JP2000160343A - Corrosion resistant cvd-silicon carbide and corrosion resistant cvd-silicon carbide coating material - Google Patents
Corrosion resistant cvd-silicon carbide and corrosion resistant cvd-silicon carbide coating materialInfo
- Publication number
- JP2000160343A JP2000160343A JP11236602A JP23660299A JP2000160343A JP 2000160343 A JP2000160343 A JP 2000160343A JP 11236602 A JP11236602 A JP 11236602A JP 23660299 A JP23660299 A JP 23660299A JP 2000160343 A JP2000160343 A JP 2000160343A
- Authority
- JP
- Japan
- Prior art keywords
- sic
- cvd
- plane
- corrosion resistant
- ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
- Chemical Vapour Deposition (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、半導体製造工程に
おけるエピタキシャル成長装置や、インラインクリーニ
ングがなされる化学気相蒸着(Chemical Va
por Deposition、以下、CVDという)
装置の治具として用いられる、金属やクリーニングガス
に対して耐食性に優れた耐食性CVD−SiC及び基材
表面が耐食性CVD−SiCで被覆された耐食性CVD
−SiC被覆材に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an epitaxial growth apparatus in a semiconductor manufacturing process and a chemical vapor deposition (Chemical Vapor Deposition) in which in-line cleaning is performed.
por Deposition (hereinafter, referred to as CVD)
Corrosion resistant CVD-SiC excellent in corrosion resistance to metal and cleaning gas used as a jig of the apparatus, and corrosion resistant CVD in which the substrate surface is coated with corrosion resistant CVD-SiC
The present invention relates to a SiC coating material.
【0002】[0002]
【従来の技術】従来より、半導体製造工程における各種
装置の構成部品や、治具等には、SiC単独のものや、
黒鉛等の炭素質材料やセラミックス等からなる基材表面
をSiCで被覆したSiC被覆材が広く利用されてい
る。2. Description of the Related Art Conventionally, components, jigs and the like of various apparatuses in a semiconductor manufacturing process include SiC alone,
BACKGROUND ART A SiC coating material in which a substrate surface made of a carbonaceous material such as graphite or ceramics is coated with SiC is widely used.
【0003】例えば、図5に示すシリコンのエピタキシ
ャル成長装置1の治具として使用される。エピタキシャ
ル成長装置1は、反応室4内で、RFコイル5等で加熱
されたシリコンウェハー2の表面に結晶を同一方向の結
晶方位となるように成長させる装置である。ここで、シ
リコンウェハー2を載置するサセプター3には、高純度
等方性黒鉛の表面にCVD−SiCが被覆されたものが
広く使用されている。For example, it is used as a jig for a silicon epitaxial growth apparatus 1 shown in FIG. The epitaxial growth apparatus 1 is an apparatus for growing a crystal on a surface of a silicon wafer 2 heated by an RF coil 5 or the like in a reaction chamber 4 so as to have the same crystal orientation. Here, as the susceptor 3 on which the silicon wafer 2 is mounted, a high-purity isotropic graphite whose surface is coated with CVD-SiC is widely used.
【0004】ところが、繰り返し発生する熱応力による
SiC膜の剥離やクラック、また、何らかの原因で侵入
した金属との反応により生成すると考えられるピンホー
ル等による欠陥によって使用ができなくなることがあ
る。However, the SiC film may be unusable due to peeling or cracking of the SiC film due to repetitive thermal stress, or a defect such as a pinhole which is considered to be generated by a reaction with a metal that has entered for some reason.
【0005】また、半導体製造工程においては、前述の
エピタキシャル成長膜を形成させる以外にも、ウェハー
上に各種CVD装置で多結晶Si膜等を形成させる工程
は必須の工程の一つである。この際に、ウェハーは前述
のエピタキシャル成長装置に用いられるサセプター同様
に、少なくとも表面がSiCで形成された治具に載置さ
れる。従って、治具上にもウェハーと同質の膜が形成さ
れる。従来は、この治具上に付着形成された膜は、新た
なウェハーを載置し、膜を形成させる工程の前に、酸ま
たはアルカリの溶液によって洗浄、除去されていた。In the semiconductor manufacturing process, in addition to the formation of the epitaxial growth film, a process of forming a polycrystalline Si film or the like on a wafer by various CVD devices is one of essential processes. At this time, the wafer is placed on a jig having at least a surface made of SiC, like the susceptor used in the above-described epitaxial growth apparatus. Therefore, a film of the same quality as the wafer is formed on the jig. Conventionally, the film adhered and formed on the jig has been washed and removed with an acid or alkali solution before a step of mounting a new wafer and forming a film.
【0006】しかしながら、従来の湿式洗浄では、洗浄
の都度、一旦装置を止め、装置からこれら治具を取り出
し、装置外で洗浄し、洗浄後、再度装置に装填していた
ため、生産効率が悪く、また、装置外部での洗浄のた
め、装置の出し入れによって治具に不純物が付着したり
するという問題もあり、製品品質への悪影響はもとよ
り、治具自身の短命化の原因にもなっていた。[0006] However, in the conventional wet cleaning, the apparatus is once stopped, the jigs are taken out of the apparatus, washed outside the apparatus, washed, and reloaded into the apparatus each time the cleaning is performed. Further, since the cleaning is performed outside the apparatus, there is a problem that impurities are attached to the jig when the apparatus is moved in and out, and this not only adversely affects the product quality but also shortens the life of the jig itself.
【0007】最近になり、上記の問題を改善するため、
各種CVD装置の改良や、洗浄技術の発達に伴い、膜形
成後、CVD装置の同一反応室内で、すなわちインライ
ンでClF3 等のフッ化塩素ガスによる乾式洗浄が行わ
れるようになってきた。Recently, in order to improve the above problem,
With the improvement of various CVD apparatuses and the development of cleaning techniques, dry cleaning with a chlorine fluoride gas such as ClF 3 has been performed in the same reaction chamber of the CVD apparatus after forming a film, that is, inline.
