JP3500278B2 - Corrosion resistant materials for semiconductor manufacturing - Google Patents

Corrosion resistant materials for semiconductor manufacturing

Info

Publication number
JP3500278B2
JP3500278B2 JP26456197A JP26456197A JP3500278B2 JP 3500278 B2 JP3500278 B2 JP 3500278B2 JP 26456197 A JP26456197 A JP 26456197A JP 26456197 A JP26456197 A JP 26456197A JP 3500278 B2 JP3500278 B2 JP 3500278B2
Authority
JP
Japan
Prior art keywords
sintered body
plasma
fluorine
chlorine
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26456197A
Other languages
Japanese (ja)
Other versions
JPH11102900A (en
Inventor
裕見子 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP26456197A priority Critical patent/JP3500278B2/en
Publication of JPH11102900A publication Critical patent/JPH11102900A/en
Application granted granted Critical
Publication of JP3500278B2 publication Critical patent/JP3500278B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、特にフッ素系や塩
素系腐食性ガス、或いはフッ素系や塩素系プラズマに対
して高い耐食性を有する半導体製造用装置の内壁部材や
被処理物を支持する支持体などの治具等として使用され
る部材に関するものである。 【0002】 【従来の技術】半導体素子などの高集積回路素子の製造
に使用されるドライプロセスやプラズマコーティング等
プラズマの利用は近年急速に進んでいる。半導体製造に
おけるプラズマプロセスとしては、フッ素系等のハロゲ
ン系腐食ガスがその反応性の高さから、気相成長、エッ
チングやクリーニングに利用されている。 【0003】これら腐食性ガスに接触する部材は、高い
耐食性が要求される。従来より被処理物以外のこれらプ
ラズマに接触する部材は、一般にガラスや石英などのS
iO2 を主成分とする材料や、ステンレス、モネル等の
金属が多用されている。 【0004】また、半導体製造時において、ウェハを支
持固定するサセプタ材としてアルミナ焼結体、サファイ
ア、AlNの焼結体、又はこれらをCVD法等により表
面被覆したものが耐食性に優れるとして使用されてい
る。また、グラファイト、窒化硼素をコーティングした
ヒーター等も使用されている。 【0005】 【発明が解決しようとする課題】しかし、従来から用い
られているガラスや石英ではプラズマ中の耐食性が不充
分で消耗が激しく、特にフッ素或いは塩素プラズマに接
すると接触面がエッチングされ、表面性状が変化してエ
ッチング条件に影響する等の問題が生じていた。 【0006】また、ステンレスなどの金属を使用した部
材でも耐食性が不充分なため、腐食によって特に半導体
製造においては不良品発生の原因となる。 【0007】アルミナ、AlNの焼結体は、上記の材料
に比較してフッ素系ガスに対して耐食性に優れるもの
の、高温でプラズマと接すると腐食が徐々に進行して焼
結体の表面から結晶粒子の脱粒が生じ、パーティクル発
生の原因になるという問題が起きている。 【0008】このようなパーティクルの発生は、半導体
の高集積化、プロセスの更なるクリーン化に伴い、イオ
ン衝撃や、気相で反応生成したごく微細なパーティクル
によってメタル配線の断線、パターンの欠陥等により素
子特性の劣化や歩留りの低下等の不具合を発生する恐れ
が生じている。 【0009】本発明者は、このような問題を解決するた
め、先にフッ素・塩素系プラズマに対して材料表面に安
定なハロゲン化物を形成する周期律表第2A、3A族元
素を主成分とする材料により形成することを提案してき
た。しかしながら、周期律表第2A、3A族元素を主成
分とする材料は、フッ素・塩素系のプラズマに対しては
安定ではあっても、材料表面に形成されたハロゲン化物
の脱落や、気相における反応によってパーティクルが発
生してしまうものであった。 【0010】 【問題を解決するための手段】本発明者は、フッ素系及
び塩素系腐食ガス或いはプラズマに対して、半導体の性
能を損ねるような元素を含まず、且つパーティクルを発
生しない高耐食性材料について検討を重ねた結果、緻密
な炭化硼素は、フッ素や塩素と反応した場合において
も、蒸気圧の高い反応物が生成されることから、パーテ
ィクルを発生することなく、ガスとして系外に放出さ
れ、しかも酸素を含まないフッ素系及び塩素系腐食ガス
或いはプラズマとは反応しにくいために耐食性にも優れ
ると言う優れた特性を有することを見いだした。 【0011】即ち、本発明の耐食性部材は、上記の知見
に基づき完成されたものであり、フッ素系及び塩素系腐
食ガス或いはそのプラズマに曝される耐食性部材におけ
る少なくとも前記腐食ガスやプラズマに直接接触する部
分を、相対密度が98%以上の炭化硼素(B4 C)焼結
体によって形成することにより、高温・高密度のフッ素
系及び塩素系腐食雰囲気に長時間の耐食性を有し、且つ
コンタミネーションの発生やパーティクルを発生しない
耐食性部材を提供するものである。 【0012】 【発明の実施の形態】本発明の耐食性部材は、フッ素系
または塩素系等のハロゲン系の腐食ガスまたはプラズマ
に曝される部材であり、フッ素系ガスとしては、S
6 、CF4 、CHF3 、ClF3 、HF等が、また塩
素系ガスとしては、Cl2 、BCl3 、HCl等が挙げ
られ、これらのガスが導入された雰囲気にマイクロ波や
高周波等を導入するとこれらのガスがプラズマ化され
る。 【0013】本発明によれば、このようなハロゲン系の
腐食ガスあるいはそのプラズマに曝される部位を、相対
密度が98%以上の炭化硼素(B4 C)焼結体から構成
するものである。また、部品としての耐久性を維持する
ためには、300MPa以上の抗折強度を有することが
望ましい。 【0014】炭化硼素焼結体は、低密度で多量の気孔を
有する場合は、それだけ腐食ガスやプラズマとの接触面
積が増加し、消耗が速くなるため、少なくともガスやプ
ラズマとの接触部位においては、相対密度が98%以
上、、特に99%以上がよく、さらには開気孔率0.2
%以下の緻密体であることが必要である。 【0015】また、シリコンウエハの大口径化に伴い、
製造装置や構成部品自体も大型化が進んでいるため、3
00MPa以上の強度を有する焼結体でなければ、チャ
ンバー材や保護カバー、ライナーなどの構成材としての
信頼性に欠ける。 【0016】なお、この炭化硼素焼結体は、フッ素系ま
たは塩素系などのハロゲン系の腐食ガスまたはそのプラ
ズマに曝される部位に、少なくともその厚みが10μm
以上であることが、優れた耐食性を付与する上で望まし
い。つまり、その厚みが10μmより薄いと優れた耐食
効果が期待できないためである。 【0017】また、上記炭化硼素の焼結体は、従来公知
の製造方法、例えば、平均粒径20μm以下の炭化硼素
粉末を、モールド中に充填あるいは所望の形状に成形
し、2100〜2300℃の非酸化性雰囲気中でホット
プレスすることにより得られる。この時、C(カーボ
ン)やSiC、Si3 4 等の焼結助剤を添加して、非
酸化性雰囲気下あるいは真空中でより低温で焼成するこ
ともできる。さらに、成形体または焼結体を熱間静水圧
焼成により1000気圧以上の不活性雰囲気中で加熱処
理して、さらに緻密化することもできる。 【0018】また、本発明の耐食性部材としては、上記
のようにして作製される炭化硼素焼結体にとどまらず、
周知のゾルゲル法により液相を塗布し焼成した薄膜状焼
結体でもよい。これらの中では、前述したような粉末を
成形し焼成した焼結体であることが、あらゆる部材への
適用性に優れることから最も望ましい。 【0019】また、炭化硼素焼結体からなる部材中にお
いて、フッ素や塩素などのハロゲン系腐食ガスやプラズ
マに腐食されやすいSi、Ge、Mo、Wの含有量は全
量中1重量%以下に抑えることが好ましい。但し、これ
らのフッ素に腐食されやすい元素が主結晶粒子内に固溶
して粒界に存在しない場合はこの限りでない。 【0020】 【実施例】 実施例1 以下に具体的なプラズマ照射実験の結果について述べ
る。まず、B4 C焼結体として、純度99.5%以上の
粉体を窒素雰囲気中で2180℃で焼成して、相対密度
99.1%の焼結体を作製した。なお、この焼結体のJ
ISR1601に基づく4点曲げ強度は420MPaで
あった。 【0021】さらに、同じ原料を用いて、2020〜2
300℃の温度範囲でホットプレス焼成して相対密度の
異なる種々のB4 C焼結体を作製した。また、C、Si
Cを焼結助剤としてAr雰囲気中で加圧焼成した焼結体
も作製した。 【0022】また、比較のために、種々のB4 C以外の
焼結体を作製した。まず、BN焼結体は純度99.5%
のBN粉末を2000℃でホットプレス焼成して作製し
た。 【0023】Si3 4 焼結体は、Si3 4 粉末に、
焼結助剤としてY2 3 3重量%、Al2 3 4重量%
添加して、窒素雰囲気中で1750℃で焼成して作製し
た。SiC焼結体は、α−SiC粉末にB4 Cを0.6
重量%、カーボンを2重量%添加して、非酸化雰囲気中
2060℃で焼成した。Al2 3 焼結体は、助剤を添
加せず大気中、1800℃で焼成し、AlN焼結体も焼
結助剤を添加せず、窒素中2060℃で焼成して作製し
た。また、Si多結晶体、およびSiO2 単結晶(石
英)も準備した。 【0024】得られた各焼結体について、焼結体の相対
密度をアルキメデス法に基づき算出した。また、抗折強
度はJISR16014点曲げで測定した。 【0025】各部材について、RIEプラズマエッチン
グ装置にて、これらをCF4 (60sccm)+ Ar
(60sccm)、SF6 (80sccm)のフッ素系
プラズマに室温で曝し、エッチングレートとパーティク
ルの有無を調査した。結果を表1、2に示す。エッチン
グ条件はいずれも圧力10Pa、RF出力1kW、プラ
ズマ照射時間3時間とした。エッチングレートはテスト
前後の重量変化を基に算出し、パーティクルの有無は電
子顕微鏡にて試料表面を観察して、表面への粒子の付着
の有無を観察した。 【0026】 【表1】 【0027】 【表2】 【0028】表1の結果によれば、BN焼結体からなる
試料No.1は非常に消耗が激しく使用に耐えない。ま
た、Si,SiO2 (石英)、Si3 4 焼結体からな
る試料No.4〜6もいずれも消耗が激しく、特にSi3
4 焼結体からなる試料No.6ではSi3 4 粒子が選
択的にエッチングされ、残留した粒界相がパーティクル
発生の原因となっていた。SiC焼結体の試料No.7は
表面が黒く変色し炭素が析出していた。Al2 3 焼結
体やAlN焼結体の試料No.8、9は、エッチングレー
トは低いものの、表面に脱粒やフッ化物の堆積が生じて
いた。一方、B4C焼結体からなる試料No.2、3で
は、エッチングレートが低く、かつ表面に脱粒や生成物
の堆積などは見られなかった。 【0029】また、表2の結果によれば、ホットプレス
焼成して作製した試料No.10〜14のうち、試料No.
10は、粒成長が著しく、強度が低下した。試料No.1
4は、相対密度が98%より低く、強度の低下に加え
て、エッチング面の気孔を起点に腐食が進行し、耐食性
が低下した。その他の焼結体については、ホットプレス
焼成、助剤を添加した雰囲気焼成共に良好な特性を示し
た。 【0030】実施例2 実施例1と同様な材料を、RIEプラズマエッチング装
置にて、BCl3 (100sccm)の塩素プラズマ中
に室温で曝し、エッチングレートとパーティクルの有無
を調査した。エッチング条件は、圧力4Pa、RF出力
1.8kW、プラズマ照射時間3時間とした。評価方法
は実施例1と同様である。 【0031】 【表3】 【0032】 【表4】 【0033】表3によれば、BN焼結体からなる試料N
o.16は、非常に消耗が激しく使用に耐えない。他材料
も実施例1と同様にエッチングレートと反応生成物のパ
ーティクル化を考え合わせると、B4 C焼結体が特に優
れた特性を示した。 【0034】表4によれば、相対密度が98%より低い
試料No.26は、実施例1と同様に強度および耐食性が
低下した。その他の焼結体については、ホットプレス焼
成、助剤を添加した雰囲気焼成共に良好な特性を示し
た。 【0035】この様に、B4 C焼結体からなる部材を用
いることにより、フッ素系・塩素系ガスに対する耐食性
に優れ、コンタミネーションやパーティクルを発生しな
い半導体製造用部品が実現できる。 【0036】 【発明の効果】本発明によれば、フッ素系及び塩素系腐
食性ガス或いはプラズマに曝される部材として炭化硼素
を主成分とした材料を使用することにより、高温・高密
度のフッ素系及び塩素系腐食雰囲気に長時間の耐久性を
有し、且つコンタミネーションやパーティクルを発生し
ないことから、半導体製造用装置、とりわけプラズマ処
理装置の内壁部材や被処理物を支持する支持体などの治
具等の部材として使用することにより、半導体製造の歩
留り向上とともに高品質の半導体素子を作製することが
できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for manufacturing semiconductors having high corrosion resistance especially to fluorine-based or chlorine-based corrosive gas or fluorine-based or chlorine-based plasma. The present invention relates to a member used as a jig or the like such as an inner wall member or a support for supporting an object to be processed. 2. Description of the Related Art The use of plasma, such as a dry process and plasma coating, used for manufacturing highly integrated circuit devices such as semiconductor devices has been rapidly advancing in recent years. As a plasma process in semiconductor manufacturing, a halogen-based corrosive gas such as a fluorine-based gas is used for vapor phase growth, etching and cleaning due to its high reactivity. [0003] These members that come into contact with corrosive gases are required to have high corrosion resistance. Conventionally, members that come into contact with these plasmas other than the object to be processed are generally made of glass, quartz or the like.
Materials containing iO 2 as a main component and metals such as stainless steel and Monel are frequently used. [0004] In the manufacture of semiconductors, as a susceptor material for supporting and fixing a wafer, a sintered body of alumina, sapphire, or a sintered body of AlN, or a surface-coated body thereof by a CVD method or the like is used because of its excellent corrosion resistance. I have. Further, a heater coated with graphite or boron nitride is also used. [0005] However, the glass and quartz used conventionally have insufficient corrosion resistance in plasma and are intensely consumed. In particular, when they come into contact with fluorine or chlorine plasma, the contact surface is etched. There have been problems such as a change in surface properties, which affects the etching conditions. Further, even members made of metal such as stainless steel have insufficient corrosion resistance, so that corrosion causes defective products especially in semiconductor manufacturing. [0007] Alumina and AlN sintered bodies have better corrosion resistance to fluorine-based gas than the above materials, but when they come into contact with plasma at high temperature, the corrosion gradually progresses and the surface of the sintered body crystallizes. There is a problem that particles are shed and cause particles to be generated. [0008] Such particles are generated due to ion bombardment, breakage of metal wiring, pattern defects, etc. due to ion bombardment and extremely fine particles generated by reaction in the gas phase, as semiconductors become more highly integrated and processes become even cleaner. As a result, there is a possibility that problems such as deterioration of element characteristics and yield may occur. In order to solve such a problem, the inventor of the present invention has first made a group 2A or 3A element of the periodic table which forms a stable halide on the material surface against fluorine / chlorine plasma. It has been proposed to be formed of a material to be used. However, a material containing a Group 2A or 3A element of the periodic table as a main component is stable against fluorine-chlorine-based plasma, but the halide formed on the surface of the material falls off, Particles were generated by the reaction. SUMMARY OF THE INVENTION The present inventor has developed a highly corrosion-resistant material which does not contain elements that impair the performance of a semiconductor and does not generate particles against fluorine-based and chlorine-based corrosive gases or plasmas. As a result of repeated investigations, dense boron carbide is released out of the system as a gas without generating particles, because even if it reacts with fluorine or chlorine, a reactant with a high vapor pressure is generated. In addition, it has been found that it has excellent characteristics that it is hardly reacted with a fluorine-based or chlorine-based corrosive gas or plasma containing no oxygen and therefore has excellent corrosion resistance. That is, the corrosion-resistant member of the present invention has been completed on the basis of the above findings, and has at least direct contact with at least the corrosion gas or plasma in the corrosion-resistant member exposed to a fluorine-based or chlorine-based corrosion gas or its plasma. Is formed by a sintered body of boron carbide (B 4 C) having a relative density of 98% or more, which has a long-time corrosion resistance in a high-temperature, high-density fluorine-based and chlorine-based corrosive atmosphere, and is contaminated. An object of the present invention is to provide a corrosion-resistant member that does not generate nation or particles. DESCRIPTION OF THE PREFERRED EMBODIMENTS The corrosion-resistant member of the present invention is a member that is exposed to a halogen-based corrosive gas such as a fluorine-based or chlorine-based gas or a plasma.
F 6 , CF 4 , CHF 3 , ClF 3 , HF, and the like, and chlorine-based gases include Cl 2 , BCl 3 , HCl, and the like. When introduced, these gases are turned into plasma. According to the present invention, the portion exposed to such a halogen-based corrosive gas or its plasma is made of a boron carbide (B 4 C) sintered body having a relative density of 98% or more. . Further, in order to maintain the durability as a part, it is desirable to have a bending strength of 300 MPa or more. When the boron carbide sintered body has a low density and a large number of pores, the contact area with the corrosive gas or the plasma increases and the consumption speed increases. The relative density is preferably 98% or more, particularly 99% or more, and the open porosity is preferably 0.2% or more.
% Or less. Further, with the increase in the diameter of the silicon wafer,
Manufacturing equipment and components themselves are also increasing in size.
If it is not a sintered body having a strength of 00 MPa or more, the reliability as a constituent material such as a chamber material, a protective cover, and a liner is lacking. The boron carbide sintered body has a thickness of at least 10 μm at a portion exposed to a halogen-based corrosive gas such as a fluorine-based or chlorine-based gas or its plasma.
The above is desirable in providing excellent corrosion resistance. That is, if the thickness is less than 10 μm, an excellent corrosion resistance effect cannot be expected. The above-mentioned sintered body of boron carbide can be produced by a conventionally known production method, for example, by filling boron carbide powder having an average particle diameter of 20 μm or less into a mold or molding it into a desired shape. It is obtained by hot pressing in a non-oxidizing atmosphere. At this time, sintering aids such as C (carbon), SiC, and Si 3 N 4 may be added, and firing may be performed at a lower temperature in a non-oxidizing atmosphere or in a vacuum. Furthermore, the compact or sintered body can be further densified by heat treatment in an inert atmosphere of 1000 atm or more by hot isostatic firing. The corrosion-resistant member of the present invention is not limited to the boron carbide sintered body produced as described above,
A thin-film sintered body obtained by applying a liquid phase by a well-known sol-gel method and firing it may be used. Among these, a sintered body obtained by molding and firing the above-described powder is most desirable because of its excellent applicability to all members. In the member made of the boron carbide sintered body, the contents of Si, Ge, Mo, and W which are easily corroded by a halogen-based corrosive gas such as fluorine or chlorine or plasma are suppressed to 1% by weight or less in the total amount. Is preferred. However, this does not apply when these elements which are easily corroded by fluorine are dissolved in the main crystal grains and do not exist at the grain boundaries. Example 1 The results of a specific plasma irradiation experiment will be described below. First, as a B 4 C sintered body, powder having a purity of 99.5% or more was fired at 2180 ° C. in a nitrogen atmosphere to produce a sintered body having a relative density of 99.1%. In addition, J of this sintered body
The four-point bending strength based on ISR1601 was 420 MPa. Further, using the same raw materials,
Various B 4 C sintered bodies having different relative densities were produced by hot press firing in a temperature range of 300 ° C. Also, C, Si
A sintered body fired under pressure in an Ar atmosphere using C as a sintering aid was also prepared. For comparison, various sintered bodies other than B 4 C were prepared. First, the BN sintered body has a purity of 99.5%.
Was prepared by hot press firing at 2000 ° C. The Si 3 N 4 sintered body is obtained by adding Si 3 N 4 powder to:
Y 2 O 3 3% by weight as a sintering aid, Al 2 O 3 4% by weight
It was added and baked at 1750 ° C. in a nitrogen atmosphere. The SiC sintered body is obtained by adding B 4 C to α-SiC powder at 0.6.
2% by weight of carbon and 2% by weight of carbon were fired at 2060 ° C. in a non-oxidizing atmosphere. The Al 2 O 3 sintered body was fired at 1800 ° C. in the air without adding an auxiliary agent, and the AlN sintered body was fired at 2060 ° C. in nitrogen without adding the sintering aid. In addition, Si polycrystals and SiO 2 single crystals (quartz) were also prepared. For each of the obtained sintered bodies, the relative density of the sintered body was calculated based on the Archimedes' method. The bending strength was measured by JIS R16014 point bending. Each of the members was converted to CF 4 (60 sccm) + Ar using an RIE plasma etching apparatus.
( 60 sccm) and SF 6 (80 sccm) were exposed to fluorine-based plasma at room temperature, and the etching rate and the presence or absence of particles were examined. The results are shown in Tables 1 and 2. The etching conditions were a pressure of 10 Pa, an RF output of 1 kW, and a plasma irradiation time of 3 hours. The etching rate was calculated based on the change in weight before and after the test, and the presence or absence of particles was observed by observing the sample surface with an electron microscope to determine whether or not particles adhered to the surface. [Table 1] [Table 2] According to the results shown in Table 1, the sample No. 1 made of a BN sintered body was extremely worn away and could not be used. Furthermore, Si, SiO 2 (quartz), both also sample No.4~6 made of Si 3 N 4 sintered body exhaustion vigorously, especially Si 3
In sample No. 6 made of an N 4 sintered body, Si 3 N 4 particles were selectively etched, and the remaining grain boundary phase was a cause of particle generation. Sample No. 7 of the SiC sintered body had its surface discolored black and carbon was precipitated. Samples Nos. 8 and 9 of the Al 2 O 3 sintered body and the AlN sintered body had a low etching rate, but had degranulation and fluoride deposition on the surface. On the other hand, in Samples Nos. 2 and 3 made of a B 4 C sintered body, the etching rate was low, and no particles were found on the surface or no product was deposited. According to the results shown in Table 2, of the samples Nos. 10 to 14 produced by hot press firing, the sample No.
In No. 10, the grain growth was remarkable, and the strength was lowered. Sample No.1
In No. 4, the relative density was lower than 98%, and in addition to the decrease in strength, corrosion progressed from the pores on the etched surface, and the corrosion resistance was reduced. Other sintered bodies exhibited good characteristics in both hot press firing and firing in an atmosphere containing an auxiliary agent. Example 2 The same material as in Example 1 was exposed to chlorine plasma of BCl 3 (100 sccm) at room temperature using an RIE plasma etching apparatus, and the etching rate and the presence or absence of particles were examined. The etching conditions were a pressure of 4 Pa, an RF output of 1.8 kW, and a plasma irradiation time of 3 hours. The evaluation method is the same as in the first embodiment. [Table 3] [Table 4] According to Table 3, the sample N made of a BN sintered body
o.16 is extremely worn out and cannot withstand use. As for other materials, the B 4 C sintered body showed particularly excellent characteristics in consideration of the etching rate and the formation of particles of the reaction product as in Example 1. According to Table 4, the sample No. 26 having a relative density of less than 98% had the same strength and corrosion resistance as Example 1. The other sintered bodies exhibited good characteristics in both hot press firing and firing in an atmosphere to which an auxiliary agent was added. As described above, by using a member made of a sintered body of B 4 C, it is possible to realize a semiconductor manufacturing component which is excellent in corrosion resistance to fluorine-based / chlorine-based gas and does not generate contamination or particles. According to the present invention, high-temperature and high-density fluorine can be obtained by using a material containing boron carbide as a main component as a member exposed to a fluorine-based or chlorine-based corrosive gas or plasma. Since it has long-term durability in system-based and chlorine-based corrosive atmospheres and does not generate contamination or particles, it can be used for semiconductor manufacturing equipment, especially for supporting the inner wall members of plasma processing equipment and supporting objects to be processed. By using it as a member such as a jig, it is possible to improve the yield of semiconductor manufacturing and to manufacture a high-quality semiconductor element.

Claims (1)

(57)【特許請求の範囲】 【請求項1】ハロゲン系の腐食ガス或いはプラズマに曝
される部位が、相対密度98%以上の炭化硼素(B
4 C)焼結体により形成されていることを特徴とする半
導体製造用耐食性部材。
(57) [Claims 1] A portion exposed to a halogen-based corrosive gas or plasma contains boron carbide (B) having a relative density of 98% or more.
4 C) A corrosion-resistant member for semiconductor production, which is formed of a sintered body.
JP26456197A 1997-09-29 1997-09-29 Corrosion resistant materials for semiconductor manufacturing Expired - Fee Related JP3500278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26456197A JP3500278B2 (en) 1997-09-29 1997-09-29 Corrosion resistant materials for semiconductor manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26456197A JP3500278B2 (en) 1997-09-29 1997-09-29 Corrosion resistant materials for semiconductor manufacturing

Publications (2)

Publication Number Publication Date
JPH11102900A JPH11102900A (en) 1999-04-13
JP3500278B2 true JP3500278B2 (en) 2004-02-23

Family

ID=17405000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26456197A Expired - Fee Related JP3500278B2 (en) 1997-09-29 1997-09-29 Corrosion resistant materials for semiconductor manufacturing

Country Status (1)

Country Link
JP (1) JP3500278B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4651148B2 (en) * 2000-02-29 2011-03-16 京セラ株式会社 Plasma-resistant member and plasma apparatus
WO2004110685A2 (en) * 2003-06-12 2004-12-23 Georgia Tech Research Corporation Processes and methods of making boron carbide and boron carbide components
US7329467B2 (en) 2003-08-22 2008-02-12 Saint-Gobain Ceramics & Plastics, Inc. Ceramic article having corrosion-resistant layer, semiconductor processing apparatus incorporating same, and method for forming same
US8017062B2 (en) 2004-08-24 2011-09-13 Yeshwanth Narendar Semiconductor processing components and semiconductor processing utilizing same
KR20200019068A (en) * 2018-08-13 2020-02-21 에스케이씨솔믹스 주식회사 Boroncarbide sintered body and etch apparatus comprising the same
JP6965313B2 (en) * 2018-08-13 2021-11-10 エスケーシー ソルミックス カンパニー,リミテッド Ring-shaped parts for etching equipment and substrate etching methods using these

Also Published As

Publication number Publication date
JPH11102900A (en) 1999-04-13

Similar Documents

Publication Publication Date Title
KR100489172B1 (en) A film of yittria-alumina complex oxide, a method of producing the same, a sprayed film, a corrosion resistant member, a member effective for reducing particle generation
US6645585B2 (en) Container for treating with corrosive-gas and plasma and method for manufacturing the same
JP5127196B2 (en) Plasma-fluorine-alumina ceramic material with low particle generation and manufacturing method
JPH1045461A (en) Corrosion resistant member
JP2003146751A (en) Plasma-resistant member and method of producing the same
JPH104083A (en) Anticorrosive material for semiconductor fabrication
JPH1045467A (en) Corrosion resistant member
JPH11214365A (en) Member for semiconductor element manufacturing device
JP3488373B2 (en) Corrosion resistant materials
US6258741B1 (en) Corrosion-resistant member
JP3618048B2 (en) Components for semiconductor manufacturing equipment
JP3500278B2 (en) Corrosion resistant materials for semiconductor manufacturing
JP2002226274A (en) Corrosion resistant ceramic material, method for manufacturing the same and product for manufacturing semiconductor
JPH1067554A (en) Anticorrosive ceramic member
JP4641609B2 (en) Corrosion resistant material
JPH11279761A (en) Corrosion resistant member
JP2000239066A (en) Corrosionproof member and its production, and member for plasma treatment device using the same
JP4373487B2 (en) Corrosion resistant CVD-SiC coating material and jig for CVD equipment
JP3808245B2 (en) Chamber component for semiconductor manufacturing
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP3784180B2 (en) Corrosion resistant material
JP4028274B2 (en) Corrosion resistant material
KR20090101245A (en) Ceramic member and corrosion-resistant member
JP3769416B2 (en) Components for plasma processing equipment
JPH11278944A (en) Silicon nitride corrosion resistant member and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees