JP4373487B2 - Corrosion resistant CVD-SiC coating material and jig for CVD equipment - Google Patents

Corrosion resistant CVD-SiC coating material and jig for CVD equipment Download PDF

Info

Publication number
JP4373487B2
JP4373487B2 JP2009000370A JP2009000370A JP4373487B2 JP 4373487 B2 JP4373487 B2 JP 4373487B2 JP 2009000370 A JP2009000370 A JP 2009000370A JP 2009000370 A JP2009000370 A JP 2009000370A JP 4373487 B2 JP4373487 B2 JP 4373487B2
Authority
JP
Japan
Prior art keywords
sic
cvd
plane
jig
coating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2009000370A
Other languages
Japanese (ja)
Other versions
JP2009161858A (en
Inventor
博之 平野
暁 野上
広和 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP2009000370A priority Critical patent/JP4373487B2/en
Publication of JP2009161858A publication Critical patent/JP2009161858A/en
Application granted granted Critical
Publication of JP4373487B2 publication Critical patent/JP4373487B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、半導体製造工程におけるエピタキシャル成長装置や、インラインクリーニングがなされる化学気相蒸着(Chemical Vapor Deposition、以下、CVDという)装置の治具として用いられる、金属やクリーニングガスに対して耐食性に優れた耐食性CVD−SiCによって基材表面が被覆された耐食性CVD−SiC被覆材及びこれを用いたCVD装置用治具に関する。   INDUSTRIAL APPLICABILITY The present invention is excellent in corrosion resistance against metals and cleaning gases used as jigs for epitaxial growth apparatuses in semiconductor manufacturing processes and chemical vapor deposition (hereinafter referred to as CVD) apparatuses for in-line cleaning. The present invention relates to a corrosion-resistant CVD-SiC coating material whose surface is coated with a corrosion-resistant CVD-SiC and a jig for a CVD apparatus using the same.

従来より、半導体製造工程における各種装置の構成部品や、治具等には、SiC単独のものや、黒鉛等の炭素質材料やセラミックス等からなる基材表面をSiCで被覆したSiC被覆材が広く利用されている。   Conventionally, as a component or jig of various apparatuses in the semiconductor manufacturing process, SiC alone or a SiC coating material in which a substrate surface made of carbonaceous material such as graphite or ceramics is coated with SiC has been widely used. It's being used.

例えば、図5に示すシリコンのエピタキシャル成長装置1の治具として使用される。エピタキシャル成長装置1は、反応室4内で、RFコイル5等で加熱されたシリコンウェハー2の表面に結晶を同一方向の結晶方位となるように成長させる装置である。ここで、シリコンウェハー2を載置するサセプター3には、高純度等方性黒鉛の表面にCVD−SiCが被覆されたものが広く使用されている。   For example, it is used as a jig for the silicon epitaxial growth apparatus 1 shown in FIG. The epitaxial growth apparatus 1 is an apparatus for growing crystals in the reaction chamber 4 so as to have a crystal orientation in the same direction on the surface of the silicon wafer 2 heated by the RF coil 5 or the like. Here, as the susceptor 3 on which the silicon wafer 2 is placed, a high purity isotropic graphite whose surface is coated with CVD-SiC is widely used.

ところが、繰り返し発生する熱応力によるSiC膜の剥離やクラック、また、何らかの原因で侵入した金属との反応により生成すると考えられるピンホール等による欠陥によって使用ができなくなることがある。   However, the SiC film may be unusable due to defects such as peeling or cracking of the SiC film due to repetitive thermal stress, or pinholes that are considered to be generated by reaction with metal that has intruded for some reason.

また、半導体製造工程においては、前述のエピタキシャル成長膜を形成させる以外にも、ウェハー上に各種CVD装置で多結晶Si膜等を形成させる工程は必須の工程の一つである。この際に、ウェハーは前述のエピタキシャル成長装置に用いられるサセプター同様に、少なくとも表面がSiCで形成された治具に載置される。従って、治具上にもウェハーと同質の膜が形成される。従来は、この治具上に付着形成された膜は、新たなウェハーを載置し、膜を形成させる工程の前に、酸またはアルカリの溶液によって洗浄、除去されていた。   Further, in the semiconductor manufacturing process, in addition to forming the above-described epitaxial growth film, a process of forming a polycrystalline Si film or the like on the wafer by various CVD apparatuses is one of the essential processes. At this time, the wafer is placed on a jig having at least a surface formed of SiC, similarly to the susceptor used in the above-described epitaxial growth apparatus. Therefore, a film having the same quality as the wafer is formed on the jig. Conventionally, the film formed on the jig has been washed and removed with an acid or alkali solution before the step of placing a new wafer and forming the film.

しかしながら、従来の湿式洗浄では、洗浄の都度、一旦装置を止め、装置からこれら治具を取り出し、装置外で洗浄し、洗浄後、再度装置に装填していたため、生産効率が悪く、また、装置外部での洗浄のため、装置の出し入れによって治具に不純物が付着したりするという問題もあり、製品品質への悪影響はもとより、治具自身の短命化の原因にもなっていた。   However, in the conventional wet cleaning, each time cleaning is performed, the apparatus is temporarily stopped, these jigs are taken out of the apparatus, cleaned outside the apparatus, and after cleaning, the apparatus is loaded again. Due to external cleaning, there is a problem that impurities are attached to the jig when the apparatus is put in and out of the apparatus, which not only adversely affects the product quality but also shortens the life of the jig itself.

最近になり、上記の問題を改善するため、各種CVD装置の改良や、洗浄技術の発達に伴い、膜形成後、CVD装置の同一反応室内で、すなわちインラインでClF等のフッ化塩素ガスによる乾式洗浄が行われるようになってきた。 Recently, in order to improve the above problems, with the improvement of various CVD apparatuses and the development of cleaning techniques, after film formation, in the same reaction chamber of the CVD apparatus, that is, in-line with chlorine fluoride gas such as ClF 3 Dry cleaning has been performed.

ClF等のフッ化塩素ガスによる乾式洗浄では、従来の湿式洗浄ではそれほどエッチングされなかった治具表面のSiCがエッチングされることが判った。それによって、治具表面のSiCが剥離、脱落し、パーティクルとなってCVD装置のチャンバー内を飛散し、ウェハー上に落ちて、ウェハーの不良の原因の一つとなる。また、治具の耐用寿命が短くなり、歩留りの低下、生産効率の低下の原因となる問題が新たに発生した。 It has been found that in the dry cleaning with chlorine fluoride gas such as ClF 3 , SiC on the surface of the jig which has not been etched so much in the conventional wet cleaning is etched. As a result, the SiC on the jig surface peels off and falls off, becomes particles, scatters in the chamber of the CVD apparatus, falls on the wafer, and becomes one of the causes of wafer defects. In addition, the service life of the jig has been shortened, and new problems have occurred that cause a reduction in yield and production efficiency.

また、これらCVD装置に使用される治具も、何らかの原因で侵入した金属と反応してピンホールが生成して使用できなくなることもある。   In addition, jigs used in these CVD apparatuses may react with metal that has intruded for some reason to generate pinholes and become unusable.

そこで、本発明では、各種金属、特にAl、Cr、Fe、Co、Ni、Cu或いは、ClF、ClF、ClF、NF、HCl、Cl、HF等のガスに対して耐食性を有するβ−SiCにより基材表面が被覆されたβ−SiC被覆材及びこれを用いたCVD装置用治具を提供する事を目的とする。 Therefore, in the present invention, β having corrosion resistance against various metals, particularly gases such as Al, Cr, Fe, Co, Ni, Cu or ClF, ClF 3 , ClF 5 , NF 3 , HCl, Cl 2 , and HF. It aims at providing the beta-SiC coating | covering material by which the base-material surface was coat | covered with -SiC, and the jig | tool for CVD apparatuses using the same.

本発明者らは、表面に形成されているβ−SiCの(111)面が、形成される主な結晶面中に占める比率が0.5以下であるときに、インラインクリーニングに使用されるClF、ClF、ClF、NF、HCl、Cl、HF等のガスに対する耐エッチング性が優れていること、また、Al、Cr、Fe、Co、Ni、Cu等の金属のうち1若しくはこれら2以上からなる合金に対して耐食性を有することを見いだし、本発明を完成させた。 When the ratio of the (111) plane of β-SiC formed on the surface to the main crystal plane formed is 0.5 or less, the present inventors have used ClF used for in-line cleaning. Etching resistance against gases such as ClF 3 , ClF 5 , NF 3 , HCl, Cl 2 , HF, etc., and one or more of metals such as Al, Cr, Fe, Co, Ni, Cu The present invention has been completed by finding out that it has corrosion resistance to an alloy composed of two or more.

本発明の耐食性CVD−SiC被覆材は、CVD法により形成されたβ−SiCを構成する結晶のうち、SiC(111)面の占める比率が0.5以下であり、X線回折におけるSiC(111)面のピーク強度に対するSiC(200)面のピーク強度が1.0未満であり、かつ、SiC(200)面の占める比率が、SiC(220)面の占める比率、SiC(311)面の占める比率及びSiC(222)面の占める比率のそれぞれより大きいCVD−SiCが、SiCまたは炭素質材からなる基材上に被覆されている。   In the corrosion-resistant CVD-SiC coating material of the present invention, the proportion of the SiC (111) plane in the crystals constituting β-SiC formed by the CVD method is 0.5 or less, and SiC (111 in X-ray diffraction) ) The peak intensity of the SiC (200) plane with respect to the peak intensity of the plane is less than 1.0, and the ratio of the SiC (200) plane is the ratio of the SiC (220) plane and the SiC (311) plane CVD-SiC larger than the ratio and the ratio occupied by the SiC (222) plane is coated on a substrate made of SiC or a carbonaceous material.

また、本発明のCVD装置用治具は、上述の耐食性CVD−SiC被覆材を用いた、半導体製造用の乾式洗浄用に使用されるものが好ましい。   Moreover, the jig | tool for CVD apparatus of this invention has a preferable thing used for the dry cleaning for semiconductor manufacture using the above-mentioned corrosion-resistant CVD-SiC coating | covering material.

本発明にかかる耐食性CVD−SiC被覆材及びCVD装置用治具によると、LPCVD装置、RTPCVD装置、エピタキシャル成長用CVD装置でのインラインクリーニングの時に使用される、各種ガスに対して耐エッチング性を示し、また、各種金属に対しても耐食性を有するようになり、半導体製造における生産効率、歩留りの向上に貢献できる。   According to the corrosion-resistant CVD-SiC coating material and the jig for a CVD apparatus according to the present invention, it exhibits etching resistance against various gases used at the time of in-line cleaning in an LPCVD apparatus, an RTPCVD apparatus, and an epitaxial growth CVD apparatus, Moreover, it comes to have corrosion resistance with respect to various metals, and can contribute to improvement of production efficiency and yield in semiconductor manufacturing.

1400℃でCVD処理を行ったSiCのX線回折結果である。It is an X-ray-diffraction result of SiC which performed CVD processing at 1400 degreeC. 1300℃でCVD処理を行ったSiCのX線回折結果である。It is a X-ray-diffraction result of SiC which performed CVD processing at 1300 degreeC. Siの昇華ガスと炭酸ガスの反応により表面に被覆したSiCのX線回折結果である。It is the X-ray-diffraction result of SiC coat | covered on the surface by reaction of sublimation gas of Si and carbon dioxide gas. 1200℃でCVD処理を行ったSiCのX線回折結果である。It is an X-ray-diffraction result of SiC which performed CVD processing at 1200 degreeC. エピタキシャル成長装置の断面概略図である。It is the cross-sectional schematic of an epitaxial growth apparatus. LPCVD装置の断面概略図である。1 is a schematic cross-sectional view of an LPCVD apparatus. RTPCVD装置の断面概略図である。It is the cross-sectional schematic of an RTPCVD apparatus.

本発明におけるSiCは、黒鉛基材にCVD法によりSiCを被覆し、その後、黒鉛を機械的あるいは化学的に除去させ緻密質なCVD−SiCのみとしたもの、また、黒鉛材、黒鉛材から転化したSiC、焼結質SiC、前記CVD−SiCのうち何れかからなる基材表面にCVD法で被覆形成されたものの何れであってもよい。ここで、黒鉛材から転化したSiCとは、黒鉛材とケイ酸ガスを反応させて黒鉛材をSiCに転化させた、いわゆるCVR−SiCのことであり、焼結質SiCとはSiC粉末に焼結助剤を添加し、1600℃以上の高温で焼結させたもののことである。   The SiC in the present invention is obtained by coating a graphite substrate with SiC by a CVD method, and then removing the graphite mechanically or chemically to make only dense CVD-SiC. Any of the above-described SiC, sintered SiC, and the base material surface made of any one of the above-mentioned CVD-SiCs may be coated by the CVD method. Here, the SiC converted from the graphite material is so-called CVR-SiC in which the graphite material and silicic acid gas are reacted to convert the graphite material into SiC. The sintered SiC is sintered into SiC powder. A binder is added and sintered at a high temperature of 1600 ° C. or higher.

また、CVD法により形成されるSiCとは、CVD処理時に原料ガスより生成されるSiCの核が、基材表面に析出し、析出した核が成長していくことにより形成される非常に緻密な膜である。また、SiCには六方晶であるα型、立方晶であるβ型の2種類があるが、本発明にかかるCVD法ではβ型のSiCが生成される。   Further, SiC formed by the CVD method is a very dense structure formed by SiC nuclei generated from the raw material gas during the CVD process being deposited on the surface of the base material and the deposited nuclei growing. It is a membrane. In addition, there are two types of SiC, α-type that is hexagonal and β-type that is cubic, but β-type SiC is generated by the CVD method according to the present invention.

このCVD法によるβ−SiCの表面を構成する結晶のうち(111)面方向の結晶方位を示す結晶の占める比率を全体の0.5以下、好ましくは0.4以下とする。0.5より大きい場合は、同一面の配向性が大きくなることによって、結晶間若しくは結晶層間が浸食されやすくなると考えられ、各種金属、或いは、クリーニングガスに対して、耐食性が発現しない。ここで、この比率の対象となる結晶面は、(111)面と方位の異なる(200)面、(220)面、(311)面である。この比率は、X線回折結果より、前記(111)面と方位の異なる結晶面を表すピークのピーク強度(ピーク高さ)の和で、(111)面のピーク強度を割った値を採用している。   The ratio of the crystal showing the crystal orientation in the (111) plane direction among the crystals constituting the surface of β-SiC by this CVD method is 0.5 or less, preferably 0.4 or less. When the ratio is larger than 0.5, it is considered that the crystal orientation between the crystals or the crystal layers is likely to be eroded by increasing the orientation of the same plane, and corrosion resistance is not exhibited against various metals or cleaning gas. Here, the crystal planes that are the targets of this ratio are the (200) plane, (220) plane, and (311) plane that have different orientations from the (111) plane. This ratio is calculated by dividing the peak intensity of the (111) plane by the sum of the peak intensities (peak heights) representing the crystal planes with different orientations from the (111) plane from the X-ray diffraction results. ing.

β−SiCの表面は、CVD処理条件を調整することで、構成する結晶子の(111)面方向の結晶の比率が0.5以下とすることができ、表面を被覆したSiCを構成する各結晶の方位が乱雑となる。そして、(111)面方向にのみ成長した結晶子で形成されたβ−SiCに比較すると、Al、Cr、Fe、Co、Ni、Cu等の金属のうち1若しくはこれら2以上からなる合金に対して耐食性に優れるようになる。また、各種CVD装置でのインラインクリーニングに使用されるClF、ClF、ClF、NF、HCl、Cl、HFのいずれか若しくはこれらのうちのいずれかを不活性ガスで希釈した混合ガスに対して耐エッチング性を示すようになると推測される。なかでも、HClとClFのガスには優れた耐エッチング性が発揮される。 The surface of β-SiC can be adjusted such that the ratio of crystals in the (111) plane direction of the constituent crystallites is 0.5 or less by adjusting the CVD processing conditions. The crystal orientation is messy. And compared to β-SiC formed of crystallites grown only in the (111) plane direction, it is for one or more of these metals such as Al, Cr, Fe, Co, Ni, Cu, etc. It will be excellent in corrosion resistance. Also, ClF, ClF 3 , ClF 5 , NF 3 , HCl, Cl 2 , or HF used for in-line cleaning in various CVD apparatuses, or a mixed gas obtained by diluting any of these with an inert gas On the other hand, it is estimated that etching resistance is exhibited. Among them, excellent etching resistance is exhibited by HCl and ClF 3 gases.

この(111)面の方位と異なる結晶面である(200)面、(220)面、(311)面はCVD処理時の基材、基材温度、原料ガス、炉内圧力、原料ガス濃度等の各制御因子のなかでも特に温度に影響を受け、CVD処理時の基材温度が高くなるほど、顕著に現れる。したがって、(111)面の占める比率を0.5以下、好ましくは0.4以下とするためには、CVD処理時の基材温度を少なくとも1300℃、好ましくは1400℃以上とする。   The (200), (220), and (311) planes, which are crystal planes different from the orientation of the (111) plane, are the base material, base material temperature, source gas, furnace pressure, source gas concentration, etc. during the CVD process. Among these control factors, it is particularly affected by the temperature, and becomes more noticeable as the substrate temperature during the CVD process increases. Therefore, in order to set the ratio of the (111) plane to 0.5 or less, preferably 0.4 or less, the substrate temperature during the CVD process is set to at least 1300 ° C., preferably 1400 ° C. or more.

以上のように、CVD−SiCや、或いは黒鉛等の炭素質材やSiC等のセラミックスの基材表面にSiCをCVD法で被覆したCVD−SiC被覆材の表面に形成されたβ−SiCを構成する結晶のうち、(111)面の占める比率を0.5以下とすることで、金属に対して耐食性を有することとなる。これにより、各種半導体製造用CVD装置用治具として使用することができる。すなわち、本発明に係るCVD−SiCを治具表面に形成させることで、ピンホール等の発生を抑制することができ、耐用寿命の延命化が行える。   As described above, β-SiC formed on the surface of a CVD-SiC coating material in which SiC is coated on the surface of a CVD-SiC, or a carbonaceous material such as graphite, or a ceramic substrate such as SiC is formed. When the ratio of the (111) plane in the crystal to be set is 0.5 or less, the metal has corrosion resistance. Thereby, it can be used as a jig for various semiconductor manufacturing CVD apparatus. That is, by forming CVD-SiC according to the present invention on the jig surface, the occurrence of pinholes and the like can be suppressed and the service life can be extended.

半導体製造用CVD装置としては、例えば、エピタキシャル成長装置や、歩留り及び生産効率の向上のため、フッ化塩素ガス等を用いての乾式洗浄すなわちインラインクリーニングが行われる、例えば、LPCVD装置、RTPCVD装置等がある。これらのSiウェハーを載置するサセプター等の治具として適用することができる。これらはそれぞれ1又は1以上の反応室を有しており、インラインクリーニングは、それぞれ同一の反応室で行われる。   As the CVD apparatus for semiconductor manufacturing, for example, an epitaxial growth apparatus, or dry cleaning using chlorine fluoride gas or the like, in-line cleaning is performed to improve yield and production efficiency. For example, an LPCVD apparatus, an RTPCVD apparatus, etc. is there. It can be applied as a jig such as a susceptor for mounting these Si wafers. Each of these has one or more reaction chambers, and in-line cleaning is performed in the same reaction chamber.

図6にLPCVD装置の反応室の断面概略図を示す。LPCVD装置とは、Low Pressure CVD装置の略であり、図に示すように、ウェハー14を載置するSiC製のボート13と、SiC製の均熱管12とから構成されており、減圧下でCVD処理が行われ、ウェハー14に多結晶シリコン膜や窒化ケイ素膜等の形成や拡散に使用される。ここで、本発明に係る治具はボート13と、均熱管12である。   FIG. 6 shows a schematic cross-sectional view of the reaction chamber of the LPCVD apparatus. The LPCVD apparatus is an abbreviation of Low Pressure CVD apparatus, and as shown in the figure, is composed of a SiC boat 13 on which a wafer 14 is placed and a SiC soaking tube 12, and CVD under reduced pressure. Processing is performed, and the wafer 14 is used for forming or diffusing a polycrystalline silicon film, a silicon nitride film, or the like. Here, the jigs according to the present invention are the boat 13 and the soaking tube 12.

図7にはRTPCVD装置の反応室の断面概略図を示す。RTPCVD装置とは、Rapid Thermal Processing CVD装置の略であり、図に示すように、ウェハー23を載置するSiC製のサセプター22と、サセプター22を載置するSiC製の治具24とから構成されており、ハロゲンランプによる昇温加熱がなされ、局所加熱的に酸化やCVDが行える装置であり、多結晶シリコン膜や窒化ケイ素膜の形成に使用される。ここで、本発明に係る治具はサセプター22、サセプター22を載置するSiC製の治具24とである。   FIG. 7 shows a schematic cross-sectional view of the reaction chamber of the RTPCVD apparatus. The RTPCVD apparatus is an abbreviation for a Rapid Thermal Processing CVD apparatus, and includes an SiC susceptor 22 on which a wafer 23 is placed and an SiC jig 24 on which the susceptor 22 is placed, as shown in the figure. It is a device that can be heated and heated by a halogen lamp and locally oxidize and CVD, and is used to form a polycrystalline silicon film and a silicon nitride film. Here, the jig according to the present invention is a susceptor 22 and a SiC jig 24 on which the susceptor 22 is placed.

以上のように、本発明におけるCVD−SiC若しくはCVD−SiC被覆材は半導体製造用CVD装置用の治具として適用することができる。また、半導体製造用CVD装置用の治具以外でも、その優れた耐食性を利用して単結晶引き上げ装置用の治具として使用することもできる。   As described above, the CVD-SiC or the CVD-SiC coating material in the present invention can be applied as a jig for a CVD apparatus for semiconductor manufacturing. Moreover, it can also be used as a jig for a single crystal pulling apparatus using its excellent corrosion resistance other than a jig for a semiconductor manufacturing CVD apparatus.

以下に実施例を挙げ、本発明を具体的に説明する。   The present invention will be specifically described with reference to examples.

(実施例1)
基材として嵩密度1.85g/cmの等方性黒鉛材(東洋炭素(株)製)を使用し、20×20×5mmに加工した。次にこれらをCVD装置内に設置し、原料ガスにSiCl+Cを使用し、炉内圧力250Torr、基材温度1400℃でCVD処理を行い、表面全面にSiCを被覆した。
Example 1
An isotropic graphite material (manufactured by Toyo Tanso Co., Ltd.) having a bulk density of 1.85 g / cm 3 was used as a base material and processed into 20 × 20 × 5 mm. Next, these were installed in a CVD apparatus, SiCl 4 + C 3 H 8 was used as a source gas, a CVD process was performed at a furnace pressure of 250 Torr and a substrate temperature of 1400 ° C., and SiC was coated on the entire surface.

CVD−SiCを被覆後、その表面をCuの管球を使用しX線回折分析を行った。図1にその分析結果を示す。図中に記載しているβ−SiC(111)等は各結晶面を表している。次に、表面を構成する結晶のうち、この(111)面の占める比率は、(111)面と結晶方位を異にする各結晶面の強度比(各結晶面を表すピークの高さ)を用いて、次式により算出した。すなわち、
比率 = (111)/((111)+(200)+(220)+(311))
である。表面を被覆したSiCの構成結晶子のうち(111)面の占める比率は0.32であった。
After coating with CVD-SiC, the surface was subjected to X-ray diffraction analysis using a Cu tube. FIG. 1 shows the analysis result. In the figure, β-SiC (111) and the like represent each crystal plane. Next, in the crystal constituting the surface, the ratio of the (111) plane is the intensity ratio of each crystal plane having a crystal orientation different from that of the (111) plane (the peak height representing each crystal plane). And calculated by the following formula. That is,
Ratio = (111) / ((111) + (200) + (220) + (311))
It is. The ratio of the (111) plane in the constituent crystallites of SiC covering the surface was 0.32.

(実施例2)
実施例1と同質の基材を同形状に加工後、実施例1と同じCVD装置を用いて、原料ガスにSiCl+Cを使用し、炉内圧力250Torr、基材温度1300℃でCVD処理を行い、表面全面にSiCを被覆した。その後、実施例1と同様にして、SiC被覆された表面のX線回折分析を行った。図2にそのX線回折結果を示す。この結果より、実施例1と同様にして、表面を被覆したSiCの構成結晶子のうち(111)面の占める比率を求めたところ、0.50であった。
(Example 2)
After processing a base material of the same quality as in Example 1 into the same shape, using the same CVD apparatus as in Example 1, using SiCl 4 + C 3 H 8 as the source gas, with a furnace pressure of 250 Torr and a base material temperature of 1300 ° C. A CVD process was performed to coat the entire surface with SiC. Thereafter, in the same manner as in Example 1, X-ray diffraction analysis of the surface coated with SiC was performed. FIG. 2 shows the result of X-ray diffraction. From this result, in the same manner as in Example 1, the ratio of the (111) plane in the constituent crystallites of SiC covering the surface was determined to be 0.50.

(実施例3)
基材として嵩密度1.85g/cmの等方性黒鉛材(東洋炭素(株)製)を使用し、実施例1と同形状である20×20×5mmに加工した。これらを金属Siとともに、CVD装置内に設置し、炉内温度を1800℃に加熱し、炭酸ガスを炉内に導入し、金属Siの昇華ガスと炭酸ガスを反応させ、基材表面にSiCを析出させた。その後、実施例1と同様にして、SiC被覆された表面のX線回折分析を行った。図3にそのX線回折結果を示す。この結果より、実施例1と同様にして、表面を被覆したSiCの構成結晶子のうち(111)面の占める比率を求めたところ、0.36であった。
(Example 3)
An isotropic graphite material (manufactured by Toyo Tanso Co., Ltd.) having a bulk density of 1.85 g / cm 3 was used as a substrate, and the substrate was processed into 20 × 20 × 5 mm having the same shape as in Example 1. These are placed in a CVD apparatus together with metal Si, the furnace temperature is heated to 1800 ° C., carbon dioxide gas is introduced into the furnace, metal sublimation gas and carbon dioxide gas are reacted, and SiC is deposited on the substrate surface. Precipitated. Thereafter, in the same manner as in Example 1, X-ray diffraction analysis of the surface coated with SiC was performed. FIG. 3 shows the result of X-ray diffraction. From this result, in the same manner as in Example 1, the ratio of the (111) plane in the constituent crystallites of SiC covering the surface was determined to be 0.36.

(比較例1)
実施例1と同質の基材を同形状に加工後、実施例1と同じCVD装置を用いて、原料ガスにSiCl+Cを使用し、炉内圧力250Torr、基材温度1200℃でCVD処理を行い、表面全面にSiCを被覆した。その後、実施例1と同様にして、SiC被覆された表面のX線回折分析を行った。図4にそのX線回折結果を示す。この結果より、実施例1と同様にして、表面を被覆したSiCの構成結晶子のうち(111)面の占める比率は1.0であった。
(Comparative Example 1)
After processing a base material of the same quality as in Example 1 into the same shape, using the same CVD apparatus as in Example 1, using SiCl 4 + C 3 H 8 as the source gas, with a furnace pressure of 250 Torr and a base material temperature of 1200 ° C. A CVD process was performed to coat the entire surface with SiC. Thereafter, in the same manner as in Example 1, X-ray diffraction analysis of the surface coated with SiC was performed. FIG. 4 shows the result of X-ray diffraction. From this result, in the same manner as in Example 1, the ratio of the (111) plane in the constituent crystallites of SiC covering the surface was 1.0.

実施例1及び2と比較例1は、CVD処理時の基材温度が違うのみで、それ以外の処理条件は全て同じであるが、図1、2および図4よりCVD処理時の基材温度が高くなることによって、表面を構成する結晶のうち(111)面の占める割合が小さくなる。換言すると、基材温度が高くなることによって、SiCの析出成長する方向が多方向になり、表面を構成する結晶が乱雑になるといえる。   Examples 1 and 2 and Comparative Example 1 differ only in the substrate temperature during the CVD process, and all other processing conditions are the same, but the substrate temperature during the CVD process is shown in FIGS. By increasing the ratio, the proportion of the (111) plane in the crystals constituting the surface decreases. In other words, it can be said that as the substrate temperature increases, the direction of SiC precipitation and growth becomes multi-directional, and the crystals constituting the surface become messy.

実施例1〜3及び比較例1の試料のインラインクリーニングに使用されるガスに対する耐エッチング性を調べるために、各試料を800℃のClF、1000℃のHClにそれぞれ60分暴露し、耐エッチング性を調べた。 In order to examine the etching resistance against the gas used for in-line cleaning of the samples of Examples 1 to 3 and Comparative Example 1, each sample was exposed to 800 ° C. ClF 3 and 1000 ° C. HCl for 60 minutes, respectively, to be etched resistant. I examined the sex.

表1に各試料のそれぞれのガスに対する耐エッチング性を示す。   Table 1 shows the etching resistance of each sample to each gas.

Figure 0004373487
Figure 0004373487

また、実施例1及び比較例1の試料について、金属との反応性を調べるために、各試料は、それぞれ膜厚や表面粗度が各種金属との反応に影響を及ぼさないように、膜厚は105μmとし、各試料の表面は同一条件で研摩した。その研摩面に、純度99%以上、粒度40μmの金属粉末を載せ、それぞれ、1000℃〜1300℃に加熱して、金属との反応性を調べた。なお、反応性は、電子顕微鏡により観察し、それぞれの試料の断面を外表面側から内部に向かってX線によって線分析を行い評価した。   Moreover, in order to investigate the reactivity with a metal about the sample of Example 1 and the comparative example 1, each sample is film thickness so that film thickness and surface roughness may not influence the reaction with various metals, respectively. Was 105 μm, and the surface of each sample was polished under the same conditions. A metal powder having a purity of 99% or more and a particle size of 40 μm was placed on the polished surface and heated to 1000 ° C. to 1300 ° C., respectively, and the reactivity with the metal was examined. The reactivity was observed by an electron microscope, and the cross section of each sample was evaluated by performing a line analysis by X-ray from the outer surface side to the inside.

表2に実施例1の試料、表3に比較例1の試料の各温度での各金属との反応の程度を示す。反応の程度は3段階で評価した。表中の○は表面層のみで反応が観察されたもの、△は膜中まで反応が観察されたもの、×は基材まで達した激しい反応が観察されたものを表している。   Table 2 shows the degree of reaction with each metal at each temperature of the sample of Example 1 and Table 3 of the sample of Comparative Example 1. The degree of reaction was evaluated in three stages. In the table, ○ indicates that the reaction was observed only in the surface layer, Δ indicates that the reaction was observed up to the film, and × indicates that the intense reaction reaching the substrate was observed.

Figure 0004373487
Figure 0004373487

Figure 0004373487
Figure 0004373487

表1より、CVD処理時の基材温度を高くすることによって、析出するSiCの成長方向を(111)面方向だけでなく、それ以外の面にも成長させることにより、インラインクリーニングに使用されるエッチングガスに対しての耐性が向上することがわかる。   From Table 1, it is used for in-line cleaning by increasing the substrate temperature during the CVD process so that the growth direction of the deposited SiC grows not only in the (111) plane direction but also in other planes. It can be seen that the resistance to the etching gas is improved.

また、表2、表3より、実施例1は、比較例1の試料に比較して各金属との反応開始温度が高温側に移っていることがわかる。   Further, from Tables 2 and 3, it can be seen that in Example 1, the reaction start temperature with each metal is shifted to the high temperature side as compared with the sample of Comparative Example 1.

1 エピタキシャル成長装置
2 シリコンウェハー
3 サセプター
4 反応室
5 RFコイル
11 LPCVD装置反応室
12 均熱管
13 ボード
14 ウェハー
21 RTPCVD装置反応室
22 サセプター
23 ウェハー
24 治具
DESCRIPTION OF SYMBOLS 1 Epitaxial growth apparatus 2 Silicon wafer 3 Susceptor 4 Reaction chamber 5 RF coil 11 LPCVD apparatus reaction chamber 12 Soaking tube 13 Board 14 Wafer 21 RTPCVD apparatus reaction chamber 22 Susceptor 23 Wafer 24 Jig

Claims (2)

CVD法により形成されたβ−SiCを構成する結晶のうち、
SiC(111)面の占める比率が0.5以下であり、
X線回折におけるSiC(111)面のピーク強度に対するSiC(200)面のピーク強度が1.0未満であり、かつ、
SiC(200)面の占める比率が、SiC(220)面の占める比率、SiC(311)面の占める比率及びSiC(222)面の占める比率のそれぞれより大きいCVD−SiCが、SiCまたは炭素質材からなる基材上に被覆されている耐食性CVD−SiC被覆材。
Of the crystals constituting β-SiC formed by the CVD method,
The proportion of the SiC (111) plane is 0.5 or less,
The peak intensity of the SiC (200) plane relative to the peak intensity of the SiC (111) plane in X-ray diffraction is less than 1.0, and
CVD-SiC in which the proportion of the SiC (200) plane is larger than the proportion of the SiC (220) plane, the proportion of the SiC (311) plane, and the proportion of the SiC (222) plane is SiC or a carbonaceous material. Corrosion-resistant CVD-SiC coating material coated on a substrate comprising
請求項1に記載の耐食性CVD−SiC被覆材を用いた、半導体製造用の乾式洗浄用に使用されるCVD装置用治具。
A jig for a CVD apparatus, which is used for dry cleaning for semiconductor production, using the corrosion-resistant CVD-SiC coating material according to claim 1.
JP2009000370A 1998-08-27 2009-01-05 Corrosion resistant CVD-SiC coating material and jig for CVD equipment Expired - Lifetime JP4373487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009000370A JP4373487B2 (en) 1998-08-27 2009-01-05 Corrosion resistant CVD-SiC coating material and jig for CVD equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP24135898 1998-08-27
JP2009000370A JP4373487B2 (en) 1998-08-27 2009-01-05 Corrosion resistant CVD-SiC coating material and jig for CVD equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11236602A Division JP2000160343A (en) 1998-08-27 1999-08-24 Corrosion resistant cvd-silicon carbide and corrosion resistant cvd-silicon carbide coating material

Publications (2)

Publication Number Publication Date
JP2009161858A JP2009161858A (en) 2009-07-23
JP4373487B2 true JP4373487B2 (en) 2009-11-25

Family

ID=40964791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009000370A Expired - Lifetime JP4373487B2 (en) 1998-08-27 2009-01-05 Corrosion resistant CVD-SiC coating material and jig for CVD equipment

Country Status (1)

Country Link
JP (1) JP4373487B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015229793A (en) * 2014-06-06 2015-12-21 東洋炭素株式会社 SiC COATING MATERIAL AND FIXTURE FOR CVD APPARATUS
KR102089949B1 (en) * 2017-10-20 2020-03-19 세메스 주식회사 Substrate treating apparatus component of substrate treating apparatus
KR20220077314A (en) * 2020-12-01 2022-06-09 주식회사 티씨케이 Tantalum carbide coated carbon material

Also Published As

Publication number Publication date
JP2009161858A (en) 2009-07-23

Similar Documents

Publication Publication Date Title
KR100953707B1 (en) Semiconductor processing components and semiconductor processing utilizing same
JP2000160343A (en) Corrosion resistant cvd-silicon carbide and corrosion resistant cvd-silicon carbide coating material
EP2520691B1 (en) Tantalum carbide-coated carbon material and manufacturing method for same
JP5281027B2 (en) Method of processing semiconductor processing components and components formed by this method
JPH11214365A (en) Member for semiconductor element manufacturing device
JP4373487B2 (en) Corrosion resistant CVD-SiC coating material and jig for CVD equipment
JPH1012692A (en) Dummy wafer
US6406799B1 (en) Method of producing anti-corrosion member and anti-corrosion member
KR101628689B1 (en) Silicon carbide parts for plasma apparatus and manufacturing method thereof
JPH11279761A (en) Corrosion resistant member
JP3500278B2 (en) Corrosion resistant materials for semiconductor manufacturing
JP3929140B2 (en) Corrosion resistant member and manufacturing method thereof
JP2000073171A (en) Production of chemical vapor deposition multilayer silicon carbide film
JP4126461B2 (en) Components for plasma process equipment
WO2021117498A1 (en) Tantalum carbonate-coated graphite member and method for producing same
JP2001257163A (en) Silicon carbide member, plasma-resistant member, and semiconductor manufacturing device
TWI508208B (en) Semiconductor manufacturing fixture and manufacturing method thereof
JP4028274B2 (en) Corrosion resistant material
JP2000143348A (en) Aluminum nitride sintered compact and its production and member for apparatus for producing semiconductor using the same
JP4372988B2 (en) CVD-SiC excellent in NH3 resistance, CVD-SiC coating material excellent in NH3 resistance, and jig for CVD or MBE apparatus
JP4018856B2 (en) Vacuum chamber components
JP5876259B2 (en) Method for manufacturing member covered with aluminum nitride film
JP4336055B2 (en) Aluminum nitride sintered body and method for producing the same
JP3732966B2 (en) Corrosion resistant material
JPH11278944A (en) Silicon nitride corrosion resistant member and its production

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4373487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term