JP4455895B2 - Method for producing vapor-deposited ceramic coating material - Google Patents

Method for producing vapor-deposited ceramic coating material Download PDF

Info

Publication number
JP4455895B2
JP4455895B2 JP2004021039A JP2004021039A JP4455895B2 JP 4455895 B2 JP4455895 B2 JP 4455895B2 JP 2004021039 A JP2004021039 A JP 2004021039A JP 2004021039 A JP2004021039 A JP 2004021039A JP 4455895 B2 JP4455895 B2 JP 4455895B2
Authority
JP
Japan
Prior art keywords
support jig
ceramic
diameter
sic
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004021039A
Other languages
Japanese (ja)
Other versions
JP2005213571A (en
Inventor
明 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2004021039A priority Critical patent/JP4455895B2/en
Publication of JP2005213571A publication Critical patent/JP2005213571A/en
Application granted granted Critical
Publication of JP4455895B2 publication Critical patent/JP4455895B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、黒鉛材、炭素繊維強化炭素複合材などの炭素材、あるいはセラミックス、金属などの基材表面に化学的気相蒸着法(CVD法)によりセラミックス被膜を被覆した気相蒸着セラミックス被覆材とその製造方法に関する。なお、以下の説明においては、基材を黒鉛材、セラミックスをSiCとした場合を中心に説明する。   The present invention relates to a carbon material such as a graphite material, a carbon fiber reinforced carbon composite material, or a vapor-phase-deposited ceramic coating material in which a ceramic film is coated on the surface of a base material such as ceramics or metal by a chemical vapor deposition method (CVD method). And its manufacturing method. In the following description, the case where the base material is made of graphite and the ceramic is made of SiC will be mainly described.

化学的気相蒸着法(以下、CVD法ともいう)により、例えば、黒鉛基材面にセラミックス被膜としてSiC被膜を形成したSiC被覆黒鉛材は、表面に高純度のSiC被膜が被覆されているため非汚染性に優れ、また急熱や急冷に対する耐熱衝撃性が高く、化学的に安定で耐蝕性も高いところから半導体製造における各種熱処理用部材として、サセプター、ライナーチューブ、プロセスチューブ、ウエハーボート、単結晶引上げ用装置部材などをはじめ、高純度性や耐熱性が要求される部材として有用されている。   For example, a SiC-coated graphite material in which a SiC film is formed as a ceramic film on the surface of a graphite substrate by a chemical vapor deposition method (hereinafter also referred to as a CVD method) is coated with a high-purity SiC film on the surface. Due to its excellent non-contaminating property, high thermal shock resistance against rapid heating and quenching, chemical stability and high corrosion resistance, it can be used as a heat treatment component in semiconductor manufacturing for susceptors, liner tubes, process tubes, wafer boats, It is useful as a member requiring high purity and heat resistance, such as a crystal pulling device member.

CVD法により、基材面にSiCを析出させてSiC被覆材を製造する方法は例えば、水素ガスをキャリアガスとして、1分子中にSi原子とC原子を含むCH3 SiCl3 、(CH3)3 SiCl、CH3 SiHCl2 などの有機珪素化合物を気相で還元熱分解させる方法、あるいは、SiCl4 などの珪素化合物とCH4 などの炭素化合物とを気相反応させてSiCを気相析出させる方法で行われる。 A method for producing a SiC coating material by depositing SiC on the surface of a substrate by CVD is, for example, CH 3 SiCl 3 , (CH 3 ) containing Si atoms and C atoms in one molecule using hydrogen gas as a carrier gas. 3 SiCl, methods for reducing thermal decomposition in the gas phase an organic silicon compound such as CH 3 SiHCl 2, or, causes the carbon compounds such as silicon compounds and CH 4, such as SiCl 4 by vapor phase reaction SiC is a vapor phase deposition Done in the way.

しかしながら、CVD法による被膜形成は、基材をCVD反応容器内の基材保持具に黒鉛製やSiC膜を被覆した黒鉛製のピン、バーなどの支持治具を介して載置し、上記の原料ガスを供給して、CVD反応により気相析出させる方法で行われているため、支持治具に接している基材面には原料ガスが侵入できないためSiC被膜が形成されないという欠点がある。そこで、基材全面にSiC被膜を被覆するためには、通常、支持治具の位置を変更して再度の被膜形成が行われている。すなわち、少なくとも2度の被覆処理が必要となる。   However, in the film formation by the CVD method, the base material is placed on the base material holder in the CVD reaction vessel through a support jig such as a graphite pin or bar covered with a graphite or SiC film, and the above-mentioned Since the raw material gas is supplied and vapor deposition is performed by the CVD reaction, the raw material gas cannot enter the surface of the base material in contact with the support jig, so that there is a disadvantage that the SiC film is not formed. Therefore, in order to coat the entire surface of the substrate with the SiC film, the film is formed again by changing the position of the support jig. That is, at least two coating processes are required.

この欠点を排除するために、特許文献1には黒鉛板の表面にSiC膜を形成する工程と炉内での黒鉛板の支持位置を変更する工程とを交互に行うSiC膜の形成法と、黒鉛板支持棒を上面に有する石英カバーを設置し、かつ気体導入管を開口した炉内に石英カバーと同心上の位置に、石英板の一部を支持するフランジを備えた回転筒を上下ならびに回転可能に設置したことを特徴とするSiC膜の形成装置が提案されている。しかしながら、この方法及び装置では限られた形状の黒鉛板にしか適用できず、また設備が複雑となるため設備投資費用が嵩む難点がある。更に、黒鉛板の支持位置を変更する際にCVD反応を一旦中断しなければならず、一旦中断したCVD反応を再開すると、析出するSiC粒の結晶性状が変化するため、その部分で剥離し易くなる難点もある。   In order to eliminate this drawback, Patent Document 1 discloses a method of forming a SiC film in which a step of forming a SiC film on the surface of the graphite plate and a step of changing the support position of the graphite plate in the furnace are alternately performed, A quartz cover having a graphite plate support rod on its upper surface is installed, and a rotary cylinder provided with a flange for supporting a part of the quartz plate is placed up and down in a furnace concentric with the quartz cover in a furnace having an open gas introduction tube. A SiC film forming apparatus characterized in that it is rotatably installed has been proposed. However, this method and apparatus can be applied only to a graphite plate having a limited shape, and the facilities are complicated, so that there is a problem that the capital investment cost increases. Furthermore, when changing the support position of the graphite plate, the CVD reaction must be interrupted once. When the interrupted CVD reaction is resumed, the crystal properties of the precipitated SiC grains change, so that the part is easily peeled off. There are also difficulties.

また、特許文献2には上部架台と下部架台からなる一組の架台が配置され、上部架台は固定され、下部架台は上下に移動可能であり、各架台には支持棒が設置されており、これら支持棒が黒鉛基材を支持することを特徴とする炭化珪素被膜のコーティングー装置が提案されている。これは、コーティング処理中に下部架台の上下移動により支持位置を持ち替えているが、この場合も黒鉛基材の形状に制約があり、特に小物類などには適用し難い欠点がある。さらに重量バランスが悪かったり、水平が保たれていないと支持棒からずれて落下してしまうおそれもある。   Further, in Patent Document 2, a set of gantry comprising an upper gantry and a lower gantry is arranged, the upper gantry is fixed, the lower gantry is movable up and down, and a support bar is installed on each gantry. A silicon carbide coating apparatus has been proposed in which these support bars support a graphite substrate. This is because the supporting position is changed by the vertical movement of the lower pedestal during the coating process, but in this case as well, there is a limitation in the shape of the graphite base material, and there is a drawback that it is difficult to apply to small items. Furthermore, if the weight balance is bad or the level is not maintained, there is a possibility that it will fall off the support bar.

更に、特許文献3にはCVD反応炉内に、被処理基材を支持するための支持部材を配設してなるCVD装置において、前記支持部材は間歇的な微小ショックを加える衝撃機構を備えることを特徴とするCVD装置、及び微小ショックを加えることにより、被処理基材と支持部材との接触部位を逐次に変位させながらコーティングすることを特徴とするCVD被膜の形成方法が開示されている。しかしながら、間歇的な微小ショックを与えることで的確に支持位置を変えることは、被処理基材の形状が複雑であったり、大型の重量物の場合は難しく、また被処理基材が縦長の場合には転倒する危険性すらある。
特開昭58−125608号公報 特開平1−205076号公報 特開平8−100265号公報
Further, Patent Document 3 discloses a CVD apparatus in which a support member for supporting a substrate to be processed is disposed in a CVD reactor, and the support member includes an impact mechanism that applies intermittent microshock. And a CVD film forming method characterized in that coating is performed by sequentially displacing the contact portion between the substrate to be processed and the support member by applying a microshock. However, it is difficult to change the support position accurately by applying intermittent microshock, when the shape of the substrate to be processed is complicated or large heavy objects, and when the substrate to be processed is vertically long Even has the risk of falling.
JP 58-125608 A Japanese Patent Laid-Open No. 1-205076 JP-A-8-1000026

このように、化学的気相蒸着法により基材全面に確実かつ安全にセラミックス被覆を施す技術は未だ確立されておらず、1回のCVD処理で基材全面にセラミックス被膜を被覆する手法の開発が望まれている。   As described above, a technique for reliably and safely applying a ceramic coating to the entire surface of the substrate by chemical vapor deposition has not yet been established, and the development of a technique for coating the entire surface of the substrate with a single CVD process has been established. Is desired.

そこで、本発明者はCVD反応により基材面にセラミックスを析出、被覆してセラミックス被覆材を製造する際に、CVD処理時に支持治具上の基材を移動することなく、1回のCVD処理で確実かつ安全に基材全面にセラミックスを被覆する手段について鋭意研究を進め、CVD装置内に複雑な物理的機構を組み込むことなく、実質的に1回のCVD処理操作で基材全面にセラミックスを析出、被覆する技術を開発した。   Therefore, the present inventor deposited and coated ceramics on the surface of the base material by a CVD reaction to produce a ceramic coating material, without moving the base material on the support jig at the time of the CVD processing. In order to reliably and safely coat ceramics on the entire surface of the substrate, we have intensively studied, and without incorporating a complicated physical mechanism in the CVD apparatus, the ceramic can be applied to the entire surface of the substrate by a single CVD process. Technology for deposition and coating was developed.

すなわち、本発明の目的はCVD反応により黒鉛などの基材面にSiCなどのセラミックスを析出させたセラミックス被覆材として、実質的に1回の被覆処理で確実かつ安全に基材全面にセラミックスが被覆された気相蒸着セラミックス被覆材とその製造方法を提供することにある。   In other words, the object of the present invention is as a ceramic coating material in which a ceramic such as SiC is deposited on the surface of a substrate such as graphite by a CVD reaction, and the ceramic is coated on the entire surface of the substrate reliably and safely by a single coating process. An object of the present invention is to provide a vapor-phase deposited ceramic coating material and a method for producing the same.

発明に係る気相蒸着セラミックス被覆材の製造方法は、基材をCVD反応容器内の支持治具に載置して、CVD反応により基材面にセラミックスを析出被覆した後、支持治具を引張り破壊してセラミックス被覆材を取り外す製造プロセスであって、支持治具跡の直径が支持治具付近のセラミックス被覆膜厚の7.5倍以下、または、セラミックスを被覆前の支持治具の直径を支持治具付近のセラミックス被覆膜厚の5.5倍以下、に設定し、被覆するセラミックスと同一もしくは同等の材質からなる支持治具を用いるか、または被覆するセラミックスと同一セラミックスが被覆された支持治具を用いることを構成上の特徴とする。 In the method for producing a vapor-deposited ceramic coating material according to the present invention, a base material is placed on a support jig in a CVD reaction vessel, and after depositing ceramic on the base material surface by a CVD reaction, the support jig is This is a manufacturing process in which the ceramic coating material is removed by pulling and breaking, and the diameter of the support jig trace is not more than 7.5 times the ceramic coating film thickness near the support jig, or of the support jig before coating the ceramic. Set the diameter to 5.5 times the ceramic coating thickness near the support jig and use a support jig made of the same or equivalent material as the ceramic to be coated , or use the same ceramic as the ceramic to be coated. It is a structural feature that a covered support jig is used.

本発明によれば、CVD反応により黒鉛などの基材面にSiCなどのセラミックスを析出させたセラミックス被覆材として、実質的に1回の被覆処理で確実かつ安全に基材全面にセラミックスが被覆された気相蒸着セラミックス被覆材とその製造方法を提供することができる。   According to the present invention, as a ceramic coating material in which ceramics such as SiC are deposited on the surface of a substrate such as graphite by a CVD reaction, the ceramic is coated on the entire surface of the substrate reliably and safely in a single coating process. In addition, a vapor-deposited ceramic coating material and a method for manufacturing the same can be provided.

CVD反応容器内で基材を載置する支持治具の基材に接する面は、被覆するセラミックス被膜の膜厚に比べ遙に大きいため、通常は基材面にセラミックスを析出、被覆した後、基材を取り外す際に支持治具が破壊することはない。したがって、支持治具に接した基材面にはセラミックス被膜が形成されず未被覆のままとなる。   Since the surface of the supporting jig on which the substrate is placed in the CVD reactor is in contact with the substrate is much larger than the thickness of the ceramic coating to be coated, usually after depositing and coating the ceramic on the substrate surface, The support jig does not break when removing the substrate. Therefore, the ceramic coating is not formed on the base material surface in contact with the support jig, and remains uncoated.

しかし、基材と接する支持治具面の大きさが小さくなり、例えば、円柱状支持治具の直径が小さくなると、セラミックスを被覆後に支持治具を取り外す際に支持治具が被覆面で折れて破壊されるようになる。つまり、支持治具の先端部が基材側に残存するようになり、この場合支持治具の材質が被覆するセラミックスと同一または同等、もしくは、同一セラミックスが被覆されたものである場合には支持治具の先端部がセラミックス被膜と一体化する。すなわち、支持治具の直径とその近辺のセラミックス被膜の膜厚との関係が重要となる。   However, when the size of the support jig surface in contact with the substrate is reduced, for example, when the diameter of the cylindrical support jig is reduced, the support jig breaks at the coated surface when the support jig is removed after the ceramic is coated. It will be destroyed. In other words, the tip of the support jig remains on the substrate side. In this case, if the material of the support jig is the same as, or equivalent to, the ceramic coated, the support jig is supported. The tip of the jig is integrated with the ceramic coating. That is, the relationship between the diameter of the support jig and the film thickness of the ceramic coating in the vicinity thereof is important.

本発明者は、この現象に着目して鋭意検討を重ねた結果、円柱状支持治具の直径を小さくして基材を載置し、CVD反応によりセラミックスの被膜を形成したのち支持治具を破壊して基材を取り外した場合、基材の被膜面にはディンプル状の窪みができること、そして、このディンプルの直径はCVD反応後のセラミックス被膜を形成した支持治具の直径、すなわち支持治具跡の直径に等しくなることを見出した。   As a result of intensive studies focusing on this phenomenon, the present inventor reduced the diameter of the cylindrical support jig, placed the base material, formed a ceramic film by CVD reaction, and then attached the support jig. When the substrate is removed due to destruction, a dimple-like depression is formed on the coating surface of the substrate, and the diameter of the dimple is the diameter of the supporting jig on which the ceramic coating is formed after the CVD reaction, that is, the supporting jig. We found that it was equal to the diameter of the trace.

この場合、ディンプルの直径とディンプルの深さとの間には図1に示す関係があることを実験的に確認した。そして、図1の回帰線から、ディンプルの直径はディンプルの深さの7.5倍に相当することが実験的に求められた。   In this case, it was experimentally confirmed that there is a relationship shown in FIG. 1 between the dimple diameter and the dimple depth. From the regression line in FIG. 1, it was experimentally determined that the dimple diameter corresponds to 7.5 times the dimple depth.

そこで、支持治具に接している基材面をセラミックス被膜で被覆するためには図2に示したようにセラミックス被覆膜厚をディンプルの深さより厚くすればよいことになる。なお、図2において、1は基材、2はセラミックス被膜、3はセラミックス被膜被覆後の支持治具、4はディンプル、5は支持治具を取り外した際に基材側に残った支持治具の先端部、Xはセラミックス被膜被覆後の支持治具の直径(支持治具跡の直径すなわちディンプルの直径と等しい)、Yはディンプルの深さ、Zは支持治具付近のセラミックス被覆膜厚である。   Therefore, in order to coat the base material surface in contact with the support jig with the ceramic film, it is only necessary to make the ceramic film thickness thicker than the dimple depth as shown in FIG. In FIG. 2, 1 is a base material, 2 is a ceramic coating, 3 is a support jig after coating the ceramic coating, 4 is a dimple, and 5 is a support jig left on the base material side when the support jig is removed. , X is the diameter of the support jig after coating the ceramic film (equal to the diameter of the trace of the support jig, that is, the dimple diameter), Y is the depth of the dimple, and Z is the thickness of the ceramic coating near the support jig. It is.

図1および図2から、ディンプルの直径、すなわち円柱状支持治具跡の直径Xが、支持治具付近のセラミックス被覆膜厚Zの7.5倍以下であれば、セラミックス被覆後に支持治具を除去した際に、支持治具先端部は確実に基材面に残存して一体化することとなり、基材1の面が露出することはなく、実質的に1回の被覆処理で基材全面を被覆することが可能となる。   From FIG. 1 and FIG. 2, if the diameter of the dimple, that is, the diameter X of the cylindrical support jig trace is not more than 7.5 times the ceramic coating film thickness Z in the vicinity of the support jig, When the substrate is removed, the tip of the support jig remains on the surface of the base material without fail, and the surface of the base material 1 is not exposed. It is possible to cover the entire surface.

この場合、支持治具を引張り破壊により除去してセラミックス被覆材を取り外すと支持治具跡はディンプル形状となる。なお、曲げや圧縮などで支持治具を破壊した場合にはディンプルが浅くなったり、ディンプルとならずに突起として治具の一部が被覆面に残ったりすることがある。これらの破壊様式は基材が露出し難くなるので好ましいが、常に曲げ応力、または圧縮応力で破壊させることは困難である。そのため、ディンプルが最も深くなる引張り破壊で支持治具を除去した場合でも、支持治具跡の直径が支持治具付近のセラミックス被覆膜厚の7.5倍以下であれば、支持治具先端部は基材面に残ることとなり、基材面が露出することはない。   In this case, when the support jig is removed by pulling and the ceramic covering material is removed, the trace of the support jig becomes a dimple shape. When the support jig is broken by bending or compression, the dimple may become shallow, or a part of the jig may remain on the coated surface as a protrusion without becoming a dimple. These fracture modes are preferable because the substrate is difficult to be exposed, but it is always difficult to break with a bending stress or a compressive stress. Therefore, even when the support jig is removed by tensile fracture where the dimple is deepest, if the diameter of the trace of the support jig is not more than 7.5 times the ceramic coating thickness near the support jig, the tip of the support jig The part remains on the substrate surface, and the substrate surface is not exposed.

一方、セラミックス被覆後の支持治具の直径は、図3に示すようにセラミックス被覆前の直径よりもセラミックス被膜の膜厚の2倍分だけ大きくなる。すなわち、図3において6はセラミックス被覆前の支持治具で、その直径をX0 とすると、セラミックス被膜被覆後の支持治具3の直径Xは、X=X0 +2Zとなる。なお、図3における符号は図2と共通であり、1は基材、2はセラミックス被膜、3はセラミックス被膜被覆後の支持治具、4はディンプル、Xはセラミックス被膜被覆後の支持治具の直径(支持治具跡の直径すなわちディンプルの直径と等しい)、Yはディンプルの深さ、Zは支持治具付近のセラミックス被覆膜厚である。   On the other hand, as shown in FIG. 3, the diameter of the support jig after ceramic coating is larger than the diameter before ceramic coating by twice the film thickness of the ceramic coating. That is, in FIG. 3, 6 is a support jig before ceramic coating, and when the diameter is X0, the diameter X of the support jig 3 after ceramic coating is X = X0 + 2Z. 3 are the same as those in FIG. 2, 1 is a base material, 2 is a ceramic coating, 3 is a supporting jig after coating the ceramic coating, 4 is a dimple, and X is a supporting jig after coating the ceramic coating. The diameter (equal to the diameter of the support jig trace, that is, the dimple diameter), Y is the depth of the dimple, and Z is the ceramic coating thickness near the support jig.

図1、2および図3から、支持治具6の直径X0 が支持治具付近のセラミックス被覆の膜厚Zの5.5倍以下であれば、上記したセラミックス被覆後に支持治具を除去した支持治具跡(ディンプル)の直径XがZの7.5倍以下となり、支持治具に接している基材面に被膜形成が可能となる。   1, 2 and 3, when the diameter X0 of the support jig 6 is 5.5 times or less the film thickness Z of the ceramic coating near the support jig, the support jig is removed after the ceramic coating. The diameter X of the jig trace (dimple) is 7.5 times or less of Z, and a film can be formed on the substrate surface in contact with the support jig.

以上の説明においては、支持治具の形状として円柱形状の場合を例に説明したが、多角形柱の場合には多角形の外接円の直径を円柱の直径と見なせば多角形についても適用することができ、更に、円錐や多角形錐でも適用可能である。   In the above explanation, the case of a cylindrical shape was explained as an example of the shape of the supporting jig. However, in the case of a polygonal column, if the diameter of the circumscribed circle of the polygon is regarded as the diameter of the cylinder, it can also be applied to the polygon. Furthermore, a cone or a polygonal cone is applicable.

このように、本発明によれば、CVD反応容器内に基材を載置する支持治具の直径を小さくしてCVD反応を行った後、支持治具を引張り破壊で除去して形成した支持治具跡の直径を支持治具付近のセラミックス被覆膜厚の7.5倍以下、または、セラミックス被覆前の支持治具の直径を支持治具付近のセラミックス被覆膜厚の5.5倍以下に設定、制御し、かつ、支持治具の材質を被覆するセラミックスと同一または同等、もしくは、同一セラミックスが被覆したものとすることにより、支持治具先端部を基材面に残存させて基材面と一体化させることができ、実質的に1回の被覆処理で確実かつ安全に基材全面にセラミックスが被覆された気相蒸着セラミックス被覆材とその製造方法が提供される。   As described above, according to the present invention, the support jig formed by removing the support jig by pulling fracture after performing the CVD reaction by reducing the diameter of the support jig for placing the base material in the CVD reaction vessel. The diameter of the jig trace is 7.5 times or less of the ceramic coating thickness near the support jig, or the diameter of the support jig before ceramic coating is 5.5 times the ceramic coating thickness near the support jig. Set and controlled as follows, and the support jig material is the same as, equivalent to, or covered with the same ceramic, so that the support jig tip remains on the substrate surface. A vapor-phase-deposited ceramic coating material that can be integrated with a material surface, and which is coated with ceramics on the entire surface of the substrate reliably and safely by a single coating process, and a method for producing the same are provided.

以下、本発明の実施例を比較例と対比しながら具体的に説明する。   Examples of the present invention will be specifically described below in comparison with comparative examples.

実施例1
図4に示すように、直径250mm、厚さ5mmの円板状黒鉛基材7を、直径300μm、長さ5mmの3本の円柱状支持治具8に載置して、CVD反応容器内にセットした。なお、円柱状支持治具は黒鉛基板にCVD法によりSiCを析出させたのち黒鉛基板を燃焼除去して得たCVD−SiC成形体を研削、研磨加工して作製した。
Example 1
As shown in FIG. 4, a disc-shaped graphite substrate 7 having a diameter of 250 mm and a thickness of 5 mm is placed on three columnar support jigs 8 having a diameter of 300 μm and a length of 5 mm, and placed in a CVD reaction vessel. I set it. The columnar support jig was produced by grinding and polishing a CVD-SiC molded body obtained by depositing SiC on a graphite substrate by CVD and then burning and removing the graphite substrate.

CVD反応系内の空気を排気したのち1100℃の温度に加熱し、水素ガスを送入して系内を水素ガス雰囲気に置換した。次いで、原料ガスとしてメチルトリクロロシラン(CH3 SiCl3 )を、キャリアガスとして水素ガスを用いて、メチルトリクロロシラン/水素の混合ガス中のメチルトリクロロシランの濃度を10Vol%に設定してCVD反応を行い、黒鉛基材面に膜厚120μmのSiC被膜を形成した。 After exhausting the air in the CVD reaction system, the system was heated to a temperature of 1100 ° C., and hydrogen gas was introduced to replace the system with a hydrogen gas atmosphere. Next, using methyltrichlorosilane (CH 3 SiCl 3 ) as the source gas and hydrogen gas as the carrier gas, the concentration of methyltrichlorosilane in the mixed gas of methyltrichlorosilane / hydrogen is set to 10 Vol% and the CVD reaction is performed. Then, a SiC film having a thickness of 120 μm was formed on the surface of the graphite substrate.

その後、円柱状支持治具を引張り破壊により除去したところ、支持治具は被覆面で折れて支持治具先端部が基材側に残存し、SiC被膜と一体化していることが確認された。なお、支持治具付近のSiC被膜の膜厚は原料ガスのガス廻りが若干悪くなるため100μmであった。また、支持治具跡の直径を顕微鏡にて測定したところ500μmであった。すなわち、支持治具の直径X0 は300μmであり、支持治具跡(ディンプル)の直径Xは500μmであり、支持治具付近のSiC被膜の膜厚Zは100μmであった。支持治具跡の基材面を精査したが基材の露出部は確認されず、基材全面にSiC被膜が被覆されていることが確認された。   Thereafter, when the cylindrical support jig was removed by pulling and breaking, it was confirmed that the support jig was bent at the coating surface, and the tip of the support jig remained on the substrate side, and was integrated with the SiC coating. The film thickness of the SiC coating near the support jig was 100 μm because the gas around the source gas was slightly worse. Moreover, it was 500 micrometers when the diameter of the trace of a support jig was measured with the microscope. That is, the diameter X0 of the support jig was 300 μm, the diameter X of the support jig trace (dimple) was 500 μm, and the film thickness Z of the SiC coating near the support jig was 100 μm. Although the substrate surface of the support jig trace was examined closely, the exposed portion of the substrate was not confirmed, and it was confirmed that the entire surface of the substrate was covered with the SiC film.

実施例2
実施例1において、円柱状支持治具の直径X0 を250μmに変更して、膜厚60μmのSiC被膜を被覆した後支持治具を引張り破壊して除去したところ、支持治具跡(ディンプル)の直径Xは350μm、支持治具付近のSiC被膜の膜厚Zは50μmであり、支持治具跡の基材面に露出部は認められなかった。
Example 2
In Example 1, the diameter X0 of the cylindrical support jig was changed to 250 μm, and after the SiC film having a film thickness of 60 μm was coated, the support jig was pulled and broken to remove the support jig trace (dimple). The diameter X was 350 μm, the thickness Z of the SiC coating near the support jig was 50 μm, and no exposed portion was observed on the base material surface of the support jig trace.

実施例3
基材重量を上げるために直径500mm、厚さ50mmの円板状黒鉛基材を用い、直径X0 が120μmの支持治具を1箇所につき約100μm間隔で10本並べて、合計3箇所で基材を支持して、膜厚60μmのSiC被膜を被覆した。支持治具を引張り破壊して除去したところ、支持治具が密集しているため支持治具付近の原料ガスのガス廻りが特に悪く、支持治具付近のSiC膜厚Zは30μmとなり、支持治具跡(ディンプル)の直径Xは180μmであった。しかし、支持治具跡の基材面には露出部は確認されなかった。
Example 3
In order to increase the weight of the base material, a disk-shaped graphite base material having a diameter of 500 mm and a thickness of 50 mm was used. In support, a 60 μm thick SiC coating was coated. When the support jig is pulled and removed, the support jig is dense, so the gas around the support jig is particularly bad, and the SiC film thickness Z near the support jig is 30 μm. The diameter X of the trace (dimple) was 180 μm. However, no exposed portion was confirmed on the base material surface of the support jig trace.

比較例1
実施例1において、形成するSiC被膜の膜厚を60μmとしたところ、支持治具付近の膜厚Zは50μm、支持治具跡(ディンプル)の直径Xは400μmであった。また、支持治具跡の基材面にはSiC被膜が未被覆の露出部が認められた。
Comparative Example 1
In Example 1, when the film thickness of the SiC film to be formed was 60 μm, the film thickness Z in the vicinity of the support jig was 50 μm, and the diameter X of the support jig trace (dimple) was 400 μm. Moreover, the exposed part by which the SiC film was not coat | covered was recognized by the base-material surface of a support jig trace.

実施例4、比較例2
黒鉛材にCVD法によりSiCを被覆した材料を用いて円柱状の支持治具を作製し、この支持治具を用いてSiC被膜を形成、被覆した。
Example 4 and Comparative Example 2
A columnar support jig was prepared using a material obtained by coating SiC on a graphite material by a CVD method, and an SiC film was formed and coated using the support jig.

実施例5
焼結SiCから作製した円柱状の支持治具を用いて、SiC被膜を形成、被覆した。
Example 5
A SiC film was formed and coated using a columnar support jig made of sintered SiC.

実施例6、比較例3
CVD−SiC成形体から作製した円錐形状の支持治具を用いて、SiC被膜を形成、被覆した。
Example 6 and Comparative Example 3
A SiC film was formed and coated using a conical support jig produced from a CVD-SiC molded body.

実施例7
CVD−SiC成形体から作製した三角柱状の支持治具を用いて、SiC被膜を形成、被覆した。
Example 7
A SiC film was formed and coated using a triangular prism-shaped support jig made from a CVD-SiC molded body.

実施例8
CVD−SiC成形体から作製した三角錐状の支持治具を用いて、SiC被膜を形成、被覆した。
Example 8
A SiC film was formed and coated using a triangular pyramid-shaped support jig made from a CVD-SiC molded body.

このようにして黒鉛基材にCVD法によりSiC被膜を被覆した黒鉛材について、被覆条件および基材面の被覆状況をまとめて、表1に示した。   Table 1 summarizes the coating conditions and the coating state of the substrate surface of the graphite material in which the SiC substrate was coated with the SiC film by the CVD method in this way.

Figure 0004455895
Figure 0004455895

表1の結果から、CVD法により黒鉛基材面にSiC被膜を被覆した後、引張り破壊により支持治具を除去して製造したSiC被覆黒鉛材のうち、支持治具跡の直径Xと支持治具付近のSiC膜厚Zとの比(X/Z)を7.5以下に制御した実施例のSiC被覆黒鉛材、または、SiC被覆前の支持治具の直径X0 と支持治具付近のSiC膜厚Zとの比(X0/Z)を5.5以下に制御した実施例のSiC被覆黒鉛材は全面にSiCが被覆されており、基材面に露出部は認められなかった。これに対し、X/Zが7.5を越え、またはX0/Zが5.5を越える比較例のSiC被覆黒鉛材には基材面にSiCが被覆されていない露出部の存在が確認された。   From the results shown in Table 1, among the SiC-coated graphite materials manufactured by coating the SiC coating on the graphite substrate surface by the CVD method and then removing the supporting jig by tensile fracture, the diameter X of the supporting jig trace and the supporting jig The SiC-coated graphite material of the example in which the ratio (X / Z) with the SiC film thickness Z in the vicinity of the tool was controlled to 7.5 or less, or the diameter X0 of the supporting jig before the SiC coating and the SiC in the vicinity of the supporting jig The SiC-coated graphite material of the example in which the ratio (X0 / Z) with the film thickness Z was controlled to 5.5 or less was coated with SiC on the entire surface, and no exposed portion was observed on the substrate surface. In contrast, the SiC-coated graphite material of the comparative example in which X / Z exceeds 7.5 or X0 / Z exceeds 5.5 is confirmed to have an exposed portion where the substrate surface is not coated with SiC. It was.

なお、本実施例においては黒鉛基材にSiCを被覆した場合を例示したが、基材材質に限定はなく、またSiC以外のアルミナやジルコニアなど気相蒸着が可能な他のセラミックスにも適用可能である。   In this example, the case where the graphite base material is coated with SiC is exemplified, but the material of the base material is not limited and can be applied to other ceramics capable of vapor phase deposition such as alumina and zirconia other than SiC. It is.

CVD反応後に支持治具を引張り破壊して除去したときに生じる支持治具跡(ディンプル)の直径と深さとの関係図である。FIG. 5 is a diagram showing the relationship between the diameter and depth of a support jig trace (dimple) generated when the support jig is pulled and broken after the CVD reaction. CVD反応により基材面にセラミックス被膜を被覆後、支持治具を引張り破壊して除去した時の状態を示した模式図である。It is the schematic diagram which showed the state when the support jig | tool was pulled and destroyed and removed after coat | covering the ceramic film on the base-material surface by CVD reaction. CVD反応により基材面にセラミックス被膜を被覆後、支持治具を引張り破壊して除去した時の状態をセラミックス被膜を被覆前の支持治具の直径との関係で示した模式図である。It is the schematic diagram which showed the state when the support jig | tool was pulled and fractured and removed after coat | covering the ceramic film on the base-material surface by CVD reaction with the diameter of the support jig before coating | coated with a ceramic film. 実施例で適用した円板状黒鉛基材を3本の円柱状支持治具に載置した状態を示す斜視図である。It is a perspective view which shows the state which mounted the disk-shaped graphite base material applied in the Example on three cylindrical support jigs.

符号の説明Explanation of symbols

1 基材
2 セラミックス被膜
3 セラミックス被膜被覆後の支持治具
4 ディンプル
5 支持治具を引張り破壊して除去した際に基材側に残存した支持治具の先端部
6 セラミックス被膜被覆前の支持治具
7 実施例で用いた円板状黒鉛基材
8 実施例で用いた円柱状支持治具
X セラミックス被膜被覆後の支持治具の直径(支持治具跡の直径すなわちディンプルの直径と等しい)
Y ディンプルの深さ
Z 支持治具付近のセラミックス被覆膜厚
X0 セラミックス被膜被覆前の支持治具の直径
DESCRIPTION OF SYMBOLS 1 Base material 2 Ceramic film 3 Support jig after ceramic film coating 4 Dimple 5 Tip part of the support jig remaining on the base material side when the support jig is removed by pulling and breaking 6 Support treatment before ceramic film coating Tool 7 Disc-shaped graphite base material used in the example 8 Cylindrical support jig used in the example X Diameter of the support jig after the ceramic coating (equal to the diameter of the trace of the support jig, that is, the diameter of the dimple)
Y Dimple depth Z Ceramic coating film thickness near support jig X0 Diameter of support jig before ceramic coating

Claims (1)

基材をCVD反応容器内の支持治具に載置して、CVD反応により基材面にセラミックスを析出被覆した後、支持治具を引張り破壊してセラミックス被覆材を取り外す製造プロセスであって、支持治具跡の直径が支持治具付近のセラミックス被覆膜厚の7.5倍以下、または、セラミックスを被覆前の支持治具の直径を支持治具付近のセラミックス被覆膜厚の5.5倍以下、に設定し、被覆するセラミックスと同一もしくは同等の材質からなる支持治具を用いるか、または被覆するセラミックスと同一セラミックスが被覆された支持治具を用いることを特徴とする気相蒸着セラミックス被覆材の製造方法。 It is a manufacturing process in which a base material is placed on a support jig in a CVD reaction vessel, ceramics are deposited and coated on the surface of the base material by a CVD reaction, and then the support jig is pulled and broken to remove the ceramic coating material. 4. The diameter of the trace of the support jig is not more than 7.5 times the ceramic coating thickness near the support jig, or the diameter of the support jig before coating the ceramic is equal to the ceramic coating thickness near the support jig. A gas phase characterized by using a support jig made of the same or equivalent material as the ceramic to be coated , or using a support jig coated with the same ceramic as the ceramic to be coated. A method for producing a deposited ceramic coating material.
JP2004021039A 2004-01-29 2004-01-29 Method for producing vapor-deposited ceramic coating material Expired - Fee Related JP4455895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004021039A JP4455895B2 (en) 2004-01-29 2004-01-29 Method for producing vapor-deposited ceramic coating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004021039A JP4455895B2 (en) 2004-01-29 2004-01-29 Method for producing vapor-deposited ceramic coating material

Publications (2)

Publication Number Publication Date
JP2005213571A JP2005213571A (en) 2005-08-11
JP4455895B2 true JP4455895B2 (en) 2010-04-21

Family

ID=34904795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004021039A Expired - Fee Related JP4455895B2 (en) 2004-01-29 2004-01-29 Method for producing vapor-deposited ceramic coating material

Country Status (1)

Country Link
JP (1) JP4455895B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009041060A (en) * 2007-08-08 2009-02-26 Tokai Carbon Co Ltd METHOD FOR PRODUCING CVD-SiC
JP5278851B2 (en) * 2008-10-23 2013-09-04 東洋炭素株式会社 Method for forming silicon carbide film on carbon substrate surface
JP5787558B2 (en) * 2011-03-08 2015-09-30 イビデン株式会社 Ceramic substrate support and method for manufacturing ceramic member
JP6081182B2 (en) * 2012-12-19 2017-02-15 イビデン株式会社 Reactor components
KR102642090B1 (en) * 2021-08-24 2024-02-29 주식회사 케이엔제이 Support socket and method for manufacturing a part including a deposition layer

Also Published As

Publication number Publication date
JP2005213571A (en) 2005-08-11

Similar Documents

Publication Publication Date Title
TWI267563B (en) Diamond coatings on reactor wall and method of manufacturing thereof
KR101547199B1 (en) SiC coated graphite substrate with stress releasing layer and preparation method thereof
KR20050085074A (en) Method for forming carbon nanotubes
JP2000160343A (en) Corrosion resistant cvd-silicon carbide and corrosion resistant cvd-silicon carbide coating material
KR100427118B1 (en) Heat treatment jig and its manufacturing method
JP4455895B2 (en) Method for producing vapor-deposited ceramic coating material
TW200908199A (en) Wafer supporting jig, vertical heat treatment boat including the same, and manufacturing method of wafer supporting jig
JPH11199323A (en) Dummy wafer
RU2684128C1 (en) Article with silicon carbide coating and method for manufacturing of article with silicon carbide coating
KR102178936B1 (en) Chemical vapor deposition silicon carbide bulk with improved etching characteristics
JPH1012692A (en) Dummy wafer
KR102017138B1 (en) Method for Recycling of SiC Product and Recycled SiC Product
KR20220008393A (en) Chemical vapor deposition silicon carbide bulk with enhanced etching properties
JPH08188408A (en) Silicon carbide molded product by chemical vapor deposition and its production
JP2000302577A (en) Graphite member coated with silicon carbide
JP2000302576A (en) Graphite material coated with silicon carbide
JP2001257163A (en) Silicon carbide member, plasma-resistant member, and semiconductor manufacturing device
JP2000073171A (en) Production of chemical vapor deposition multilayer silicon carbide film
JP4447131B2 (en) Regeneration method of silicon carbide-coated graphite member and silicon carbide-coated graphite member thereby
JP3925884B2 (en) Method for coating SiC film
JP2009161858A (en) CORROSION RESISTANT CVD-SiC COATING MATERIAL, AND FIXTURE FOR CVD SYSTEM
JP2003034867A (en) TUBULAR SiC-COMPACT AND MANUFACTURING METHOD THEREFOR
JPH1067584A (en) Reaction vessel
JP3942158B2 (en) Method for producing cylindrical SiC molded body
JP4556090B2 (en) Member for silicon carbide semiconductor manufacturing apparatus and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees