JPH08188408A - Silicon carbide molded product by chemical vapor deposition and its production - Google Patents

Silicon carbide molded product by chemical vapor deposition and its production

Info

Publication number
JPH08188408A
JPH08188408A JP6340993A JP34099394A JPH08188408A JP H08188408 A JPH08188408 A JP H08188408A JP 6340993 A JP6340993 A JP 6340993A JP 34099394 A JP34099394 A JP 34099394A JP H08188408 A JPH08188408 A JP H08188408A
Authority
JP
Japan
Prior art keywords
sic
substrate
film
cvd
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6340993A
Other languages
Japanese (ja)
Inventor
Hiroyuki Hirano
博之 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP6340993A priority Critical patent/JPH08188408A/en
Publication of JPH08188408A publication Critical patent/JPH08188408A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

PURPOSE: To obtain a CVD-SiC molded product prevented from the generation of cracks and warpage, and further to provide a method for producing the same. CONSTITUTION: A SiC molded product by the CVD method, wherein SiC films are formed on both the sides of an SiC substrate formed by the CVD method. The method for producing the SiC molded product comprises forming a SiC film on the surface of the substrate by the CVD method, removing the substrate, and further forming the SiC films on both the sides of the obtained SiC substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、化学蒸着(CVD)法
による炭化ケイ素成形体及びその製造方法に係り、特に
高純度、ち密性、耐熱性、耐薬品性などの特性が要求さ
れる各種部材として好適に使用できる炭化ケイ素成形体
及びその製造方法に関する。更に詳言すれば、シリコン
等のウェハーを搬送する部材、エピタキシャル成長用や
プラズマCVD用等のダミーウェハやモニターウェハ、
サセプター、スパッタリングターゲットなどの半導体製
造時に使用される各種部材、CVD炉、PVD炉、セラ
ミック焼結炉、熱処理炉、高純度炉等に使用される各種
炉内部材、耐薬品性用治具、分析用容器などに好適な炭
化ケイ素成形体及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a silicon carbide molded body by a chemical vapor deposition (CVD) method and a method for manufacturing the same, and particularly various characteristics such as high purity, compactness, heat resistance and chemical resistance are required. The present invention relates to a silicon carbide molded body that can be suitably used as a member and a method for producing the same. More specifically, a member for carrying a wafer such as silicon, a dummy wafer for epitaxial growth or plasma CVD, a monitor wafer,
Various members used during semiconductor manufacturing such as susceptors and sputtering targets, various furnace members used in CVD furnaces, PVD furnaces, ceramic sintering furnaces, heat treatment furnaces, high-purity furnaces, jigs for chemical resistance, analysis TECHNICAL FIELD The present invention relates to a silicon carbide molded body suitable for containers and the like and a method for producing the same.

【0002】[0002]

【従来の技術】炭化ケイ素は耐熱性や化学的安定性に優
れており、主に半導体を製造する際に用いる各種の部材
として、頻繁に使用されている。このような炭化ケイ素
を主体とした材料は、炭素材に一酸化ケイ素ガスを反応
させて炭化ケイ素化する方法、炭素材に金属ケイ素を含
浸して加熱することにより炭化ケイ素化する方法、ある
いは炭化ケイ素粉と焼結助剤とを混合して焼結させる方
法などにより製造することができる。しかしながら、こ
れらの方法により製造された炭化ケイ素質材料は、ち密
性に乏しいため表面から微粉が発生し易い。そのため、
半導体等の製品を汚染する原因になり易い。一方、CV
D法で形成した炭化ケイ素膜はち密で高純度のものにな
ることから、炭素材やセラミック等を基体とし、その表
面にCVD法により炭化ケイ素膜を形成した後、基体を
除去して、炭化ケイ素成形体を製造する方法がある(特
開平5−124863号、特開平5−124864号、
特開平5−90184号など)。
2. Description of the Related Art Silicon carbide is excellent in heat resistance and chemical stability, and is frequently used as various members mainly used for manufacturing semiconductors. Such a material mainly composed of silicon carbide includes a method of reacting a carbon material with silicon monoxide gas to form silicon carbide, a method of impregnating a carbon material with metallic silicon and heating it to form silicon carbide, or It can be produced by a method of mixing silicon powder and a sintering aid and sintering. However, the silicon carbide-based material produced by these methods is poor in denseness, and thus fine particles are easily generated from the surface. for that reason,
It easily causes contamination of products such as semiconductors. On the other hand, CV
Since the silicon carbide film formed by the D method is dense and has a high purity, a carbon material, ceramics, or the like is used as a substrate, a silicon carbide film is formed on the surface by the CVD method, and then the substrate is removed to remove carbonization. There is a method for producing a silicon molded body (JP-A-5-124863, JP-A-5-124864,
JP-A-5-90184).

【0003】このCVD法による炭化ケイ素成形体(以
下、CVD−SiC成形体ともいう)を得るためには、
必ず基体を除去しなければならないが、このCVD−S
iC成形体は主に半導体を製造する際に用いられるた
め、反りや不純物量が少なくなるように基体を除去する
必要がある。通常は、炭素材を基体とし、これを燃焼し
て除去する方法、熱膨張係数がSiCと大きく異なる材
料を基体とし、熱膨張係数差を利用して除去する方法、
研削や切削等の機械加工により除去する方法などで基体
を除去している。
In order to obtain a silicon carbide compact (hereinafter also referred to as a CVD-SiC compact) by this CVD method,
Although the substrate must be removed without fail, this CVD-S
Since the iC molded body is mainly used when manufacturing a semiconductor, it is necessary to remove the substrate so as to reduce the warpage and the amount of impurities. Usually, a carbon material is used as a base material and is burned to remove it, or a material having a coefficient of thermal expansion greatly different from that of SiC is used as the base material and is removed by utilizing the difference in thermal expansion coefficient,
The substrate is removed by a method such as grinding or cutting which is performed by machining.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、CVD
法により基体表面にSiCを蒸着して膜を形成させ、次
いで基体を除去してSiC成形体を製造する場合、Si
C膜を構成する結晶粒の成長に伴って膜に引張応力や圧
縮応力等の内部応力が発生するため、膜が厚くなると、
各種方法により基体を除去しても、SiC成形体にき裂
が生じたり、表面が凸状に反ったSiC成形体しか得ら
れなかった。このことを示すために、CVD法によりS
iC膜を基体表面に形成し、基体を除去したときの模式
概念図を図2に表す。CVD法により基体Aの表面にS
iC膜21を形成させる場合、まず基体A表面にSiC
核(図示せず)が生成し、基体A表面に対して垂直な方
向にほぼ柱状のSiC結晶粒21aが成長する[同図
(i)]。そして、このまま膜形成を続けていくと柱状
SiC結晶粒21aは徐々に柱が太くなるように成長
し、コーン状21bを呈するようになる[同図(i
i)]。この時に、隣接する他のコーン状SiC結晶粒
21bに押されてしまうため、SiC膜21には膜表面
を押し広げようとする内部応力が蓄積されてしまう。こ
の結果、各種の方法により基体Aを除去しても、得られ
るSiC成形体にき裂が生じたり、表面が凸状に反った
SiC成形体Bしか得ることができなかった[同図(i
ii)]。また、この種のSiC成形体に要求される厚
みは、通常500〜3000μmであり、この程度の厚
みでもき裂が発生したり、反り量が大きくなったりして
しまう。
[Problems to be Solved by the Invention] However, CVD
When a SiC compact is manufactured by vapor-depositing SiC on the surface of a substrate by a method to form a film and then removing the substrate,
Since internal stress such as tensile stress or compressive stress is generated in the film as the crystal grains forming the C film grow, when the film becomes thick,
Even if the substrate was removed by various methods, cracks were generated in the SiC molded body and only the SiC molded body having a convex warped surface was obtained. To show this, S
FIG. 2 shows a schematic conceptual view when the iC film is formed on the surface of the substrate and the substrate is removed. S is formed on the surface of the substrate A by the CVD method.
When the iC film 21 is formed, first the SiC is formed on the surface of the base A.
Nuclei (not shown) are generated, and substantially columnar SiC crystal grains 21a grow in the direction perpendicular to the surface of the substrate A [(i) in the figure]. Then, when the film formation is continued as it is, the columnar SiC crystal grains 21a gradually grow so that the columns become thicker and have a cone shape 21b [(i)
i)]. At this time, the other cone-shaped SiC crystal grains 21b adjacent to each other push the SiC film 21, so that the SiC film 21 accumulates an internal stress to spread the film surface. As a result, even if the substrate A was removed by various methods, only the SiC molded body B having a crack or a convex warped surface could be obtained in the obtained SiC molded body [FIG.
ii)]. Further, the thickness required for this type of SiC molded body is usually 500 to 3000 μm, and even with this thickness, cracks may occur or the amount of warpage may increase.

【0005】そこで本発明は、き裂や反りを抑えたCV
D−SiC成形体及びその製造方法を提供することを目
的とする。
Therefore, the present invention is a CV in which cracks and warpage are suppressed.
An object is to provide a D-SiC compact and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係るCVD−SiC成形体は、CVD法に
より形成されたSiC基板の両面に、SiC膜を有する
ものである。また、その製造方法は、基体の表面にCV
D法によりSiC膜を形成し、前記基体を除去して得ら
れたSiC基板の両面に、更にSiC膜を形成すること
を特徴とするものである。これらの場合、前記SiC基
板の厚みが300μm以下が最適である。
In order to achieve the above object, the CVD-SiC compact according to the present invention has a SiC film formed on both sides of a SiC substrate formed by a CVD method. In addition, the manufacturing method is such that CV
A SiC film is formed by the D method, and the SiC film is further formed on both surfaces of the SiC substrate obtained by removing the base body. In these cases, the thickness of the SiC substrate is optimally 300 μm or less.

【0007】本発明に係るCVD−SiC成形体をその
製造方法に従って説明する。本発明の製造方法の模式概
念図を図1に示す。炭素材等から成る基体Aの表面にC
VD法で基板用SiC膜11を形成させる[同図
(i)]。この膜厚は300μm以下が最適である。次
いで、基体Aを除去し、SiC基板10を得る[同図
(ii)]。そして、この上面及び下面の両面にCVD
法でSiC膜12、13をほぼ同程度の厚みで形成し、
反りの小さいSiC成形体Bにする[同図(ii
i)]。なお、12はSiC基板10の下面(基体に接
していた側の面)に形成されたSiC膜、13はSiC
基板10の上面(膜成長していた側の面)に形成された
SiC膜を示している。ここで、この図では表示してい
ないが、製品形状の加工は、所望厚みのSiC成形体B
を得られた後に行っている。もちろん、SiC基板10
を予め製品形状に加工しておき、次いでSiC膜12、
13を形成して、所望厚みや所望形状に加工しても良
い。
The CVD-SiC compact according to the present invention will be described according to its manufacturing method. A schematic conceptual diagram of the manufacturing method of the present invention is shown in FIG. C on the surface of a substrate A made of carbon material or the like
The SiC film 11 for a substrate is formed by the VD method [(i) in the figure]. The optimum film thickness is 300 μm or less. Then, the base A is removed to obtain the SiC substrate 10 [(ii) in the figure]. Then, CVD is performed on both the upper surface and the lower surface.
Method to form the SiC films 12 and 13 with substantially the same thickness,
The SiC molded body B having a small warpage is formed [see the same figure (ii
i)]. In addition, 12 is a SiC film formed on the lower surface of the SiC substrate 10 (the surface that was in contact with the base), and 13 is a SiC film.
The SiC film formed on the upper surface of the substrate 10 (the surface on which the film was grown) is shown. Here, although not shown in this figure, the processing of the product shape is performed by the SiC molded body B having a desired thickness.
I'm going after I got. Of course, the SiC substrate 10
Is processed into a product shape in advance, and then the SiC film 12,
13 may be formed and processed into a desired thickness or a desired shape.

【0008】以下に本発明を更に詳細に説明する。The present invention will be described in more detail below.

【0009】[0009]

【発明の構成】基板用SiC膜を形成するための基体
は、セラミックなどでも良いが、SiC膜との密着性、
純度、基体除去の容易性の点から炭素材が適している。
以下、炭素材を基体として説明する。基体となる炭素材
としては制限はなく、いわゆる等方性黒鉛や異方性黒鉛
などの炭素材などであれば良い。炭素基体の厚みは基板
用SiC膜の形成によって炭素基体が反らない厚みであ
れば良い。通常5mm以上の厚みのものを使用すれば十
分であるが、あまり厚過ぎると基体を除去する際に手間
がかかるため、5〜20mmの厚みの炭素材を基体とし
て用いるのが良い。
The substrate for forming the SiC film for the substrate may be ceramics or the like, but the adhesion to the SiC film,
A carbon material is suitable in terms of purity and easy removal of the substrate.
Hereinafter, the carbon material will be described as a substrate. There is no limitation on the carbon material used as the substrate, and any carbon material such as so-called isotropic graphite or anisotropic graphite may be used. The thickness of the carbon substrate may be such that the carbon substrate does not warp due to the formation of the SiC film for the substrate. Usually, it is sufficient to use a material having a thickness of 5 mm or more, but if it is too thick, it takes time to remove the base material, so that a carbon material having a thickness of 5 to 20 mm is preferably used as the base material.

【0010】基板用SiC膜を形成する際においては、
炭素基体から不純物が揮散・拡散して膜を汚染しないよ
うにするため、炭素基体の純度は灰分値(JIS R7
223に準拠して測定した灰分値)で20質量ppm以
下のものが特に好ましく、最も好ましくは5質量ppm
以下の炭素材を基体とするのが良い。炭素基体のかさ密
度も制眼はなく、通常は1.6〜1.9g/cmのも
のを用いるのが良い。また、累積気孔容積(水銀圧入法
で測定された気孔半径0.01〜10μmでの累積気孔
容積)及び平均気孔半径(前記累積気孔容積の1/2に
相当する気孔半径)も制約を受けないが、SiC膜に対
して密着性を有する基体であるためには、それぞれ5.
0×10−2〜10.0×10−2cm/g及び1.
0〜5.0μmの炭素材を基体とした方が好ましい。
When forming a SiC film for a substrate,
In order to prevent impurities from volatilizing and diffusing from the carbon substrate and contaminating the film, the purity of the carbon substrate is ash value (JIS R7
It is particularly preferable that the ash value measured according to 223) is 20 mass ppm or less, and most preferably 5 mass ppm.
The following carbon materials are preferably used as the base. The bulk density of the carbon substrate is not limited, and it is usually preferable to use one having a bulk density of 1.6 to 1.9 g / cm 3 . Further, the cumulative pore volume (cumulative pore volume measured by mercury porosimetry at a pore radius of 0.01 to 10 μm) and average pore radius (pore radius corresponding to 1/2 of the cumulative pore volume) are not restricted. However, in order to be a substrate having adhesiveness with respect to the SiC film,
0 × 10 −2 to 10.0 × 10 −2 cm 3 / g and 1.
It is preferable to use a carbon material of 0 to 5.0 μm as a base.

【0011】また、CVD法で形成されたSiC膜の熱
膨張係数は3.5×10−6/K(室温〜673K)な
ので、この値に近似した熱膨張係数を有する炭素材を基
体に用いるのが好ましい。特に熱膨張係数が3.0×1
−6〜4.0×10−6/K(室温〜673K、蒸着
する表面に平行方向)の炭素材が最適である。その理由
は、炭素基体の熱膨張係数が4.0×10−6/K(室
温〜673K)を超える炭素材にSiC膜を形成した場
合、両者の熱膨張係数差が大きくなるため、冷却すると
SiC膜に圧縮応力がかかり、基体を除去する際にき裂
が生じたり、得られた基体用SiC体の反りが大きくな
ったりして、SiC基板として適さなくなることがあ
る。また同様に、基体の熱膨張係数が3.0×10−6
/K(室温〜673K)未満の炭素材を用いる場合、S
iC膜には引張り応力がかかり、き裂や反りが生じ、S
iC基体として適さなくなることがある。このような理
由により、熱膨張係数が3.0×10−6〜4.0×1
−6/K(室温〜673K)の炭素材を基体として用
いた方が良い。
Further, since the SiC film formed by the CVD method has a thermal expansion coefficient of 3.5 × 10 −6 / K (room temperature to 673K), a carbon material having a thermal expansion coefficient close to this value is used for the substrate. Is preferred. Especially the coefficient of thermal expansion is 3.0 × 1
The carbon material of 0 −6 to 4.0 × 10 −6 / K (room temperature to 673 K, parallel to the surface to be deposited) is most suitable. The reason is that when a SiC film is formed on a carbon material in which the thermal expansion coefficient of the carbon substrate exceeds 4.0 × 10 −6 / K (room temperature to 673K), the difference in thermal expansion coefficient between the two becomes large, so that when cooled. A compressive stress is applied to the SiC film, a crack is generated when the substrate is removed, or the obtained SiC body for a substrate is greatly warped, which may make it unsuitable as a SiC substrate. Similarly, the coefficient of thermal expansion of the substrate is 3.0 × 10 −6.
/ K (room temperature to 673K) when using a carbon material, S
Tensile stress is applied to the iC film, causing cracks and warpage, and
It may not be suitable as an iC substrate. For this reason, the coefficient of thermal expansion is 3.0 × 10 −6 to 4.0 × 1.
It is better to use a carbon material of 0 −6 / K (room temperature to 673K) as the base.

【0012】炭素基体は、なるべく所望形状のSiC基
板が得られ易いように加工したものを使用する。例えば
オリフラ(オリエンテーションフラット)を有するダミ
ーウェハ用CVD−SiC成形体を製造する場合は、基
体の外観形状をそのダミーウェハ形状に合わせて加工し
たものを使用した方が好ましい。また、凹状又は凸状部
を有するCVD−SiC成形体を製造する場合は、基体
の外観形状をその形状に合わせると共に蒸着する面には
その部材の凹凸とは反対に凹凸を設けるなどして、基体
除去後の機械加工等の手間を省き、SiC成形体がなる
べく所望製品形状になり易いようにする。
As the carbon substrate, a carbon substrate which has been processed so that a SiC substrate having a desired shape can be easily obtained is used. For example, when a CVD-SiC compact for a dummy wafer having an orientation flat is manufactured, it is preferable to use a substrate whose outer shape is processed according to the dummy wafer shape. In the case of producing a CVD-SiC molded body having a concave or convex portion, the appearance shape of the substrate is adjusted to the shape and the surface to be vapor-deposited is provided with unevenness opposite to the unevenness of the member. The work such as machining after removing the substrate is omitted, and the SiC molded body is made to have a desired product shape as easily as possible.

【0013】このような炭素基体の表面にCVD法でS
iCを蒸着し、基板用SiC膜を形成させる。この膜形
成は常法で行えば良く、通常は減圧下1000〜180
0℃の温度条件にて、Si源とC源となるガス(原料ガ
ス)、必要に応じてH、Ar(キャリアガス)等を用
いることによりSiC膜を形成することができる。原料
ガスとしては、CHSiCl、(CHSiC
l等の有機シラン化合物、あるいはSi源としてSiC
、SiHCl、SiHCl、SiH等、及
びC源としてCCl、CH、C、C14
等の中から適宜組み合わせることにより使用することが
できる。蒸着の際においては、1300℃を超えるよう
な拡散律速的な温度条件で膜形成を行うと、拡散に有利
な凸部に付着したSiC核の方が成長が早くなるため、
均一な大きさのSiC結晶粒が成長しにくくなり、均質
な膜が得られにくい。そのうえ、その反りが大きくな
り、本発明ではあまり適していない。そのため、蒸着時
の温度は1300℃以下で膜形成を行うのが最適であ
る。この温度以下であれば、ほぼ表面反応律速的な温度
条件になる。この際、灰分20質量ppm以下の炭素基
体を用いると、基板用SiC膜は純度99.99%以上
の高純度のものになり、半導体製造用治具等に好適であ
る。なお、形成するSiC膜はち密で高純度のものにな
り易いβ−SiCから成るものである。
On the surface of such a carbon substrate, S is formed by the CVD method.
iC is vapor-deposited to form a SiC film for the substrate. This film formation may be carried out by a conventional method, and usually 1000 to 180 under reduced pressure.
Under a temperature condition of 0 ° C., a SiC film can be formed by using a gas (raw material gas) serving as a Si source and a C source, and if necessary, H 2 and Ar (carrier gas). As the source gas, CH 3 SiCl 3 , (CH 3 ) 3 SiC
l or other organic silane compound, or SiC as a Si source
l 4 , SiHCl 3 , SiH 2 Cl 2 , SiH 4, etc., and CCl 4 , CH 4 , C 3 H 8 , C 6 H 14 as a C source.
It can be used by appropriately combining from the above. In vapor deposition, if the film formation is performed under a diffusion-controlled temperature condition such that the temperature exceeds 1300 ° C., the SiC nuclei attached to the protrusions, which are advantageous for diffusion, grow faster.
It becomes difficult for SiC crystal grains of uniform size to grow, and it is difficult to obtain a uniform film. Moreover, the warp becomes large, which is not suitable for the present invention. Therefore, it is optimal to perform the film formation at a temperature of 1300 ° C. or lower during vapor deposition. If the temperature is lower than this temperature, the temperature condition becomes almost rate-determining the surface reaction. At this time, when a carbon substrate having an ash content of 20 mass ppm or less is used, the SiC film for a substrate becomes a high-purity film having a purity of 99.99% or more, which is suitable for a jig for semiconductor manufacturing. The formed SiC film is composed of β-SiC which is dense and tends to be highly pure.

【0014】基板用SiC膜は、厚み300μm以下の
SiC基板が得られるように形成するのが最適である。
なぜならば、膜厚300μmを超えると、膜に蓄積され
る内部応力が著しく大きくなり、また結晶粒の大きさも
不均一になるため、得られるSiC基板の反りが大きく
なったり、均質なSiC基板が得られなくなったりし
て、SiC基板として適さなくなることがあるからであ
る。一方、基板用SiC膜の厚みの下限は特に制限はな
いが、200μm未満の厚みのSiC基板だと強度不足
になるため、炭素基体の除去の際にき裂が生じたり、S
iC基板の両面にSiC膜を形成する際に大きく反った
りすることがある。そのため、通常は厚み300μm以
下、最も好ましくは200〜300μmのSiC基板が
得られるように、基板用SiC膜を形成する。
The SiC film for a substrate is optimally formed so that an SiC substrate having a thickness of 300 μm or less can be obtained.
This is because when the film thickness exceeds 300 μm, the internal stress accumulated in the film becomes significantly large and the size of the crystal grains becomes non-uniform, so that the obtained SiC substrate has a large warp or a uniform SiC substrate is obtained. This is because it may not be obtained and may not be suitable as a SiC substrate. On the other hand, the lower limit of the thickness of the SiC film for a substrate is not particularly limited, but if the SiC substrate has a thickness of less than 200 μm, the strength becomes insufficient, so that a crack may occur during the removal of the carbon substrate, or an S
When the SiC film is formed on both surfaces of the iC substrate, the SiC film may be largely warped. Therefore, the SiC film for a substrate is usually formed so that a SiC substrate having a thickness of 300 μm or less, most preferably 200 to 300 μm can be obtained.

【0015】次いで、炭素基体を除去し、SiC基板を
得る。
Then, the carbon substrate is removed to obtain a SiC substrate.

【0016】ここで、CVD法により形成されたSiC
膜表面には、多少なりとも凹凸が生じてしまうので、こ
の表面状態のままのSiC基板を用いて膜形成を行う
と、前記した凹凸がはっきり現れてきて、内部応力の発
生や不均質な膜が形成される原因につながる。そのた
め、SiC基板の表面を研磨などして平坦化した方が好
ましい。この場合、表面粗さRmax及びRa(JIS
に準拠して測定される中心線平均粗さ)がそれぞれ20
μm以下及び2μm以下になるように表面を平坦化する
のが最適である。通常、表面から5〜15μmの厚みの
SiCを除去すれば、この程度の表面粗さにすることが
できる。
Here, SiC formed by the CVD method
Since the surface of the film has irregularities to some extent, when the film is formed using the SiC substrate in this surface state, the above-mentioned irregularities clearly appear, and internal stress is generated or the heterogeneous film is formed. Leads to the formation of. Therefore, it is preferable to flatten the surface of the SiC substrate by polishing or the like. In this case, the surface roughness Rmax and Ra (JIS
Centerline average roughness measured according to
It is optimal to flatten the surface so that it is below μm and below 2 μm. Usually, if SiC having a thickness of 5 to 15 μm is removed from the surface, it is possible to obtain such a surface roughness.

【0017】炭素基体の除去は、従来から行われている
方法で行えば良く、平面研削、外面研削、内面研削、心
無研削等の研削加工や切削加工などの機械加工により炭
素基体を除去したり、炭素基体を例えば500〜900
℃にて燃焼して除去(灰化法)したりする方法を例示で
きる。研削加工や切削加工などの機械加工によるときに
は、得られるSiC基板を汚染しないようにするため、
高純度ダイヤモンドや高純度炭化ケイ素から成る工具等
を用い、研削部や切削部が局部的に高温になることによ
る膜表面の変質やき裂を防止するため、研削液を用いた
湿式研削加工機で行うのが好ましい。
The removal of the carbon substrate may be carried out by a conventionally used method. The carbon substrate is removed by a grinding process such as a surface grinding, an outer surface grinding, an inner surface grinding, a coreless grinding or a cutting process. Or, a carbon substrate is, for example, 500 to 900.
The method of burning at ℃ and removing (ashing method) can be illustrated. In order to prevent the resulting SiC substrate from being contaminated during mechanical processing such as grinding or cutting,
Using a tool made of high-purity diamond or high-purity silicon carbide, etc., a wet grinding machine that uses a grinding fluid to prevent alteration and cracking of the film surface due to localized high temperatures in the grinding and cutting parts. It is preferable to carry out.

【0018】基体から除去されたSiC基板は、必要に
応じて機械加工等により所望の製品形状にする。この製
品形状加工と同時に前述した炭素基体の除去を行っても
良い。
The SiC substrate removed from the substrate is formed into a desired product shape by machining, if necessary. The carbon base may be removed at the same time as this product shape processing.

【0019】また、基体除去の際や所望製品形状にする
際の機械加工などにより、SiC基板が汚染され、その
表面に若干量の不純物が残っている場合があるので、S
iC基板を純化した方が好ましい。この純化処理は、フ
ッ酸、硝酸、フッ硝酸などに浸漬して洗浄した後乾燥す
る方法(ウェット方法)や、1000〜1500℃、圧
力0.1〜100Torrの条件で塩素ガス(Cl
により純化処理を行う方法(ドライ方法)などにより行
えば良い。このうち、ドライ方法によると部材を乾燥す
る必要がなく、また特に良く純化できる方法である。
In addition, since the SiC substrate may be contaminated by a machining process such as the removal of the substrate or the formation of a desired product shape, some impurities may remain on the surface of the SiC substrate.
It is preferable to purify the iC substrate. This purification treatment is performed by dipping in hydrofluoric acid, nitric acid, hydrofluoric nitric acid, etc., and then washing and then drying (wet method), or chlorine gas (Cl 2 ) under conditions of 1000 to 1500 ° C. and pressure of 0.1 to 100 Torr.
It may be performed by a method (dry method) for performing a purification treatment by. Of these, the dry method is a method that does not require drying of the member and can be purified particularly well.

【0020】かくして得られたSiC基板の上面と下面
との両面に、更にCVD法でSiC膜を形成する。この
SiC膜の形成方法は、前述したような常法でSiC膜
を形成すれば足りる。この際、形成する膜の厚みは、所
望製品の厚み以上になるようにし、所望厚みを超える厚
みに膜形成した場合は、研磨等で減肉するなどして、最
終的に所望厚みのSiC成形体にすれば良い。
SiC films are further formed on the upper and lower surfaces of the thus obtained SiC substrate by the CVD method. As the method for forming the SiC film, it is sufficient to form the SiC film by the conventional method as described above. At this time, the thickness of the film to be formed should be equal to or larger than the thickness of the desired product. If the film is formed to a thickness exceeding the desired thickness, the thickness of the film is reduced by polishing, etc. You can put it on your body.

【0021】さらに高純度が要求される用途に使用する
場合などには、前述した純化処理をこのSiC成形体に
施しても良い。
In the case where the SiC molded body is used for an application requiring higher purity, the above-mentioned purification treatment may be applied to this SiC molded body.

【0022】[0022]

【作用】以上に説明したように、本発明の主な作用は次
の通りである。
As described above, the main operation of the present invention is as follows.

【0023】CVD法によりSiCを蒸着すると、表面
に吸着したSi原子及びC原子は、安定な格子点に向か
って拡散し、他の原子との結合により結晶核が発生して
結晶粒に成長するが、蒸着初期段階では、SiC結晶粒
はほぼ柱状に成長し、成長が進むにつれて徐々に柱が太
くなるコーン状の結晶粒になる。そのため、形成するS
iC膜が厚くなるにつれて、膜表面を押し広げようとす
る内部応力がより多く蓄積されてしまう。また、このよ
うに成長が進んだ結晶粒は、各結晶粒の成長速度の違い
により大小様々の大きさになり、膜表面は凹凸になって
しまう。したがって、従来の製造方法では、き裂の発生
や反りを抑えることができず、また均質なSiC体を製
造することができなかった。そこで本発明は、SiC膜
を所望厚みまで一気に形成させずに途中で止め、SiC
膜に蓄積される内部応力を最小限に抑えるようにする。
また、膜形成を途中で止めることにより、結晶粒の大き
さもそろえることができ、膜表面の凹凸度合も小さくす
ることができる。このようなSiC膜を形成した後、炭
素基体を除去して、SiC基板とする。そして、このS
iC基板の上面と下面との両面にSiC膜を形成するこ
とにより、この膜形成により生じる反りを相殺すること
ができる。また、上面や下面に形成する膜厚をそれぞれ
調整することにより、もともとSiC基板に生じている
反りも修正することができ、反りの極めて小さいSiC
成形体を得ることも可能になる。例えば、SiC基板の
上面が若干凸状に反っていれば、上面に比べて下面の方
に多くSiC膜を形成すれば、この反りを修正すること
ができる。結果的に、上面と下面に形成する膜は、ほぼ
同程度の厚みのものか、下面の方が若干厚いものにな
る。また、この膜形成は、SiC基板に付着している不
純物をマスクする作用もある。
When SiC is vapor-deposited by the CVD method, Si atoms and C atoms adsorbed on the surface are diffused toward a stable lattice point, and by combining with other atoms, crystal nuclei are generated to grow into crystal grains. However, in the initial stage of vapor deposition, the SiC crystal grains grow in a substantially columnar shape, and become a cone-shaped crystal grain in which the columns gradually become thicker as the growth progresses. Therefore, S to be formed
As the iC film becomes thicker, more internal stress for spreading the film surface is accumulated. Further, the crystal grains that have grown in this way have various sizes depending on the growth rate of each crystal grain, and the film surface becomes uneven. Therefore, with the conventional manufacturing method, it is not possible to suppress the occurrence of cracks or warpage, and it has not been possible to manufacture a uniform SiC body. Therefore, in the present invention, the SiC film is not formed to a desired thickness all at once, but is stopped midway.
Try to minimize the internal stress accumulated in the film.
Further, by stopping the film formation on the way, the sizes of the crystal grains can be made uniform, and the degree of unevenness on the film surface can be reduced. After forming such a SiC film, the carbon substrate is removed to obtain a SiC substrate. And this S
By forming the SiC film on both the upper surface and the lower surface of the iC substrate, it is possible to cancel the warpage caused by the film formation. Further, by adjusting the film thicknesses formed on the upper surface and the lower surface, respectively, the warp originally generated in the SiC substrate can be corrected, and the SiC with a very small warp can be corrected.
It is also possible to obtain a molded body. For example, if the upper surface of the SiC substrate has a slightly convex warp, the warp can be corrected by forming more SiC film on the lower surface than on the upper surface. As a result, the film formed on the upper surface and the film formed on the lower surface have almost the same thickness or have a slightly thicker film on the lower surface. In addition, this film formation also has a function of masking impurities attached to the SiC substrate.

【0024】[0024]

【実施例】以下に本発明の実施例を示すが、本発明はこ
れに限定されるものではない。
EXAMPLES Examples of the present invention will be shown below, but the present invention is not limited thereto.

【0025】実施例1 基体として等方性黒鉛(寸法:直径φ120×厚み10
mm、かさ密度1.85g/cm、表面粗さRmax
20μm、熱膨張係数3.5×10−6/K(室温〜6
73K)、累積気孔容積6.6×10−2cm/g、
平均気孔半径1.8μm、灰分10質量ppm)を用
い、CVD法により1000〜1300℃にて厚み20
0μmの基板用SiC膜を形成した。次いで大気中80
0℃で24時間保持(灰化法)により等方性黒鉛基体を
除去して、厚み200μmのSiC基板を得た。その
後、このSiC基板の上面及び下面にCVD法で650
μmずつSiC膜を形成して、厚み1500μmのCV
D−SiC成形体を得た。これを湿式研削加工により、
両面から同量研削して、直径φ100×厚み800μm
の形状にし、φ4インチダミーウェハ用CVD−SiC
成形体を製造した。
Example 1 As a substrate, isotropic graphite (dimensions: diameter φ120 × thickness 10)
mm, bulk density 1.85 g / cm 3 , surface roughness Rmax
20 μm, thermal expansion coefficient 3.5 × 10 −6 / K (room temperature to 6
73 K), cumulative pore volume 6.6 × 10 −2 cm 3 / g,
An average pore radius of 1.8 μm and an ash content of 10 mass ppm) and a thickness of 20 at 1000 to 1300 ° C. by a CVD method.
A SiC film for a substrate having a thickness of 0 μm was formed. 80 in the air
The isotropic graphite substrate was removed by holding at 0 ° C. for 24 hours (ashing method) to obtain a 200 μm thick SiC substrate. After that, the upper surface and the lower surface of this SiC substrate are subjected to 650 by a CVD method.
A SiC film with a thickness of 1500 μm is formed by forming a SiC film for each μm.
A D-SiC compact was obtained. By wet grinding this,
Grinding the same amount from both sides, diameter φ100 × thickness 800 μm
Shape, and φ-inch dummy wafer CVD-SiC
A molded body was manufactured.

【0026】実施例2 基板用SiC膜及びSiC基板の厚みを260μmに
し、この上面及び下面に形成する膜厚を620μmずつ
にして厚み1500μmのCVD−SiC成形体を製造
した以外は、実施例1記載と同様の方法でφ4インチダ
ミーウェハ用CVD−SiC成形体を製造した。
Example 2 Example 1 was repeated except that the thickness of the SiC film for the substrate and the SiC substrate was 260 μm, and the film thicknesses formed on the upper and lower surfaces were 620 μm each to produce a 1500 μm thick CVD-SiC compact. A φ4 inch dummy wafer CVD-SiC compact was manufactured in the same manner as described.

【0027】実施例3 基板用SiC膜及びSiC基板の厚みを300μmに
し、この上面及び下面に形成する膜厚を600μmずつ
にした以外は、実施例1記載と同様の方法でφ4インチ
ダミーウェハ用CVD−SiC成形体を製造した。
Example 3 For a φ4-inch dummy wafer in the same manner as in Example 1, except that the thickness of the SiC film for the substrate and the SiC substrate was 300 μm, and the film thicknesses formed on the upper surface and the lower surface were each 600 μm. A CVD-SiC compact was manufactured.

【0028】実施例4 基板用SiC膜及びSiC基板の厚みを500μmに
し、この上面及び下面に形成する膜厚を500μmずつ
にした以外は、実施例1記載と同様の方法でφ4インチ
ダミーウェハ用CVD−SiC成形体を製造した。
Example 4 For a φ4-inch dummy wafer in the same manner as in Example 1 except that the thickness of the SiC film for the substrate and the thickness of the SiC substrate were 500 μm, and the film thicknesses formed on the upper surface and the lower surface were each 500 μm. A CVD-SiC compact was manufactured.

【0029】比較例1 基体として実施例1記載と同様の等方性黒鉛を用い、C
VD法により1000〜1300℃にて厚み800μm
のSiC膜を形成した。次いで800℃で24時間保持
(灰化法)により等方性黒鉛基体を除去して、φ4イン
チダミーウェハ用CVD−SiC成形体を製造した。
Comparative Example 1 The same isotropic graphite as described in Example 1 was used as a substrate, and C was used.
Thickness 800 μm at 1000-1300 ° C. by VD method
Was formed. Then, the isotropic graphite substrate was removed by holding at 800 ° C. for 24 hours (ashing method) to manufacture a CVD-SiC compact for φ4 inch dummy wafer.

【0030】実施例1〜4及び比較例1で得られたCV
D−SiC成形体を、外観観察及び三次元形状測定器を
用いて反り量を測定した。この結果を表1に示す。この
表から分かるように、実施例1〜4で得られたCVD−
SiC成形体にはき裂が発生しなかった。特にSiC基
板の厚みが200〜300μmである実施例1〜3の場
合には、反り量も0.10mm以下という極めて小さな
ものになり、最適なCVD−SiC成形体を得ることが
できた。これに対して、比較例1で得られたCVD−S
iC成形体は、反り量が大き過ぎたため、き裂が発生し
ていた。
CVs obtained in Examples 1 to 4 and Comparative Example 1
The amount of warpage of the D-SiC molded body was measured by observing its appearance and using a three-dimensional shape measuring instrument. Table 1 shows the results. As can be seen from this table, the CVD-
No cracks were generated in the SiC compact. In particular, in the case of Examples 1 to 3 in which the thickness of the SiC substrate was 200 to 300 μm, the amount of warpage was extremely small, 0.10 mm or less, and an optimum CVD-SiC compact could be obtained. On the other hand, the CVD-S obtained in Comparative Example 1
The iC molded body had cracks because the warp amount was too large.

【0031】[0031]

【表1】 [Table 1]

【0032】また、基板用SiC膜及びSiC基板の厚
みを250μmにし、この上面及び下面に1500μm
ずつSiC膜を形成して厚み3250μmのCVD−S
iC成形体を製造しても、従来法のようにき裂を生じる
こともなく、反り量0.05mmという非常に小さな反
りのCVD−SiC成形体を製造することができた。
Further, the thickness of the SiC film for the substrate and the SiC substrate is set to 250 μm, and 1500 μm is formed on the upper surface and the lower surface.
A SiC film having a thickness of 3250 μm is formed by CVD-S.
Even when the iC molded body was manufactured, a CVD-SiC molded body having a very small warp of a warpage amount of 0.05 mm could be manufactured without cracking unlike the conventional method.

【0033】[0033]

【発明の効果】本発明のようにCVD−SiC成形体を
構成すると、反り量が極めて小さいものになる。このた
め、例えば接触する相手部材との密着性が増し、熱等が
均等に伝わるようになる。また、本発明に係る製造方法
によると、き裂が発生せず、反り量も小さいCVD−S
iC成形体を得ることができる。本発明により、厚み5
00μm以上という厚いCVD−SiC成形体を、き裂
を生じさせないで且つ反り量も極めて小さくすることが
できた。
When the CVD-SiC compact is constructed as in the present invention, the amount of warpage becomes extremely small. For this reason, for example, the adhesiveness with the contacting counterpart member is increased, and heat or the like is evenly transferred. Further, according to the manufacturing method of the present invention, CVD-S in which cracks do not occur and the amount of warpage is small
An iC molded body can be obtained. According to the invention, a thickness of 5
A CVD-SiC compact having a thickness of 00 μm or more could be made extremely small in warpage without causing cracks.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るCVD−SiC成形体及びその製
造方法の模式概念図である。
FIG. 1 is a schematic conceptual view of a CVD-SiC compact and a method for manufacturing the same according to the present invention.

【図2】従来のCVD−SiC成形体及びその製造方法
の模式概念図である。
FIG. 2 is a schematic conceptual view of a conventional CVD-SiC compact and a method for manufacturing the same.

【符号の説明】[Explanation of symbols]

10 SiC基板 11 基板用SiC膜 11a 基板用SiC膜の結晶粒 12 下面SiC膜 12a 下面SiC膜の結晶粒 13 上面SiC膜 13a 上面SiC膜の結晶粒 21 SiC膜 21a SiC膜の結晶粒 21b SiC膜のコーン状結晶粒 A 基体 B CVD−SiC成形体 10 SiC substrate 11 SiC film for substrate 11a Crystal grain of SiC film for substrate 12 Lower surface SiC film 12a Lower crystal grain of SiC film 13 Upper surface SiC film 13a Upper crystal grain of SiC film 21 SiC film 21a Crystal grain of SiC film 21b SiC film Cone-shaped crystal grains A Base B CVD-SiC compact

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C23C 16/42 16/56 H01L 21/203 S 21/205 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C23C 16/42 16/56 H01L 21/203 S 21/205

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 化学蒸着法により形成された炭化ケイ素
基板の両面に、炭化ケイ素膜を有する、化学蒸着法によ
る炭化ケイ素成形体。
1. A silicon carbide formed body by a chemical vapor deposition method, which has a silicon carbide film on both surfaces of a silicon carbide substrate formed by the chemical vapor deposition method.
【請求項2】 基体の表面に化学蒸着法により炭化ケイ
素膜を形成し、前記基体を除去して得られた炭化ケイ素
基板の両面に、更に炭化ケイ素膜を形成することを特徴
とする、化学蒸着法による炭化ケイ素成形体の製造方
法。
2. A silicon carbide film is formed on a surface of a substrate by a chemical vapor deposition method, and a silicon carbide film is further formed on both surfaces of a silicon carbide substrate obtained by removing the substrate. A method for producing a silicon carbide molded body by a vapor deposition method.
【請求項3】 前記炭化ケイ素基板の厚みが300μm
以下であることを特徴とする請求項1又は請求項2記載
の化学蒸着法による炭化ケイ素成形体又はその製造方
法。
3. The silicon carbide substrate has a thickness of 300 μm
The following is a silicon carbide molded body by the chemical vapor deposition method according to claim 1 or 2, or a method for producing the same.
JP6340993A 1994-12-29 1994-12-29 Silicon carbide molded product by chemical vapor deposition and its production Pending JPH08188408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6340993A JPH08188408A (en) 1994-12-29 1994-12-29 Silicon carbide molded product by chemical vapor deposition and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6340993A JPH08188408A (en) 1994-12-29 1994-12-29 Silicon carbide molded product by chemical vapor deposition and its production

Publications (1)

Publication Number Publication Date
JPH08188408A true JPH08188408A (en) 1996-07-23

Family

ID=18342216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6340993A Pending JPH08188408A (en) 1994-12-29 1994-12-29 Silicon carbide molded product by chemical vapor deposition and its production

Country Status (1)

Country Link
JP (1) JPH08188408A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116757A (en) * 1996-10-08 1998-05-06 Mitsui Eng & Shipbuild Co Ltd Sic dummy wafer
EP0899358A2 (en) 1997-09-01 1999-03-03 Tokai Carbon Company, Ltd. Silicon carbide fabrication
JP2001158666A (en) * 1999-11-26 2001-06-12 Toshiba Ceramics Co Ltd Cvd-sic self-supported membrane structure and production process therefor
JP2003113472A (en) * 2001-10-03 2003-04-18 Toshiba Ceramics Co Ltd CVD-SiC SELF-SUPPORTED FILM STRUCTURE
US7166523B2 (en) 2000-08-10 2007-01-23 Hoya Corporation Silicon carbide and method of manufacturing the same
WO2017175799A1 (en) * 2016-04-05 2017-10-12 株式会社サイコックス POLYCRYSTALLINE SiC SUBSTRATE AND METHOD FOR MANUFACTURING SAME
JP2019112241A (en) * 2017-12-21 2019-07-11 國家中山科學研究院 Silicon carbide growth apparatus with specific shape
JP2020083666A (en) * 2018-11-15 2020-06-04 住友金属鉱山株式会社 Graphite base material, film deposition method of silicon carbide, and manufacturing method of silicon carbide substrate
JP2020111495A (en) * 2019-01-16 2020-07-27 住友金属鉱山株式会社 Silicon carbide polycrystalline substrate, method of manufacturing silicon carbide polycrystalline film, and method of manufacturing silicon carbide polycrystalline substrate
JP2020158869A (en) * 2019-03-28 2020-10-01 住友金属鉱山株式会社 Manufacturing method of silicon carbide polycrystal substrate
JP2021075767A (en) * 2019-11-11 2021-05-20 住友金属鉱山株式会社 Method for removing graphite support substrate and method for manufacturing silicon carbide polycrystal substrate
JP2021095584A (en) * 2019-12-13 2021-06-24 住友金属鉱山株式会社 Manufacturing method of silicon carbide polycrystalline substrate
JP2022190038A (en) * 2019-09-27 2022-12-22 東海カーボン株式会社 Polycrystalline SiC compact
FR3127330A1 (en) * 2021-09-22 2023-03-24 Soitec METHOD FOR MANUFACTURING A POLYCRYSTALLINE SILICON CARBIDE SUPPORT SUBSTRATE

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116757A (en) * 1996-10-08 1998-05-06 Mitsui Eng & Shipbuild Co Ltd Sic dummy wafer
EP0899358A2 (en) 1997-09-01 1999-03-03 Tokai Carbon Company, Ltd. Silicon carbide fabrication
JP2001158666A (en) * 1999-11-26 2001-06-12 Toshiba Ceramics Co Ltd Cvd-sic self-supported membrane structure and production process therefor
US7166523B2 (en) 2000-08-10 2007-01-23 Hoya Corporation Silicon carbide and method of manufacturing the same
JP2003113472A (en) * 2001-10-03 2003-04-18 Toshiba Ceramics Co Ltd CVD-SiC SELF-SUPPORTED FILM STRUCTURE
US10934634B2 (en) 2016-04-05 2021-03-02 Sicoxs Corporation Polycrystalline SiC substrate and method for manufacturing same
WO2017175799A1 (en) * 2016-04-05 2017-10-12 株式会社サイコックス POLYCRYSTALLINE SiC SUBSTRATE AND METHOD FOR MANUFACTURING SAME
JPWO2017175799A1 (en) * 2016-04-05 2018-11-08 株式会社サイコックス Polycrystalline SiC substrate and manufacturing method thereof
CN108884593A (en) * 2016-04-05 2018-11-23 株式会社希克斯 Polycrystalline SiC substrate and its manufacturing method
KR20180126566A (en) * 2016-04-05 2018-11-27 가부시키가이샤 사이콕스 Polycrystalline SiC substrate and its manufacturing method
CN108884593B (en) * 2016-04-05 2021-03-12 株式会社希克斯 Polycrystalline SiC substrate and method for producing same
JP2019112241A (en) * 2017-12-21 2019-07-11 國家中山科學研究院 Silicon carbide growth apparatus with specific shape
JP2020083666A (en) * 2018-11-15 2020-06-04 住友金属鉱山株式会社 Graphite base material, film deposition method of silicon carbide, and manufacturing method of silicon carbide substrate
JP2020111495A (en) * 2019-01-16 2020-07-27 住友金属鉱山株式会社 Silicon carbide polycrystalline substrate, method of manufacturing silicon carbide polycrystalline film, and method of manufacturing silicon carbide polycrystalline substrate
JP2020158869A (en) * 2019-03-28 2020-10-01 住友金属鉱山株式会社 Manufacturing method of silicon carbide polycrystal substrate
JP2022190038A (en) * 2019-09-27 2022-12-22 東海カーボン株式会社 Polycrystalline SiC compact
JP2021075767A (en) * 2019-11-11 2021-05-20 住友金属鉱山株式会社 Method for removing graphite support substrate and method for manufacturing silicon carbide polycrystal substrate
JP2021095584A (en) * 2019-12-13 2021-06-24 住友金属鉱山株式会社 Manufacturing method of silicon carbide polycrystalline substrate
FR3127330A1 (en) * 2021-09-22 2023-03-24 Soitec METHOD FOR MANUFACTURING A POLYCRYSTALLINE SILICON CARBIDE SUPPORT SUBSTRATE
WO2023047035A1 (en) * 2021-09-22 2023-03-30 Soitec Method for fabricating a polycrystalline silicon carbide carrier substrate

Similar Documents

Publication Publication Date Title
KR100592741B1 (en) Silicon carbide fabrication
JPH08188468A (en) Formed silicon carbide produced by chemical vapor deposition and its production
JPH08188408A (en) Silicon carbide molded product by chemical vapor deposition and its production
JP2006086534A (en) Rough side susceptor for high-temperature substrate processing
JP3317781B2 (en) Method of manufacturing susceptor for heat treatment of semiconductor wafer
US5853840A (en) Dummy wafer
JPH11199323A (en) Dummy wafer
US6699401B1 (en) Method for manufacturing Si-SiC member for semiconductor heat treatment
JP3811540B2 (en) Method for producing silicon carbide molded body
JP7103182B2 (en) Graphite substrate, silicon carbide film formation method and silicon carbide substrate manufacturing method
JP7294021B2 (en) Method for surface treatment of graphite support substrate, method for depositing polycrystalline silicon carbide film, and method for manufacturing polycrystalline silicon carbide substrate
JP3790029B2 (en) SiC dummy wafer
JP3069216B2 (en) Semiconductor components
JPH0666265B2 (en) Susceptor for semiconductor vapor phase growth
JPH1116991A (en) Carbon support for semiconductor manufacturing apparatus
JP2549030B2 (en) Semiconductor processing member and method of manufacturing the same
JP3925884B2 (en) Method for coating SiC film
JP2003068594A (en) SiC DUMMY WAFER AND ITS PRODUCING METHOD
JP3942158B2 (en) Method for producing cylindrical SiC molded body
JPH07335728A (en) Heat treatment jig and its manufacture
JPH10256108A (en) Silicon carbide dummy wafer
JPH0826714A (en) Production of silicon carbide formed body
JP2000273632A (en) Production of flat ceramic bulk material free from warpage by chemical vapor deposition method
JP4255019B2 (en) Material for heat treatment
JP5013686B2 (en) Compound semiconductor susceptor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20091107

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20131107

EXPY Cancellation because of completion of term