【0008】ClF3 等のフッ化塩素ガスによる乾式洗
浄では、従来の湿式洗浄ではそれほどエッチングされな
かった治具表面のSiCがエッチングされることが判っ
た。それによって、治具表面のSiCが剥離、脱落し、
パーティクルとなってCVD装置のチャンバー内を飛散
し、ウェハー上に落ちて、ウェハーの不良の原因の一つ
となる。また、治具の耐用寿命が短くなり、歩留りの低
下、生産効率の低下の原因となる問題が新たに発生し
た。[0008] It has been found that dry cleaning with chlorine fluoride gas such as ClF 3 etches SiC on the jig surface which is not so etched by conventional wet cleaning. As a result, the SiC on the jig surface peels off and falls off,
The particles are scattered in the chamber of the CVD apparatus as particles and fall on the wafer, which is one of the causes of the defect of the wafer. In addition, the service life of the jig has been shortened, and a new problem has occurred which causes a reduction in yield and a reduction in production efficiency.
【0009】また、これらCVD装置に使用される治具
も、何らかの原因で侵入した金属と反応してピンホール
が生成して使用できなくなることもある。Also, the jigs used in these CVD apparatuses sometimes react with the metal that has entered for some reason to generate pinholes, which makes the jig unusable.
【0010】[0010]
【発明が解決しようとする課題】そこで、本発明では、
各種金属、特にAl、Cr、Fe、Co、Ni、Cu或
いは、ClF、ClF3 、ClF5 、NF3 、HCl、
Cl2 、HF等のガスに対して耐食性を有するβ−Si
C及びそれにより基材表面を被覆されたβ−SiC被覆
材を提供する事を目的とする。Therefore, in the present invention,
Various metals, especially Al, Cr, Fe, Co, Ni, Cu or ClF, ClF 3 , ClF 5 , NF 3 , HCl,
Β-Si having corrosion resistance to gases such as Cl 2 and HF
It is an object of the present invention to provide C and a β-SiC coating material coated on the surface of a substrate with the same.
【0011】[0011]
【課題を解決するための手段】本発明者らは、表面に形
成されているβ−SiCの(111)面が、形成される
主な結晶面中に占める比率が0.5以下であるときに、
インラインクリーニングに使用されるClF、Cl
F3 、ClF5 、NF3 、HCl、Cl2 、HF等のガ
スに対する耐エッチング性が優れていること、また、A
l、Cr、Fe、Co、Ni、Cu等の金属のうち1若
しくはこれら2以上からなる合金に対して耐食性を有す
ることを見いだし、本発明を完成させた。Means for Solving the Problems The present inventors have found that the ratio of the (111) plane of β-SiC formed on the surface to the main crystal plane to be formed is 0.5 or less. To
ClF, Cl used for in-line cleaning
It has excellent etching resistance to gases such as F 3 , ClF 5 , NF 3 , HCl, Cl 2 , and HF.
The present invention has been found to have corrosion resistance to an alloy composed of one or more of metals such as l, Cr, Fe, Co, Ni, and Cu, and completed the present invention.
【0012】すなわち、本発明の請求項1の発明は、C
VD法により形成されたβ−SiCを構成する結晶のう
ち(111)面の占める比率が0.5以下である耐食性
CVD−SiCである。That is, the invention of claim 1 of the present invention provides
Corrosion resistant CVD-SiC in which the ratio of the (111) plane in the crystal constituting β-SiC formed by the VD method is 0.5 or less.
【0013】請求項2の発明は、CVD法により形成さ
れたβ−SiCを構成する結晶のうち(111)面の占
める比率が0.5以下である耐食性CVD−SiCが、
SiCまたは炭素質材からなる基材上に被覆されてなる
耐食性CVD−SiC被覆材である。According to a second aspect of the present invention, there is provided a corrosion-resistant CVD-SiC wherein the ratio of the (111) plane occupying 0.5 or less in the crystal constituting β-SiC formed by the CVD method is as follows:
It is a corrosion-resistant CVD-SiC coating material coated on a substrate made of SiC or a carbonaceous material.
【0014】請求項3の発明は、請求項2に記載の耐食
性CVD−SiC被覆材を用いた半導体製造用CVD装
置用治具である。According to a third aspect of the present invention, there is provided a jig for a CVD apparatus for semiconductor production using the corrosion-resistant CVD-SiC coating material according to the second aspect.
【0015】本発明におけるSiCは、黒鉛基材にCV
D法によりSiCを被覆し、その後、黒鉛を機械的ある
いは化学的に除去させ緻密質なCVD−SiCのみとし
たもの、また、黒鉛材、黒鉛材から転化したSiC、焼
結質SiC、前記CVD−SiCのうち何れかからなる
基材表面にCVD法で被覆形成されたものの何れであっ
てもよい。ここで、黒鉛材から転化したSiCとは、黒
鉛材とケイ酸ガスを反応させて黒鉛材をSiCに転化さ
せた、いわゆるCVR−SiCのことであり、焼結質S
iCとはSiC粉末に焼結助剤を添加し、1600℃以
上の高温で焼結させたもののことである。In the present invention, SiC is obtained by adding CV to a graphite substrate.
A method in which SiC is coated by the method D, and then graphite is removed mechanically or chemically to obtain only dense CVD-SiC. Graphite material, SiC converted from graphite material, sintered SiC, and CVD -Any of SiC coated and formed on the surface of a substrate made of SiC by a CVD method may be used. Here, the SiC converted from the graphite material is a so-called CVR-SiC obtained by reacting the graphite material with a silicate gas to convert the graphite material into SiC.
iC is obtained by adding a sintering aid to SiC powder and sintering at a high temperature of 1600 ° C. or higher.
【0016】また、CVD法により形成されるSiCと
は、CVD処理時に原料ガスより生成されるSiCの核
が、基材表面に析出し、析出した核が成長していくこと
により形成される非常に緻密な膜である。また、SiC
には六方晶であるα型、立方晶であるβ型の2種類があ
るが、本発明にかかるCVD法ではβ型のSiCが生成
される。Further, the SiC formed by the CVD method is an emergency formed by a nucleus of SiC generated from a source gas at the time of a CVD process being deposited on the surface of a base material and growing the deposited nucleus. It is a dense film. In addition, SiC
There are two types of α-type, hexagonal, and β-type, cubic. In the CVD method according to the present invention, β-type SiC is generated.
【0017】このCVD法によるβ−SiCの表面を構
成する結晶のうち(111)面方向の結晶方位を示す結
晶の占める比率を全体の0.5以下、好ましくは0.4
以下とする。0.5より大きい場合は、同一面の配向性
が大きくなることによって、結晶間若しくは結晶層間が
浸食されやすくなると考えられ、各種金属、或いは、ク
リーニングガスに対して、耐食性が発現しない。ここ
で、この比率の対象となる結晶面は、(111)面と方
位の異なる(200)面、(220)面、(311)面
である。この比率は、X線回折結果より、前記(11
1)面と方位の異なる結晶面を表すピークのピーク強度
(ピーク高さ)の和で、(111)面のピーク強度を割
った値を採用している。The ratio of the crystal having the crystal orientation in the (111) plane direction to the crystal constituting the surface of β-SiC by the CVD method is 0.5 or less, preferably 0.4 or less.
The following is assumed. If it is larger than 0.5, it is considered that the orientation of the same plane becomes large, so that erosion between crystals or between crystal layers is likely to occur, and corrosion resistance to various metals or a cleaning gas is not exhibited. Here, the crystal planes targeted for this ratio are the (200) plane, the (220) plane, and the (311) plane having different orientations from the (111) plane. This ratio can be determined from (11) based on the result of X-ray diffraction.
1) The value obtained by dividing the peak intensity of the (111) plane by the sum of the peak intensities (peak heights) of the crystal planes having different orientations from the plane is adopted.
【0018】β−SiCの表面は、CVD処理条件を調
整することで、構成する結晶子の(111)面方向の結
晶の比率が0.5以下とすることができ、表面を被覆し
たSiCを構成する各結晶の方位が乱雑となる。そし
て、(111)面方向にのみ成長した結晶子で形成され
たβ−SiCに比較すると、Al、Cr、Fe、Co、
Ni、Cu等の金属のうち1若しくはこれら2以上から
なる合金に対して耐食性に優れるようになる。また、各
種CVD装置でのインラインクリーニングに使用される
ClF、ClF3 、ClF5 、NF3 、HCl、C
l2 、HFのいずれか若しくはこれらのうちのいずれか
を不活性ガスで希釈した混合ガスに対して耐エッチング
性を示すようになると推測される。なかでも、HClと
ClF3 のガスには優れた耐エッチング性が発揮され
る。By adjusting the conditions of the CVD process, the ratio of the crystallites constituting the crystallite in the (111) plane direction can be reduced to 0.5 or less on the surface of β-SiC. The orientation of each constituent crystal becomes disordered. In comparison with β-SiC formed of crystallites grown only in the (111) plane direction, Al, Cr, Fe, Co,
It becomes excellent in corrosion resistance to an alloy composed of one or more of metals such as Ni and Cu. Further, ClF, ClF 3 , ClF 5 , NF 3 , HCl, C
It is presumed that any one of l 2 and HF or any one of them is diluted with an inert gas to exhibit etching resistance to a mixed gas. Among them, HCl and ClF 3 gas exhibit excellent etching resistance.
【0019】この(111)面の方位と異なる結晶面で
ある(200)面、(220)面、(311)面はCV
D処理時の基材、基材温度、原料ガス、炉内圧力、原料
ガス濃度等の各制御因子のなかでも特に温度に影響を受
け、CVD処理時の基材温度が高くなるほど、顕著に現
れる。したがって、(111)面の占める比率を0.5
以下、好ましくは0.4以下とするためには、CVD処
理時の基材温度を少なくとも1300℃、好ましくは1
400℃以上とする。The (200), (220), and (311) planes, which are crystal planes different from the (111) plane, have a CV orientation.
Among the control factors such as substrate, substrate temperature, raw material gas, furnace pressure, raw material gas concentration at the time of D processing, the temperature is particularly affected, and becomes more remarkable as the substrate temperature at the time of CVD processing becomes higher. . Therefore, the ratio occupied by the (111) plane is 0.5
Or less, preferably 0.4 or less, the substrate temperature at the time of CVD treatment is at least 1300 ° C., preferably 1
400 ° C. or higher.
【0020】以上のように、CVD−SiCや、或いは
黒鉛等の炭素質材やSiC等のセラミックスの基材表面
にSiCをCVD法で被覆したCVD−SiC被覆材の
表面に形成されたβ−SiCを構成する結晶のうち、
(111)面の占める比率を0.5以下とすることで、
金属に対して耐食性を有することとなる。これにより、
各種半導体製造用CVD装置用治具として使用すること
ができる。すなわち、本発明に係るCVD−SiCを治
具表面に形成させることで、ピンホール等の発生を抑制
することができ、耐用寿命の延命化が行える。As described above, the β-SiC formed on the surface of a CVD-SiC coating material in which SiC is coated on the surface of a base material of a carbonaceous material such as graphite or graphite or a ceramic such as SiC by a CVD method. Among the crystals that constitute SiC,
By setting the ratio of the (111) plane to 0.5 or less,
It has corrosion resistance to metal. This allows
It can be used as a jig for a CVD device for manufacturing various semiconductors. That is, by forming the CVD-SiC according to the present invention on the surface of the jig, the occurrence of pinholes and the like can be suppressed, and the useful life can be extended.
【0021】半導体製造用CVD装置としては、例え
ば、エピタキシャル成長装置や、歩留り及び生産効率の
向上のため、フッ化塩素ガス等を用いての乾式洗浄すな
わちインラインクリーニングが行われる、例えば、LP
CVD装置、RTPCVD装置等がある。これらのSi
ウェハーを載置するサセプター等の治具として適用する
ことができる。これらはそれぞれ1又は1以上の反応室
を有しており、インラインクリーニングは、それぞれ同
一の反応室で行われる。As a CVD apparatus for manufacturing a semiconductor, for example, an epitaxial growth apparatus, or dry cleaning using chlorine fluoride gas or the like, that is, in-line cleaning is performed to improve yield and production efficiency.
There are a CVD apparatus, an RTPCVD apparatus, and the like. These Si
The present invention can be applied as a jig such as a susceptor for mounting a wafer. Each of these has one or more reaction chambers, and the in-line cleaning is performed in the same reaction chamber.
【0022】図6にLPCVD装置の反応室の断面概略
図を示す。LPCVD装置とは、Low Pressu
re CVD装置の略であり、図に示すように、ウェハ
ー14を載置するSiC製のボート13と、SiC製の
均熱管12とから構成されており、減圧下でCVD処理
が行われ、ウェハー14に多結晶シリコン膜や窒化ケイ
素膜等の形成や拡散に使用される。ここで、本発明に係
る治具はボート13と、均熱管12である。FIG. 6 is a schematic sectional view of a reaction chamber of the LPCVD apparatus. LPPress is an LPCVD system.
It is an abbreviation of re CVD device, and as shown in the figure, it is composed of a SiC boat 13 on which a wafer 14 is placed and a SiC soaking tube 12, and a CVD process is performed under reduced pressure. 14 is used for forming or diffusing a polycrystalline silicon film or a silicon nitride film. Here, the jig according to the present invention is the boat 13 and the soaking tube 12.
【0023】図7にはRTPCVD装置の反応室の断面
概略図を示す。RTPCVD装置とは、Rapid T
hermal Processing CVD装置の略
であり、図に示すように、ウェハー23を載置するSi
C製のサセプター22と、サセプター22を載置するS
iC製の治具24とから構成されており、ハロゲンラン
プによる昇温加熱がなされ、局所加熱的に酸化やCVD
が行える装置であり、多結晶シリコン膜や窒化ケイ素膜
の形成に使用される。ここで、本発明に係る治具はサセ
プター22、サセプター22を載置するSiC製の治具
24とである。FIG. 7 is a schematic sectional view of a reaction chamber of an RTPCVD apparatus. RTPCVD equipment means Rapid T
It is an abbreviation of a thermal processing CVD apparatus, and as shown in FIG.
C susceptor 22 and S on which susceptor 22 is placed
and a jig 24 made of iC, which is heated by a halogen lamp and heated by local heating such as oxidation or CVD.
Which is used for forming a polycrystalline silicon film or a silicon nitride film. Here, the jig according to the present invention includes the susceptor 22 and the jig 24 made of SiC on which the susceptor 22 is mounted.
【0024】以上のように、本発明におけるCVD−S
iC若しくはCVD−SiC被覆材は半導体製造用CV
D装置用の治具として適用することができる。また、半
導体製造用CVD装置用の治具以外でも、その優れた耐
食性を利用して単結晶引き上げ装置用の治具として使用
することもできる。As described above, the CVD-S
iC or CVD-SiC coating material is CV for semiconductor manufacturing
It can be applied as a jig for the D device. In addition to the jig for the CVD apparatus for semiconductor production, it can be used as a jig for a single crystal pulling apparatus by utilizing its excellent corrosion resistance.
【0025】以下に実施例を挙げ、本発明を具体的に説
明する。Hereinafter, the present invention will be described specifically with reference to examples.
【0026】[0026]
【実施例】(実施例1)基材として嵩密度1.85g/
cm3 の等方性黒鉛材(東洋炭素(株)製)を使用し、
20×20×5mmに加工した。次にこれらをCVD装
置内に設置し、原料ガスにSiCl4 +C3 H8 を使用
し、炉内圧力250Torr、基材温度1400℃でC
VD処理を行い、表面全面にSiCを被覆した。EXAMPLES (Example 1) A bulk density of 1.85 g /
cm 3 of isotropic graphite material (manufactured by Toyo Tanso Co., Ltd.)
It was processed to 20 × 20 × 5 mm. Next, these are set in a CVD apparatus, and SiCl 4 + C 3 H 8 is used as a raw material gas, the furnace pressure is 250 Torr, and the substrate temperature is 1400 ° C.
VD processing was performed, and the entire surface was coated with SiC.
【0027】CVD−SiCを被覆後、その表面をCu
の管球を使用しX線回折分析を行った。図1にその分析
結果を示す。図中に記載しているβ−SiC(111)
等は各結晶面を表している。次に、表面を構成する結晶
のうち、この(111)面の占める比率は、(111)
面と結晶方位を異にする各結晶面の強度比(各結晶面を
表すピークの高さ)を用いて、次式により算出した。す
なわち、 比率 = (111)/((111)+(200)+(220)+(311)) である。表面を被覆したSiCの構成結晶子のうち(1
11)面の占める比率は0.32であった。After coating with CVD-SiC, the surface is
X-ray diffraction analysis was performed using a tube of No. FIG. 1 shows the results of the analysis. Β-SiC (111) described in the figure
Etc. represent each crystal plane. Next, of the crystals constituting the surface, the ratio occupied by the (111) plane is (111)
It was calculated by the following equation using the intensity ratio of each crystal plane having a different crystal orientation from the crystal plane (the height of the peak representing each crystal plane). That is, the ratio = (111) / ((111) + (200) + (220) + (311)). Among the constituent crystallites of SiC whose surface is covered, (1
11) The ratio occupied by the plane was 0.32.
【0028】(実施例2)実施例1と同質の基材を同形
状に加工後、実施例1と同じCVD装置を用いて、原料
ガスにSiCl4 +C3 H8 を使用し、炉内圧力250
Torr、基材温度1300℃でCVD処理を行い、表
面全面にSiCを被覆した。その後、実施例1と同様に
して、SiC被覆された表面のX線回折分析を行った。
図2にそのX線回折結果を示す。この結果より、実施例
1と同様にして、表面を被覆したSiCの構成結晶子の
うち(111)面の占める比率を求めたところ、0.5
0であった。(Example 2) After processing a base material of the same quality as in Example 1 into the same shape, using the same CVD apparatus as in Example 1, using SiCl 4 + C 3 H 8 as a raw material gas, 250
CVD treatment was performed at Torr and a substrate temperature of 1300 ° C., and the entire surface was coated with SiC. Thereafter, in the same manner as in Example 1, X-ray diffraction analysis was performed on the surface coated with SiC.
FIG. 2 shows the result of the X-ray diffraction. From this result, the ratio of the (111) plane occupied by the constituent crystallites of the SiC covering the surface was determined in the same manner as in Example 1.
It was 0.
【0029】(実施例3)基材として嵩密度1.85g
/cm3 の等方性黒鉛材(東洋炭素(株)製)を使用
し、実施例1と同形状である20×20×5mmに加工
した。これらを金属Siとともに、CVD装置内に設置
し、炉内温度を1800℃に加熱し、炭酸ガスを炉内に
導入し、金属Siの昇華ガスと炭酸ガスを反応させ、基
材表面にSiCを析出させた。その後、実施例1と同様
にして、SiC被覆された表面のX線回折分析を行っ
た。図3にそのX線回折結果を示す。この結果より、実
施例1と同様にして、表面を被覆したSiCの構成結晶
子のうち(111)面の占める比率を求めたところ、
0.36であった。(Example 3) 1.85 g of bulk density as a substrate
/ Isotropic graphite material cm 3 using (manufactured by Toyo Tanso Co.) was processed into 20 × 20 × 5 mm as in Example 1 the same shape. These are placed together with metal Si in a CVD apparatus, the furnace temperature is heated to 1800 ° C., carbon dioxide gas is introduced into the furnace, and the sublimation gas of metal Si reacts with carbon dioxide gas to form SiC on the substrate surface. Was deposited. Thereafter, in the same manner as in Example 1, X-ray diffraction analysis was performed on the surface coated with SiC. FIG. 3 shows the result of the X-ray diffraction. From this result, the ratio of the (111) plane occupied by the constituent crystallites of the SiC covering the surface was determined in the same manner as in Example 1.
0.36.
【0030】(比較例1)実施例1と同質の基材を同形
状に加工後、実施例1と同じCVD装置を用いて、原料
ガスにSiCl4 +C3 H8 を使用し、炉内圧力250
Torr、基材温度1200℃でCVD処理を行い、表
面全面にSiCを被覆した。その後、実施例1と同様に
して、SiC被覆された表面のX線回折分析を行った。
図4にそのX線回折結果を示す。この結果より、実施例
1と同様にして、表面を被覆したSiCの構成結晶子の
うち(111)面の占める比率は1.0であった。(Comparative Example 1) After processing a base material of the same quality as in Example 1 into the same shape, using the same CVD apparatus as in Example 1, using SiCl 4 + C 3 H 8 as the raw material gas, 250
A CVD process was performed at Torr and a substrate temperature of 1200 ° C., and the entire surface was coated with SiC. Thereafter, in the same manner as in Example 1, X-ray diffraction analysis was performed on the surface coated with SiC.
FIG. 4 shows the result of the X-ray diffraction. From this result, as in Example 1, the ratio of the (111) plane to the constituent crystallites of SiC whose surface was covered was 1.0.
【0031】実施例1及び2と比較例1は、CVD処理
時の基材温度が違うのみで、それ以外の処理条件は全て
同じであるが、図1、2および図4よりCVD処理時の
基材温度が高くなることによって、表面を構成する結晶
のうち(111)面の占める割合が小さくなる。換言す
ると、基材温度が高くなることによって、SiCの析出
成長する方向が多方向になり、表面を構成する結晶が乱
雑になるといえる。Examples 1 and 2 and Comparative Example 1 differ only in the substrate temperature during the CVD process, and all the other processing conditions are the same. As the base material temperature increases, the proportion of the (111) plane in the crystals constituting the surface decreases. In other words, it can be said that as the temperature of the base material increases, the direction in which SiC precipitates and grows becomes multi-directional, and the crystals constituting the surface become disordered.
【0032】実施例1〜3及び比較例1の試料のインラ
インクリーニングに使用されるガスに対する耐エッチン
グ性を調べるために、各試料を800℃のClF3 、1
100℃のHClにそれぞれ60分暴露し、耐エッチン
グ性を調べた。In order to examine the etching resistance to the gas used for in-line cleaning of the samples of Examples 1 to 3 and Comparative Example 1, each sample was treated with ClF 3 , 1 at 800 ° C.
Each was exposed to HCl at 100 ° C. for 60 minutes, and the etching resistance was examined.
【0033】表1に各試料のそれぞれのガスに対する耐
エッチング性を示す。Table 1 shows the etching resistance of each sample to each gas.
【0034】[0034]
【表1】 [Table 1]
【0035】また、実施例1及び比較例1の試料につい
て、金属との反応性を調べるために、各試料は、それぞ
れ膜厚や表面粗度が各種金属との反応に影響を及ぼさな
いように、膜厚は105μmとし、各試料の表面は同一
条件で研摩した。その研摩面に、純度99%以上、粒度
40μmの金属粉末を載せ、それぞれ、1000℃〜1
300℃に加熱して、金属との反応性を調べた。なお、
反応性は、電子顕微鏡により観察し、それぞれの試料の
断面を外表面側から内部に向かってX線によって線分析
を行い評価した。In order to examine the reactivity of the samples of Example 1 and Comparative Example 1 with metals, each sample was prepared so that the film thickness and surface roughness did not affect the reaction with various metals. The film thickness was 105 μm, and the surface of each sample was polished under the same conditions. A metal powder having a purity of 99% or more and a particle size of 40 μm is placed on the polished surface.
After heating to 300 ° C., the reactivity with the metal was examined. In addition,
The reactivity was observed by an electron microscope, and the cross section of each sample was evaluated by performing X-ray line analysis from the outer surface side toward the inside.
【0036】表2に実施例1の試料、表3に比較例1の
試料の各温度での各金属との反応の程度を示す。反応の
程度は3段階で評価した。表中の○は表面層のみで反応
が観察されたもの、△は膜中まで反応が観察されたも
の、×は基材まで達した激しい反応が観察されたものを
表している。Table 2 shows the degree of reaction of the sample of Example 1 and Table 3 of the sample of Comparative Example 1 with each metal at each temperature. The degree of reaction was evaluated on a three-point scale. In the table, ○ indicates that a reaction was observed only in the surface layer, Δ indicates that a reaction was observed all the way into the film, and X indicates that a violent reaction reaching the substrate was observed.
【0037】[0037]
【表2】 [Table 2]
【0038】[0038]
【表3】 [Table 3]
【0039】表1より、CVD処理時の基材温度を高く
することによって、析出するSiCの成長方向を(11
1)面方向だけでなく、それ以外の面にも成長させるこ
とにより、インラインクリーニングに使用されるエッチ
ングガスに対しての耐性が向上することがわかる。As shown in Table 1, by increasing the substrate temperature during the CVD process, the growth direction of
1) It can be seen that the resistance to the etching gas used for in-line cleaning is improved by growing not only the surface direction but also the other surface.
【0040】また、表2、表3より、実施例1は、比較
例1の試料に比較して各金属との反応開始温度が高温側
に移っていることがわかる。From Tables 2 and 3, it can be seen that Example 1 has a higher reaction start temperature with each metal than the sample of Comparative Example 1.
【0041】[0041]
【発明の効果】本発明にかかる、少なくとも表面がβ−
SiCで形成され、その表面を構成する結晶のうち(1
11)面の占める比率が0.5以下とすることによっ
て、LPCVD装置、RTPCVD装置、エピタキシャ
ル成長用CVD装置でのインラインクリーニングの時に
使用される、各種ガスに対して耐エッチング性を示し、
また、各種金属に対しても耐食性を有するようになり、
半導体製造における生産効率、歩留りの向上に貢献でき
る。According to the present invention, at least the surface is β-
Of the crystals formed of SiC and constituting the surface, (1
11) When the ratio occupied by the surface is 0.5 or less, it exhibits etching resistance to various gases used for in-line cleaning in an LPCVD apparatus, an RTPCVD apparatus, and a CVD apparatus for epitaxial growth,
In addition, it has corrosion resistance to various metals,
It can contribute to improvement of production efficiency and yield in semiconductor manufacturing.
【図1】1400℃でCVD処理を行ったSiCのX線
回折結果である。FIG. 1 is an X-ray diffraction result of SiC subjected to a CVD process at 1400 ° C.
【図2】1300℃でCVD処理を行ったSiCのX線
回折結果である。FIG. 2 is an X-ray diffraction result of SiC subjected to a CVD process at 1300 ° C.
【図3】Siの昇華ガスと炭酸ガスの反応により表面に
被覆したSiCのX線回折結果である。FIG. 3 is an X-ray diffraction result of SiC coated on the surface by a reaction between a sublimation gas of Si and a carbon dioxide gas.
【図4】1200℃でCVD処理を行ったSiCのX線
回折結果である。FIG. 4 is an X-ray diffraction result of SiC subjected to a CVD process at 1200 ° C.
【図5】エピタキシャル成長装置の断面概略図である。FIG. 5 is a schematic sectional view of an epitaxial growth apparatus.
【図6】LPCVD装置の断面概略図である。FIG. 6 is a schematic sectional view of an LPCVD apparatus.
【図7】RTPCVD装置の断面概略図である。FIG. 7 is a schematic sectional view of an RTPCVD apparatus.
1 エピタキシャル成長装置 2 シリコンウェハー 3 サセプター 4 反応室 5 RFコイル 11 LPCVD装置反応室 12 均熱管 13 ボード 14 ウェハー 21 RTPCVD装置反応室 22 サセプター 23 ウェハー 24 治具 REFERENCE SIGNS LIST 1 epitaxial growth apparatus 2 silicon wafer 3 susceptor 4 reaction chamber 5 RF coil 11 LPCVD apparatus reaction chamber 12 soaking tube 13 board 14 wafer 21 RTPCVD apparatus reaction chamber 22 susceptor 23 wafer 24 jig
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/68 H01L 21/68 N Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat II (Reference) H01L 21/68 H01L 21/68 N
Claims (3)
構成する結晶のうち(111)面の占める比率が0.5
以下である耐食性CVD−SiC。1. The ratio of the (111) plane occupying 0.5% of the crystal constituting β-SiC formed by CVD.
The following corrosion resistant CVD-SiC.
構成する結晶のうち(111)面の占める比率が0.5
以下である耐食性CVD−SiCが、SiCまたは炭素
質材からなる基材上に被覆されてなる耐食性CVD−S
iC被覆材。2. The ratio of the (111) plane occupying 0.5% of the crystal constituting β-SiC formed by the CVD method.
Corrosion resistant CVD-S obtained by coating the following corrosion resistant CVD-SiC on a substrate made of SiC or carbonaceous material
iC coating.
覆材を用いた半導体製造用CVD装置用治具。3. A jig for a CVD apparatus for semiconductor production using the corrosion-resistant CVD-SiC coating material according to claim 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11236602A JP2000160343A (en) | 1998-08-27 | 1999-08-24 | Corrosion resistant cvd-silicon carbide and corrosion resistant cvd-silicon carbide coating material |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24135898 | 1998-08-27 | ||
JP10-241358 | 1998-08-27 | ||
JP11236602A JP2000160343A (en) | 1998-08-27 | 1999-08-24 | Corrosion resistant cvd-silicon carbide and corrosion resistant cvd-silicon carbide coating material |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009000370A Division JP4373487B2 (en) | 1998-08-27 | 2009-01-05 | Corrosion resistant CVD-SiC coating material and jig for CVD equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2000160343A true JP2000160343A (en) | 2000-06-13 |
Family
ID=26532757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11236602A Pending JP2000160343A (en) | 1998-08-27 | 1999-08-24 | Corrosion resistant cvd-silicon carbide and corrosion resistant cvd-silicon carbide coating material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2000160343A (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001009407A1 (en) * | 1999-08-02 | 2001-02-08 | Tokyo Electron Limited | SiC MATERIAL, SEMICONDUCTOR PROCESSING EQUIPMENT AND METHOD OF PREPARING SiC MATERIAL THEREFOR |
JP2001107239A (en) * | 1999-08-02 | 2001-04-17 | Tokyo Electron Ltd | CVD-SiC EXCELLENT IN CORROSION RESISTANCE, CORROSION RESISTING MEMBER USING THE SAME, AND TREATMENT DEVICE |
JP2003034867A (en) * | 2001-07-27 | 2003-02-07 | Tokai Carbon Co Ltd | TUBULAR SiC-COMPACT AND MANUFACTURING METHOD THEREFOR |
JP2011018894A (en) * | 2009-06-12 | 2011-01-27 | Tokyo Electron Ltd | Method for reusing consumable part used for plasma processing apparatus |
WO2012086237A1 (en) * | 2010-12-24 | 2012-06-28 | 東洋炭素株式会社 | Unit for liquid phase epitaxial growth of monocrystalline silicon carbide, and method for liquid phase epitaxial growth of monocrystalline silicon carbide |
WO2012086238A1 (en) * | 2010-12-24 | 2012-06-28 | 東洋炭素株式会社 | Seed material for liquid phase epitaxial growth of monocrystalline silicon carbide, and method for liquid phase epitaxial growth of monocrystalline silicon carbide |
WO2012086239A1 (en) * | 2010-12-24 | 2012-06-28 | 東洋炭素株式会社 | Feed material for epitaxial growth of monocrystalline silicon carbide, and method for epitaxial growth of monocrystalline silicon carbide |
JP2012136369A (en) * | 2010-12-24 | 2012-07-19 | Toyo Tanso Kk | Unit for liquid phase epitaxial growth of single crystal silicon carbide, and method for liquid phase epitaxial growth of single crystal silicon carbide |
JP2012136367A (en) * | 2010-12-24 | 2012-07-19 | Toyo Tanso Kk | Seed material for liquid phase epitaxial growth of single crystal silicon carbide, and method for liquid phase epitaxial growth of single crystal silicon carbide |
JP2012136374A (en) * | 2010-12-24 | 2012-07-19 | Toyo Tanso Kk | Seed material for liquid phase epitaxial growth of single crystal silicon carbide and method for liquid phase epitaxial growth of single crystal silicon carbide |
JP2012136371A (en) * | 2010-12-24 | 2012-07-19 | Toyo Tanso Kk | Feed material for epitaxial growth of single crystal silicon carbide and method for epitaxial growth of single crystal silicon carbide |
JP2012136364A (en) * | 2010-12-24 | 2012-07-19 | Toyo Tanso Kk | Seed material for liquid phase epitaxial growth of single crystal silicon carbide and method for liquid phase epitaxial growth of single crystal silicon carbide |
JP2012136375A (en) * | 2010-12-24 | 2012-07-19 | Toyo Tanso Kk | Feed material for epitaxial growth of single crystal silicon carbide, and method for epitaxial growth of single crystal silicon carbide |
JP2012136365A (en) * | 2010-12-24 | 2012-07-19 | Toyo Tanso Kk | Feed material for epitaxial growth of single crystal silicon carbide, and method for epitaxial growth of single crystal silicon carbide |
JP2012136368A (en) * | 2010-12-24 | 2012-07-19 | Toyo Tanso Kk | Feed material for epitaxial growth of single crystal silicon carbide, and method for epitaxial growth of single crystal silicon carbide |
JP2012136370A (en) * | 2010-12-24 | 2012-07-19 | Toyo Tanso Kk | Seed material for liquid phase epitaxial growth of single crystal silicon carbide, and method for liquid phase epitaxial growth of single crystal silicon carbide |
JP2016204736A (en) * | 2015-04-28 | 2016-12-08 | イビデン株式会社 | Ceramic structure and method for manufacturing ceramic structure |
JP2022530704A (en) * | 2019-06-21 | 2022-06-30 | トーカイ カーボン コリア カンパニー.,リミテッド | SIC structure formed by CVD method |
CN115449775A (en) * | 2022-08-25 | 2022-12-09 | 武汉理工大学 | Corrosion-resistant special gas pipe with silicon carbide coating coated on inner wall and preparation method thereof |
WO2023171713A1 (en) * | 2022-03-09 | 2023-09-14 | 国立大学法人東北大学 | Method for recycling carbon dioxide and method for producing solid carbide |
-
1999
- 1999-08-24 JP JP11236602A patent/JP2000160343A/en active Pending
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001009407A1 (en) * | 1999-08-02 | 2001-02-08 | Tokyo Electron Limited | SiC MATERIAL, SEMICONDUCTOR PROCESSING EQUIPMENT AND METHOD OF PREPARING SiC MATERIAL THEREFOR |
JP2001107239A (en) * | 1999-08-02 | 2001-04-17 | Tokyo Electron Ltd | CVD-SiC EXCELLENT IN CORROSION RESISTANCE, CORROSION RESISTING MEMBER USING THE SAME, AND TREATMENT DEVICE |
US6936102B1 (en) | 1999-08-02 | 2005-08-30 | Tokyo Electron Limited | SiC material, semiconductor processing equipment and method of preparing SiC material therefor |
US7410923B2 (en) | 1999-08-02 | 2008-08-12 | Tokyo Electron Limited | SiC material, semiconductor device fabricating system and SiC material forming method |
JP2003034867A (en) * | 2001-07-27 | 2003-02-07 | Tokai Carbon Co Ltd | TUBULAR SiC-COMPACT AND MANUFACTURING METHOD THEREFOR |
JP4702712B2 (en) * | 2001-07-27 | 2011-06-15 | 東海カーボン株式会社 | Tubular SiC molded body and method for producing the same |
JP2011018894A (en) * | 2009-06-12 | 2011-01-27 | Tokyo Electron Ltd | Method for reusing consumable part used for plasma processing apparatus |
JP2012136364A (en) * | 2010-12-24 | 2012-07-19 | Toyo Tanso Kk | Seed material for liquid phase epitaxial growth of single crystal silicon carbide and method for liquid phase epitaxial growth of single crystal silicon carbide |
JP2012136370A (en) * | 2010-12-24 | 2012-07-19 | Toyo Tanso Kk | Seed material for liquid phase epitaxial growth of single crystal silicon carbide, and method for liquid phase epitaxial growth of single crystal silicon carbide |
WO2012086239A1 (en) * | 2010-12-24 | 2012-06-28 | 東洋炭素株式会社 | Feed material for epitaxial growth of monocrystalline silicon carbide, and method for epitaxial growth of monocrystalline silicon carbide |
JP2012136369A (en) * | 2010-12-24 | 2012-07-19 | Toyo Tanso Kk | Unit for liquid phase epitaxial growth of single crystal silicon carbide, and method for liquid phase epitaxial growth of single crystal silicon carbide |
JP2012136367A (en) * | 2010-12-24 | 2012-07-19 | Toyo Tanso Kk | Seed material for liquid phase epitaxial growth of single crystal silicon carbide, and method for liquid phase epitaxial growth of single crystal silicon carbide |
JP2012136374A (en) * | 2010-12-24 | 2012-07-19 | Toyo Tanso Kk | Seed material for liquid phase epitaxial growth of single crystal silicon carbide and method for liquid phase epitaxial growth of single crystal silicon carbide |
JP2012136371A (en) * | 2010-12-24 | 2012-07-19 | Toyo Tanso Kk | Feed material for epitaxial growth of single crystal silicon carbide and method for epitaxial growth of single crystal silicon carbide |
WO2012086237A1 (en) * | 2010-12-24 | 2012-06-28 | 東洋炭素株式会社 | Unit for liquid phase epitaxial growth of monocrystalline silicon carbide, and method for liquid phase epitaxial growth of monocrystalline silicon carbide |
JP2012136375A (en) * | 2010-12-24 | 2012-07-19 | Toyo Tanso Kk | Feed material for epitaxial growth of single crystal silicon carbide, and method for epitaxial growth of single crystal silicon carbide |
JP2012136365A (en) * | 2010-12-24 | 2012-07-19 | Toyo Tanso Kk | Feed material for epitaxial growth of single crystal silicon carbide, and method for epitaxial growth of single crystal silicon carbide |
JP2012136368A (en) * | 2010-12-24 | 2012-07-19 | Toyo Tanso Kk | Feed material for epitaxial growth of single crystal silicon carbide, and method for epitaxial growth of single crystal silicon carbide |
WO2012086238A1 (en) * | 2010-12-24 | 2012-06-28 | 東洋炭素株式会社 | Seed material for liquid phase epitaxial growth of monocrystalline silicon carbide, and method for liquid phase epitaxial growth of monocrystalline silicon carbide |
US9252206B2 (en) | 2010-12-24 | 2016-02-02 | Toyo Tanso Co., Ltd. | Unit for liquid phase epitaxial growth of monocrystalline silicon carbide, and method for liquid phase epitaxial growth of monocrystalline silicon carbide |
US10358741B2 (en) | 2010-12-24 | 2019-07-23 | Toyo Tanso Co., Ltd. | Seed material for liquid phase epitaxial growth of monocrystalline silicon carbide, and method for liquid phase epitaxial growth of monocrystalline silicon carbide |
KR101740094B1 (en) | 2010-12-24 | 2017-05-25 | 도요탄소 가부시키가이샤 | Unit for liquid phase epitaxial growth of monocrystalline silicon carbide, and method for liquid phase epitaxial growth of monocrystalline silicon carbide |
US9725822B2 (en) | 2010-12-24 | 2017-08-08 | Toyo Tanso Co., Ltd. | Method for epitaxial growth of monocrystalline silicon carbide using a feed material including a surface layer containing a polycrystalline silicon carbide with a 3C crystal polymorph |
KR101788905B1 (en) * | 2010-12-24 | 2017-10-20 | 도요탄소 가부시키가이샤 | Feed material for epitaxial growth of monocrystalline silicon carbide, and method for epitaxial growth of monocrystalline silicon carbide |
KR101788906B1 (en) * | 2010-12-24 | 2017-10-20 | 도요탄소 가부시키가이샤 | Seed material for liquid phase epitaxial growth of monocrystalline silicon carbide, and method for liquid phase epitaxial growth of monocrystalline silicon carbide |
JP2016204736A (en) * | 2015-04-28 | 2016-12-08 | イビデン株式会社 | Ceramic structure and method for manufacturing ceramic structure |
JP2022530704A (en) * | 2019-06-21 | 2022-06-30 | トーカイ カーボン コリア カンパニー.,リミテッド | SIC structure formed by CVD method |
JP7204960B2 (en) | 2019-06-21 | 2023-01-16 | トーカイ カーボン コリア カンパニー.,リミテッド | SIC structure formed by CVD method |
WO2023171713A1 (en) * | 2022-03-09 | 2023-09-14 | 国立大学法人東北大学 | Method for recycling carbon dioxide and method for producing solid carbide |
CN115449775A (en) * | 2022-08-25 | 2022-12-09 | 武汉理工大学 | Corrosion-resistant special gas pipe with silicon carbide coating coated on inner wall and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000160343A (en) | Corrosion resistant cvd-silicon carbide and corrosion resistant cvd-silicon carbide coating material | |
US6825123B2 (en) | Method for treating semiconductor processing components and components formed thereby | |
US5993770A (en) | Silicon carbide fabrication | |
KR20070052767A (en) | Semiconductor processing components and semiconductor processing utilizing same | |
CN110997972B (en) | Member and semiconductor manufacturing apparatus | |
KR100427118B1 (en) | Heat treatment jig and its manufacturing method | |
US6406799B1 (en) | Method of producing anti-corrosion member and anti-corrosion member | |
JPH1012692A (en) | Dummy wafer | |
JPH11199323A (en) | Dummy wafer | |
JP4373487B2 (en) | Corrosion resistant CVD-SiC coating material and jig for CVD equipment | |
JP2000302577A (en) | Graphite member coated with silicon carbide | |
JP2000073171A (en) | Production of chemical vapor deposition multilayer silicon carbide film | |
JP2721678B2 (en) | β-silicon carbide molded body and method for producing the same | |
JPH1067554A (en) | Anticorrosive ceramic member | |
JP3929140B2 (en) | Corrosion resistant member and manufacturing method thereof | |
JP2001257163A (en) | Silicon carbide member, plasma-resistant member, and semiconductor manufacturing device | |
JPH11279761A (en) | Corrosion resistant member | |
JP4702712B2 (en) | Tubular SiC molded body and method for producing the same | |
TWI508208B (en) | Semiconductor manufacturing fixture and manufacturing method thereof | |
JP4028274B2 (en) | Corrosion resistant material | |
JP4455895B2 (en) | Method for producing vapor-deposited ceramic coating material | |
JPH1067584A (en) | Reaction vessel | |
JP4651145B2 (en) | Corrosion resistant ceramics | |
JP2000143348A (en) | Aluminum nitride sintered compact and its production and member for apparatus for producing semiconductor using the same | |
JP3732966B2 (en) | Corrosion resistant material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051208 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080513 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080520 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080722 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20081104 |