtained sample was identified by X-ray diffraction. Moreover, the thickness of the oxide film was measured by EPMA (electron beam microanalyzer).
[0022]
These samples were exposed to CF 4 + CHF 3 + Ar fluorine-based plasma and Cl 2 chlorine-based plasma at room temperature using an RIE plasma etching apparatus, and the etching rate was investigated. The obtained results are shown in Table 1. All of the etching conditions were a pressure of 10 Pa, an RF output of 1 kW, and a plasma irradiation time of 6 hours. The etching rate was calculated based on the weight change before and after the test.
[0023]
In addition, the number of particles in the field of view was measured by observing the exposed surface with an SEM at a magnification of 5000 times.
[0024]
[Table 1]
Figure 0003784180
[0025]
According to the results in Table 1, all of the samples of the present invention in which the oxide film was formed as compared with the sample No. 1 which is a high-purity aluminum nitride sintered body in which no oxide film was formed. In both cases, the etching rate was low and the corrosion resistance was improved. Moreover, the amount of generated particles was very small.
[0026]
However, the garnet type (3Y 2 O 3 · 5Al 2 O 3), in the oxide film of the melilite type (2Y 2 O 3 · Al 2 O 3), peeling a part of the interface between the base material of the oxide film On the other hand, the RE 2 O 3 film was excellent in adhesion with the base material and exhibited stable characteristics.
[0027]
【The invention's effect】
As described above in detail, the corrosion-resistant member of the present invention is formed of a group 3a element-containing oxide film of the periodic table on the surface of a base material made of an aluminum nitride sintered body, thereby producing a fluorine-based or chlorine-based material. It has high corrosion resistance against halogen-based corrosive gas or its plasma, and can also suppress the generation of particles, and it supports inner wall members and semiconductor objects in semiconductor manufacturing equipment such as plasma processing equipment. A member suitable as a body, electrostatic chuck, heater or the like can be provided.

Claims (2)

窒化アルミニウム焼結体を母材とし、該母材の少なくともハロゲン系腐食性ガス、あるいはそのプラズマに曝される表面に、一般式RE で表される単一酸化物、3RE ・5Al で表されるガーネット、または2RE −Al で表されるメリライトのうちのいずれかから成る周期律表第3a族元素含有酸化物膜を形成したことを特徴とする耐食性部材。An aluminum nitride sintered body is used as a base material, and a single oxide represented by the general formula RE 2 O 3 , 3RE 2 O 3 is formed on the surface of the base material exposed to at least a halogen-based corrosive gas or plasma thereof. · 5Al 2 O 3 garnet represented or 2RE 2 O 3 -Al 2 O 3 at, characterized in that the formation of the periodic table group 3a element-containing oxide film made from any of the melilite represented, Corrosion resistant member. 前記周期律表第3a族元素含有酸化物膜の膜厚を1〜100μmに形成したことを特徴とする請求項1記載の耐食性部材。The corrosion-resistant member according to claim 1, wherein a film thickness of the Group 3a element-containing oxide film of the periodic table is 1 to 100 μm .
JP30829298A 1998-10-29 1998-10-29 Corrosion resistant material Expired - Fee Related JP3784180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30829298A JP3784180B2 (en) 1998-10-29 1998-10-29 Corrosion resistant material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30829298A JP3784180B2 (en) 1998-10-29 1998-10-29 Corrosion resistant material

Publications (2)

Publication Number Publication Date
JP2000129388A JP2000129388A (en) 2000-05-09
JP3784180B2 true JP3784180B2 (en) 2006-06-07

Family

ID=17979293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30829298A Expired - Fee Related JP3784180B2 (en) 1998-10-29 1998-10-29 Corrosion resistant material

Country Status (1)

Country Link
JP (1) JP3784180B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6805952B2 (en) * 2000-12-29 2004-10-19 Lam Research Corporation Low contamination plasma chamber components and methods for making the same
JP4663927B2 (en) * 2001-08-29 2011-04-06 信越化学工業株式会社 Rare earth-containing oxide member
JP5324029B2 (en) * 2006-03-20 2013-10-23 東京エレクトロン株式会社 Ceramic coating for semiconductor processing equipment
US8865291B2 (en) 2011-05-25 2014-10-21 Ngk Insulators, Ltd. Plasma-resistant member
CN113611589B (en) * 2021-10-08 2021-12-24 中微半导体设备(上海)股份有限公司 Component, plasma device, method for forming corrosion-resistant coating and device thereof

Also Published As

Publication number Publication date
JP2000129388A (en) 2000-05-09

Similar Documents

Publication Publication Date Title
US10840112B2 (en) Coated article and semiconductor chamber apparatus formed from yttrium oxide and zirconium oxide
EP1277850B1 (en) Sprayed film of yttria-alumina complex oxide
KR101304082B1 (en) Corrosion resistant multilayer member
US6632549B1 (en) Corrosion-resistant member, wafer-supporting member, and method of manufacturing the same
US8623527B2 (en) Semiconductor processing apparatus comprising a coating formed from a solid solution of yttrium oxide and zirconium oxide
TWI695822B (en) Method and apparatus which reduce the erosion rate of surfaces exposed to halogen-containing plasmas
US6933254B2 (en) Plasma-resistant articles and production method thereof
US20060051602A1 (en) Coating structure and method
JPH1045461A (en) Corrosion resistant member
JPH1045467A (en) Corrosion resistant member
JPH11214365A (en) Member for semiconductor element manufacturing device
JP2000103689A (en) Alumina sintered compact, its production and plasma- resistant member
JP3784180B2 (en) Corrosion resistant material
JP2002226274A (en) Corrosion resistant ceramic material, method for manufacturing the same and product for manufacturing semiconductor
JP3808245B2 (en) Chamber component for semiconductor manufacturing
JP4641609B2 (en) Corrosion resistant material
JP3500278B2 (en) Corrosion resistant materials for semiconductor manufacturing
JP2009234877A (en) Member used for plasma processing apparatus
JPH11279761A (en) Corrosion resistant member
JP4623794B2 (en) Alumina corrosion resistant member and plasma apparatus
JP2004107718A (en) Stacked body, thermal spray coating and production method for stacked body
JP2002293630A (en) Plasma resistant member and method of producing the same
WO2023013211A1 (en) Wafer support
JPH11278944A (en) Silicon nitride corrosion resistant member and its production
TWI852155B (en) Method of manufacturing chamber component for processing chamber

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees