JP3942158B2 - Method for producing cylindrical SiC molded body - Google Patents

Method for producing cylindrical SiC molded body Download PDF

Info

Publication number
JP3942158B2
JP3942158B2 JP2002070040A JP2002070040A JP3942158B2 JP 3942158 B2 JP3942158 B2 JP 3942158B2 JP 2002070040 A JP2002070040 A JP 2002070040A JP 2002070040 A JP2002070040 A JP 2002070040A JP 3942158 B2 JP3942158 B2 JP 3942158B2
Authority
JP
Japan
Prior art keywords
sic
molded body
core material
cvd
sic molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002070040A
Other languages
Japanese (ja)
Other versions
JP2003268547A (en
Inventor
孝臣 杉原
嗣生 宮田
健一 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2002070040A priority Critical patent/JP3942158B2/en
Publication of JP2003268547A publication Critical patent/JP2003268547A/en
Application granted granted Critical
Publication of JP3942158B2 publication Critical patent/JP3942158B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高純度、高密度で耐熱性や強度特性に優れ、例えば、半導体製造装置の各種熱処理部材などとして好適に用いられる円柱状のSiC成形体およびその製造方法に関する。
【0002】
【従来の技術】
SiCは耐熱性、耐蝕性、強度特性などの材質特性が優れており、各種工業用の部材として有用されている。従来からSiC成形体はSiC粉体に焼結助材を混合して、混合粉末を成形し、焼結する方法で製造されている。しかし、焼結法によるSiC成形体は、焼結助材が残存し、その除去が困難なことから不純物が多いという難点がある。したがって、焼結SiC成形体を微量の不純物混入も問題となる半導体製造装置用の部材などとして使用することができない。
【0003】
一方、CVD法(化学的気相蒸着法)を利用して作製したSiC成形体(CVD−SiC成形体とも記す)は、原料ガスを気相反応させて基材面上にSiCの結晶粒を析出させ、結晶粒の成長により被膜を形成して成膜したのち基材を除去する方法により作製され、高純度、高耐熱性で材質的に緻密で組織の均質性が高いなどという特徴がある。
【0004】
このCVD−SiC成形体を得る方法として、古くから種々の製造方法が開発されており(例えば、特開昭54−43200号公報、特開昭54−104488号公報など)、またCVD−SiC成形体に発生する亀裂や反りを抑制する目的で、例えば特開平8−188408号公報には化学蒸着法により形成された炭化珪素基板の両面に炭化珪素膜を有する化学蒸着法による炭化珪素成形体が、特開平8−188468号公報には3層以上の炭化珪素層の積層体から成り、且つ各炭化珪素層の厚みが100μm 以下である化学蒸着法による炭化珪素成形体が提案されている。
【0005】
しかしながら、CVD−SiC成形体は肉厚のものを製造することが難しく、一般に厚さが5mm程度のものを製造するのがほぼ限界とされている。そのため、例えば半導体製造装置用の熱処理部材としては厚さが不足する場合も生じる。また、複雑形状の成形体を製造することも焼結法に比べ一般に困難である。
【0006】
そこで、特開平10−139547号公報には第1の所定の抵抗率を有する焼結SiC部分と、第2の所定の抵抗率を有し、焼結SiC部分上に堆積したSiCの膜とを備えるSiC複合体が提案されている。この発明は焼結法で成形したSiC成形体を基材として、その表面にCVD法によりSiC膜を堆積、成膜するものであり、プラズマリアクターなどとして、例えば半導体製造用のエッチングチャンバーの内壁部材や天井部材などとして用いられるとしている。
【0007】
しかしながら、CVD−SiC膜が損傷したり亀裂が発生した場合には焼結法で作製したSiC基材面が露出することとなり、焼結助材などの不純物が放散するため、エッチングチャンバー内を汚染する危険が生じる。
【0008】
また、円筒状の半導体製造装置用部材として黒鉛製円筒基材の内面あるいは外面にCVD法によりSiC膜を成膜したのち、黒鉛基材を除去する方法が知られている。
【0009】
【発明が解決しようとする課題】
しかしながら、円柱状SiC成形体を製造することは一般に困難であり、通常CVD法により製造したSiC成形体からブロック体に切り出し、機械加工して作製されるが、加工コストが掛かるばかりでなく加工時に割損する難点がある。更に、肉厚のCVD−SiC成形体を製造することが難しいため、作製し得る円柱状SiC成形体の大きさ(直径)にも限界があり、一般に直径5mm以上の円柱状SiC成形体を製造することは困難である。
【0010】
本発明は上記の問題点を解消し、大きな直径を有し、例えば直径5mm以上の高純度、高密度の円柱状CVD−SiC成形体を製造する方法を提供することを目的とする。
【0012】
本発明の円柱状SiC成形体の製造方法は、CVD法により基材面にSiCを析出させて成膜したのち基材を除去して作製したSiC成形体を、断面が略円形状の棒状に切削加工して芯材とし、この芯材をCVD反応装置内にセットしてCVD反応により芯材の外周面にSiCを析出、積層して芯材と一体化することを構成上の特徴とする。
【0013】
【発明の実施の形態】
本発明の円柱上SiC成形体は、CVD法で作製したSiC成形体を、断面が略円形状に切削加工して得た棒状のSiC成形体を芯材として、その外周面に更にCVD法により析出させたSiC膜が積層し、一体化したものである。
【0014】
すなわち、本発明の円柱状SiC成形体はCVD−SiC成形体からなる棒状の芯材の外周面に、更にCVD法により析出したSiC膜が均一に積層して一体化したものである。したがって、芯材と積層したSiC層の間には物性上の差異がなく均質であり、高純度、高密度のCVD−SiCからなる円柱状SiC成形体であるから、半導体製造装置用の部材として、例えばウエハ支持板上にウエハを支持するピンやプラズマ装置内の部材を固定するための各種部材として好適に用いることができる。
【0015】
この円柱状SiC成形体を製造するための本発明に係る製造方法は、CVD法により基材面にSiCを析出させて成膜したのち基材を除去して得たSiC成形体から切り出して、断面を略円形状の棒状に切削加工して芯材を作製する。この芯材をCVD反応装置内にセットして、更にCVD反応により芯材の外周面に均一にSiCを析出させ、SiC膜を積層して芯材と一体化するものである。
【0016】
CVD法によるSiC膜の形成は、1分子中にSi原子とC原子を含む、例えばCH3 SiCl3 、(CH3 3 SiCl、CH3 SiHCl2 などのハロゲン化有機珪素化合物を水素ガスなどのキャリアガスとともに加熱して還元熱分解させる方法、あるいはSiCl4 などの珪素化合物とCH4 などの炭素化合物を加熱して気相反応させる方法により基材面上にSiCを析出させる方法により行われる。
【0017】
芯材に加工するためのCVD−SiC成形体を作製する際の基材としては、炭素系材料、シリコンなどの金属系材料、石英などが用いられるが、加工性が良好で、空気中で熱処理することにより容易に燃焼除去可能な炭素系、特に黒鉛材が好適に用いられる。なお、黒鉛材は可及的に不純物が少ない高純度のものが好ましく、基材の除去は切削除去、研磨除去、空気中で加熱する燃焼除去、あるいはこれらを適宜に組み合わせて行うことができる。基材の形状は特に制限されないが、芯材を作製するのに都合のよい形状、例えば角棒状を切り出すのに都合のよい角板状が好ましい。
【0018】
基材面にCVD法によりSiCを析出させて成膜したのち基材を除去して作製したSiC成形体から、例えば角棒状に切り出し、この角棒状の試料を切削加工して、断面が略円形状になるように加工する。このようにして作製した丸棒状のSiC成形体を芯材として、CVD反応装置内にセットしてCVD反応により芯材の外周面にSiCを析出させてSiC層を積層し、一体化する。
【0019】
CVD反応は、反応温度や原料ガス供給量などを調節して、原料ガスの滞留時間を制御することにより成膜速度を調整して行われる。成膜速度は40〜400μm/hr程度に調整することが好ましく、成膜速度が40μm/hr未満では非能率であり、400μm/hrを超えると析出するSiCの密度が低下する。
【0020】
成膜速度の調整を容易に行うために、例えば図1に模式的に示したようにCVD反応室内にマッフル1を設け、マッフル1の中には複数個の芯材保持板2を備えた回転軸3を設置し、芯材保持板2上に芯材4を載置する。マッフル1には原料ガスを送入するための数本から十数本のノズル5が設置されている。なお、ノズル5は原料ガスが芯材4に直接当たらないように、例えばノズル先端がマッフル1の壁面に向くように設置し、原料ガスを間接的に芯材4に接触させることが好ましい。ノズル5から送入された原料ガスが直接芯材4に当たると、形成されたSiC膜に膜厚斑や組織斑が生じ易くなるためである。また、CVD反応時に蒸着したSiCによりノズル5が閉塞したような場合には、ノズル5を適宜に切替え使用することによりCVD反応を中断することなく連続して行うことも可能となる。
【0021】
原料ガスの滞留時間とは、CVD反応を行う際に原料ガスがCVD反応室(マッフル1)内に滞留してCVD反応に関与する時間を表すパラメータとなるものであり、下記式によって算出される値である。

Figure 0003942158
【0022】
芯材保持板2は、例えば黒鉛製の円板に芯材4を載置するための多数の孔が設けられており、芯材4は芯材保持板2の孔中に挿入してセットされる。なお、孔間の間隔は20mm以上あることが好ましい。
【0023】
このようにして、CVD−SiCからなる断面が略円形状の棒状SiCの芯材の外周面に、CVD法で析出したSiC膜が一様に積層され一体化したものであるから芯材と相似形の棒状を示し、円柱状に加工することが容易であり、加工ロスも大幅に低減することができる。更に、芯材に加工する際に、より円形に近く切削加工すれば後加工を必要とすることなく円柱状SiC成形体を得ることも可能である。このようにして、径太の、例えば直径5mm以上の高純度、高密度の円柱状SiC成形体を能率よく製造することができる。
【0024】
【実施例】
以下、本発明の実施例を具体的に説明する。
【0025】
実施例1
図1に模式的に示した装置により円柱状SiC成形体を製造した。先ず、CVD−SiC成形体から試料を切り出して、直径がほぼ3mm、長さが150mmの断面が略円形状の棒状に切削加工して芯材を作製した。CVD反応装置内に容積約26リットルのマッフルを設置し、マッフル内に直径200mm、厚さ5mmの黒鉛製円板を芯材保持板として3枚取り付けた回転軸を設け、作製した芯材186本を等間隔に芯材保持板上の孔に挿入してセットした。また、マッフルには原料ガス送入用のノズル12本を芯材保持板に直接当たらない方向に装着した。
【0026】
系内を水素ガスで置換後、原料ガスとしてCH3 SiCl3 /H2 が7.5
Vol %の混合ガスを用い、原料ガス滞留時間を4秒に設定して、原料ガス供給量を68.3l/min 、反応温度1400℃の条件で27時間CVD反応を行った。その後、芯材保持板から取り外し、切削して真円に加工して直径19.1mm、長さ140mmの円柱状SiC成形体を作製した。なお、芯材保持板から取り外した状態でほぼ円柱状であったから切削加工は極めて容易であった。
【0027】
実施例2
CVD反応条件として原料ガス滞留時間を30秒に設定し、原料ガス供給量を9.1l/min 、反応温度1400℃の条件で100時間CVD反応を行った他は実施例1と同じ条件で行い、直径19.0mm、長さ140mmの円柱状SiC成形体を製造した。なお、芯材保持板から取り外した状態でほぼ円柱状であったから切削加工は極めて容易であった。
【0028】
実施例3
直径をほぼ1mm、長さを150mmの断面が略円形状の棒状に切削加工した芯材を用いて、原料ガス滞留時間を30秒に設定し、原料ガス供給量を9.1l/min 、反応温度1400℃の条件で100時間CVD反応を行った他は実施例1と同じ条件で行い、直径17.1mm、長さ140mmの円柱状SiC成形体を製造した。なお、芯材保持板から取り外した状態でほぼ円柱状であったから切削加工は極めて容易であった。
【0029】
実施例4
直径をほぼ1mm、長さを150mmの断面が略円形状の棒状に切削加工した芯材を用いて、原料ガス滞留時間を4秒に設定し、原料ガス供給量を68.3l/min 、反応温度1400℃の条件で27時間CVD反応を行った他は実施例1と同じ条件で行い、直径17.0mm、長さ140mmの円柱状SiC成形体を製造した。なお、芯材保持板から取り外した状態でほぼ円柱状であったから切削加工は極めて容易であった。
【0030】
このようにして作製した円柱状SiC成形体からテストピースを切り出し、下記の方法により試験を行った。
▲1▼耐熱衝撃試験;
大気中、500←→1200℃に加熱、冷却する熱サイクル試験20回行い、テストピースに発生するクラックの状態を観察した。
▲2▼耐蝕試験;
1200℃の塩化水素100%の雰囲気中に15時間保持したときの重量減少率を求めた。
▲3▼外観;
目視観察により、外観の異常有無をチェックした。
【0031】
また、嵩密度、金属不純物含有量、比抵抗を測定し、得られた結果を製造条件を表1に、試験結果を表2に示した。
【0032】
【表1】
Figure 0003942158
【0033】
【表2】
Figure 0003942158
【0034】
表1、2の結果から、本発明の円柱状SiC成形体によれば、CVD−SiCからなる芯材とその外周面に積層されたCVD−SiCとが均一に一体化し、径太の円柱状SiC成形体が提供される。また、嵩密度が大きく、金属不純物も少なく、高密度、高純度であるため、半導体製造装置用の耐熱部材として好適に使用することができる。
【0035】
また、その製造方法によれば、CVD−SiCを切削加工して作製した断面が略円形状の成形体を芯材とし、その外周面にCVD法によりSiCを析出させ、所定の厚さに積層するものであるから、芯材と相似関係にある略円形断面を有する円柱が得られ、後加工も極めて容易であり、加工ロスも極めて少ない。更に、芯材の外周面の全体に、均一にCVD−SiCを積層し、一体化するものであるから、大きな直径の円柱状SiC成形体を能率よく製造することができる。
【0036】
なお、厚さ7 mm の板状CVD−SiC成形体を円柱状に切削加工しようとしたが加工性が悪いため、クラックが発生したり割れが生じ易く、直径6 mm 以上の円柱状SiC成形体を作製することができなかった。
【0037】
これに対し、本発明においては芯材を円柱状に精密加工して用いれば、その外周面にCVD法により析出させたSiCと一体化したのち軽微な加工により実用性に問題のない円柱形状の高密度、高純度のSiC成形体を得ることが可能となる。
【0038】
【発明の効果】
以上のとおり、本発明の円柱状SiC成形体によれば、CVD法により作製された高純度、高密度であって、径太の円柱状のSiC成形体が提供され、半導体製造装置用の各種熱処理部材、例えばウエハ支持板上にウエハを支持するピンやプラズマ装置内の部材を固定するための各種部材などとして好適に用いることができる。また、その製造方法によれば、この円柱状SiC成形体を能率よく製造することが可能となる。
【図面の簡単な説明】
【図1】本発明の円柱状SiC成形体を製造する方法を実施するために用いられる装置を例示した模式図である。
【符号の説明】
1 マッフル
2 芯材保持板
3 回転軸
4 芯材
5 ノズル[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cylindrical SiC molded body that is highly purified, has a high density, is excellent in heat resistance and strength characteristics, and is suitably used as, for example, various heat treatment members of a semiconductor manufacturing apparatus, and a manufacturing method thereof.
[0002]
[Prior art]
SiC has excellent material properties such as heat resistance, corrosion resistance and strength properties, and is useful as a member for various industries. Conventionally, SiC compacts are manufactured by a method in which a sintering aid is mixed with SiC powder, the mixed powder is molded, and sintered. However, the SiC molded body by the sintering method has a drawback that there are many impurities because the sintering aid remains and is difficult to remove. Therefore, the sintered SiC molded body cannot be used as a member for a semiconductor manufacturing apparatus or the like in which a trace amount of impurities is problematic.
[0003]
On the other hand, an SiC molded body (also referred to as a CVD-SiC molded body) produced by using a CVD method (chemical vapor deposition method) causes a raw material gas to undergo a gas phase reaction to form SiC crystal grains on the substrate surface. Prepared by the method of depositing, forming a film by growing crystal grains, forming the film, and then removing the substrate, and features high purity, high heat resistance, material denseness, and high tissue homogeneity .
[0004]
As a method for obtaining this CVD-SiC molded body, various manufacturing methods have been developed for a long time (for example, JP-A-54-43200, JP-A-54-104488, etc.), and CVD-SiC molding. For the purpose of suppressing cracks and warpage occurring in the body, for example, Japanese Patent Application Laid-Open No. 8-188408 discloses a silicon carbide molded body by chemical vapor deposition having silicon carbide films on both sides of a silicon carbide substrate formed by chemical vapor deposition. JP-A-8-188468 proposes a silicon carbide molded body formed by a chemical vapor deposition method comprising a laminate of three or more silicon carbide layers, and each silicon carbide layer has a thickness of 100 μm or less.
[0005]
However, it is difficult to produce a thick CVD-SiC molded body, and it is generally limited to produce a CVD-SiC molded article having a thickness of about 5 mm. Therefore, for example, the thickness may be insufficient as a heat treatment member for a semiconductor manufacturing apparatus. In addition, it is generally difficult to manufacture a compact shaped body as compared with the sintering method.
[0006]
Japanese Patent Laid-Open No. 10-139547 discloses a sintered SiC portion having a first predetermined resistivity and a SiC film having a second predetermined resistivity and deposited on the sintered SiC portion. An SiC composite with which it is provided has been proposed. The present invention uses a SiC molded body formed by a sintering method as a base material, and deposits and forms a SiC film on the surface by a CVD method. As a plasma reactor or the like, for example, an inner wall member of an etching chamber for semiconductor manufacturing And is used as a ceiling member.
[0007]
However, if the CVD-SiC film is damaged or cracks occur, the SiC substrate surface produced by the sintering method will be exposed, and impurities such as sintering aid will be diffused, which will contaminate the etching chamber. The danger of doing.
[0008]
Further, a method of removing a graphite substrate after forming a SiC film on the inner surface or outer surface of a graphite cylindrical substrate as a cylindrical semiconductor manufacturing apparatus member by a CVD method is known.
[0009]
[Problems to be solved by the invention]
However, it is generally difficult to manufacture a cylindrical SiC molded body, and it is usually cut out from a SiC molded body manufactured by a CVD method into a block body and machined. There is a difficulty to break. Furthermore, since it is difficult to produce a thick CVD-SiC molded body, there is a limit to the size (diameter) of a cylindrical SiC molded body that can be produced. Generally, a cylindrical SiC molded body having a diameter of 5 mm or more is manufactured. It is difficult to do.
[0010]
An object of the present invention is to solve the above problems and to provide a method for producing a high-purity, high-density columnar CVD-SiC molded body having a large diameter, for example, a diameter of 5 mm or more .
[0012]
The method for producing a cylindrical SiC molded body according to the present invention is obtained by depositing SiC on a base material surface by a CVD method, forming a film, and then removing the base material into a rod shape having a substantially circular cross section. A core material is formed by cutting, and this core material is set in a CVD reactor, and SiC is deposited on the outer peripheral surface of the core material by a CVD reaction, and is laminated and integrated with the core material. .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The SiC molded body on a cylinder of the present invention is a rod-shaped SiC molded body obtained by cutting a SiC molded body produced by a CVD method into a substantially circular cross section, and the outer peripheral surface thereof is further subjected to a CVD method. The deposited SiC films are laminated and integrated.
[0014]
That is, the cylindrical SiC molded body of the present invention is obtained by uniformly laminating a SiC film deposited by a CVD method on the outer peripheral surface of a rod-shaped core material made of a CVD-SiC molded body. Therefore, there is no difference in physical properties between the core material and the laminated SiC layer, and it is a columnar SiC molded body made of high-purity and high-density CVD-SiC. For example, it can be suitably used as various members for fixing pins in the wafer support plate and pins in the plasma apparatus to support the wafer.
[0015]
The manufacturing method according to the present invention for manufacturing the cylindrical SiC molded body is cut out from the SiC molded body obtained by depositing SiC on the surface of the base material by the CVD method and then removing the base material, The core is made by cutting the cross section into a substantially circular rod. This core material is set in a CVD reaction apparatus, SiC is further uniformly deposited on the outer peripheral surface of the core material by a CVD reaction, and an SiC film is laminated to be integrated with the core material.
[0016]
The formation of the SiC film by the CVD method involves using a halogenated organosilicon compound such as CH 3 SiCl 3 , (CH 3 ) 3 SiCl, or CH 3 SiHCl 2 containing hydrogen atoms or the like containing Si atoms and C atoms in one molecule. It is carried out by a method in which SiC is deposited on the surface of the substrate by heating with a carrier gas and reducing pyrolysis or by heating a silicon compound such as SiCl 4 and a carbon compound such as CH 4 to cause a gas phase reaction.
[0017]
Carbon-based materials, metal-based materials such as silicon, quartz, and the like are used as the base material for producing a CVD-SiC molded body for processing into a core material, but the workability is good and heat treatment is performed in air. Therefore, a carbon-based material that can be easily removed by combustion, particularly a graphite material, is preferably used. The graphite material preferably has a high purity with as few impurities as possible, and the substrate can be removed by cutting, polishing, burning by heating in air, or a combination thereof. The shape of the substrate is not particularly limited, but a shape convenient for producing the core material, for example, a square plate shape convenient for cutting out a square bar shape is preferable.
[0018]
For example, a square bar-like sample is cut out from a SiC molded body produced by depositing SiC on the base material surface by CVD to remove the base material, and then removing the base material. Process to shape. The round rod-shaped SiC molded body thus manufactured is set as a core material in a CVD reactor, and SiC is deposited on the outer peripheral surface of the core material by a CVD reaction to stack and integrate the SiC layers.
[0019]
The CVD reaction is performed by adjusting the film formation rate by controlling the residence time of the source gas by adjusting the reaction temperature, the source gas supply amount, and the like. The film formation rate is preferably adjusted to about 40 to 400 μm / hr. When the film formation rate is less than 40 μm / hr, it is inefficient, and when it exceeds 400 μm / hr, the density of deposited SiC decreases.
[0020]
In order to easily adjust the film formation speed, for example, as schematically shown in FIG. 1, a muffle 1 is provided in the CVD reaction chamber, and the muffle 1 is provided with a plurality of core material holding plates 2. The shaft 3 is installed, and the core material 4 is placed on the core material holding plate 2. The muffle 1 is provided with several to a dozen nozzles 5 for feeding the raw material gas. The nozzle 5 is preferably installed such that the nozzle tip faces the wall surface of the muffle 1 so that the source gas does not directly hit the core material 4, and the source gas is preferably brought into contact with the core material 4 indirectly. This is because when the raw material gas fed from the nozzle 5 directly hits the core material 4, film thickness spots and tissue spots are likely to occur in the formed SiC film. Further, when the nozzle 5 is blocked by SiC deposited during the CVD reaction, the CVD reaction can be continuously performed without interruption by appropriately switching the nozzle 5 and using it.
[0021]
The residence time of the source gas is a parameter representing the time during which the source gas stays in the CVD reaction chamber (muffle 1) and participates in the CVD reaction when performing the CVD reaction, and is calculated by the following equation. Value.
Figure 0003942158
[0022]
The core material holding plate 2 is provided with a large number of holes for placing the core material 4 on, for example, a graphite disk, and the core material 4 is set by being inserted into the holes of the core material holding plate 2. The In addition, it is preferable that the space | interval between holes is 20 mm or more.
[0023]
Thus, since the SiC film deposited by the CVD method is uniformly laminated and integrated on the outer peripheral surface of the rod-shaped SiC core material having a substantially circular cross section made of CVD-SiC, it is similar to the core material. The shape of the rod is shown, it is easy to process into a cylindrical shape, and the processing loss can be greatly reduced. Furthermore, it is also possible to obtain a cylindrical SiC molded body without the need for post-processing if it is processed into a more circular shape when being processed into a core material. In this way, it is possible to efficiently produce a high-purity, high-density cylindrical SiC compact having a large diameter, for example, a diameter of 5 mm or more.
[0024]
【Example】
Examples of the present invention will be specifically described below.
[0025]
Example 1
A cylindrical SiC molded body was manufactured by the apparatus schematically shown in FIG. First, a sample was cut out from the CVD-SiC molded body, and cut into a rod shape having a diameter of about 3 mm and a length of 150 mm and a substantially circular cross section, thereby producing a core material. A muffle having a volume of about 26 liters was installed in the CVD reactor, and a rotating shaft having three graphite discs having a diameter of 200 mm and a thickness of 5 mm attached as core material holding plates was installed in the muffle, and 186 core materials were produced. Were inserted into the holes on the core material holding plate at equal intervals and set. The muffle was equipped with 12 source gas feed nozzles in a direction not directly hitting the core material holding plate.
[0026]
After replacing the inside of the system with hydrogen gas, CH 3 SiCl 3 / H 2 is 7.5 as a raw material gas.
Using a mixed gas of Vol%, the raw material gas residence time was set to 4 seconds, the raw material gas supply rate was 68.3 l / min, and the reaction temperature was 1400 ° C., and the CVD reaction was performed for 27 hours. Thereafter, it was removed from the core material holding plate, cut into a perfect circle, and a cylindrical SiC molded body having a diameter of 19.1 mm and a length of 140 mm was produced. In addition, since it was substantially cylindrical when removed from the core material holding plate, the cutting process was extremely easy.
[0027]
Example 2
As the CVD reaction conditions, the raw material gas residence time was set to 30 seconds, the raw material gas supply rate was 9.1 l / min, and the reaction temperature was 1400 ° C. A cylindrical SiC molded body having a diameter of 19.0 mm and a length of 140 mm was produced. In addition, since it was substantially cylindrical when removed from the core material holding plate, the cutting process was extremely easy.
[0028]
Example 3
Using a core material cut into a rod shape with a diameter of approximately 1 mm and a length of 150 mm, the material gas residence time is set to 30 seconds, the material gas supply rate is 9.1 l / min, and the reaction A cylindrical SiC molded body having a diameter of 17.1 mm and a length of 140 mm was manufactured except that the CVD reaction was performed for 100 hours at a temperature of 1400 ° C. under the same conditions as in Example 1. In addition, since it was substantially cylindrical when removed from the core material holding plate, the cutting process was extremely easy.
[0029]
Example 4
Using a core material cut into a rod shape with a diameter of approximately 1 mm and a length of 150 mm, the material gas residence time is set to 4 seconds, the material gas supply rate is 68.3 l / min, and the reaction A cylindrical SiC molded body having a diameter of 17.0 mm and a length of 140 mm was manufactured under the same conditions as in Example 1 except that the CVD reaction was performed for 27 hours at a temperature of 1400 ° C. In addition, since it was substantially cylindrical when removed from the core material holding plate, the cutting process was extremely easy.
[0030]
A test piece was cut out from the cylindrical SiC molded body thus produced, and the test was performed by the following method.
(1) Thermal shock test;
In the atmosphere, 20 thermal cycle tests of heating to 500 ← → 1200 ° C. and cooling were performed, and the state of cracks generated in the test piece was observed.
(2) Corrosion resistance test;
The weight reduction rate was determined when kept in an atmosphere of 100% hydrogen chloride at 1200 ° C. for 15 hours.
(3) Appearance;
The appearance was checked for abnormalities by visual observation.
[0031]
Further, the bulk density, the metal impurity content, and the specific resistance were measured. The obtained results are shown in Table 1, and the test results are shown in Table 2.
[0032]
[Table 1]
Figure 0003942158
[0033]
[Table 2]
Figure 0003942158
[0034]
From the results of Tables 1 and 2, according to the cylindrical SiC molded body of the present invention, the core material made of CVD-SiC and the CVD-SiC laminated on the outer peripheral surface thereof are uniformly integrated, and the cylindrical shape with a large diameter is obtained. A SiC compact is provided. Moreover, since it has a high bulk density, a small amount of metal impurities, a high density and a high purity, it can be suitably used as a heat-resistant member for semiconductor manufacturing equipment.
[0035]
Further, according to the manufacturing method, a molded body having a substantially circular cross section produced by cutting CVD-SiC is used as a core material, and SiC is deposited on the outer peripheral surface by the CVD method, and laminated to a predetermined thickness. Therefore, a cylinder having a substantially circular cross section similar to the core material is obtained, post-processing is very easy, and processing loss is extremely small. Furthermore, since the CVD-SiC is uniformly laminated and integrated on the entire outer peripheral surface of the core material, a large-diameter columnar SiC molded body can be efficiently manufactured.
[0036]
Although a plate-like CVD-SiC molded body having a thickness of 7 mm was tried to be processed into a cylindrical shape, the processability was poor, so cracks were easily generated or cracked, and a cylindrical SiC molded body having a diameter of 6 mm or more. Could not be produced.
[0037]
On the other hand, in the present invention, if the core material is precision processed into a cylindrical shape, it is integrated with SiC deposited on the outer peripheral surface by the CVD method, and then the cylindrical shape has no problem in practicality by light processing. A high-density, high-purity SiC molded body can be obtained.
[0038]
【The invention's effect】
As described above, according to the columnar SiC molded body of the present invention, a high-purity, high-density, thick cylindrical columnar SiC molded body manufactured by a CVD method is provided, and various types of semiconductor manufacturing apparatuses are used. It can be suitably used as a heat treatment member, for example, a pin for supporting a wafer on a wafer support plate or various members for fixing a member in a plasma apparatus. Moreover, according to the manufacturing method, it becomes possible to manufacture this cylindrical SiC molded object efficiently.
[Brief description of the drawings]
FIG. 1 is a schematic view illustrating an apparatus used for carrying out a method for producing a cylindrical SiC molded body of the present invention.
[Explanation of symbols]
1 Muffle 2 Core material holding plate 3 Rotating shaft 4 Core material 5 Nozzle

Claims (1)

CVD法により基材面にSiCを析出させて成膜したのち基材を除去して作製したSiC成形体を、断面が略円形状の棒状に切削加工して芯材とし、この芯材をCVD反応装置内にセットしてCVD反応により芯材の外周面にSiCを析出、積層して芯材と一体化することを特徴とする高純度、高密度の円柱状SiC成形体の製造方法。  A SiC molded body produced by depositing SiC on the base material surface by CVD and removing the base material is cut into a rod having a substantially circular cross section to form a core material. A method for producing a high-purity, high-density columnar SiC molded body, characterized in that SiC is deposited in an outer peripheral surface of a core material by CVD reaction after being set in a reactor and laminated and integrated with the core material.
JP2002070040A 2002-03-14 2002-03-14 Method for producing cylindrical SiC molded body Expired - Lifetime JP3942158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002070040A JP3942158B2 (en) 2002-03-14 2002-03-14 Method for producing cylindrical SiC molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002070040A JP3942158B2 (en) 2002-03-14 2002-03-14 Method for producing cylindrical SiC molded body

Publications (2)

Publication Number Publication Date
JP2003268547A JP2003268547A (en) 2003-09-25
JP3942158B2 true JP3942158B2 (en) 2007-07-11

Family

ID=29200723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002070040A Expired - Lifetime JP3942158B2 (en) 2002-03-14 2002-03-14 Method for producing cylindrical SiC molded body

Country Status (1)

Country Link
JP (1) JP3942158B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009041060A (en) * 2007-08-08 2009-02-26 Tokai Carbon Co Ltd METHOD FOR PRODUCING CVD-SiC

Also Published As

Publication number Publication date
JP2003268547A (en) 2003-09-25

Similar Documents

Publication Publication Date Title
EP2520691B1 (en) Tantalum carbide-coated carbon material and manufacturing method for same
JP6818776B2 (en) Silicon carbide members and semiconductor manufacturing equipment members
JP5026794B2 (en) Free-standing silicon carbide products formed by chemical vapor deposition and methods for manufacturing them
US5993770A (en) Silicon carbide fabrication
WO2004009515A1 (en) Carbon composite material
JPH11199323A (en) Dummy wafer
JPH08188468A (en) Formed silicon carbide produced by chemical vapor deposition and its production
JP2002047066A (en) FORMED SiC AND ITS MANUFACTURING METHOD
US8114505B2 (en) Free-standing silicon carbide articles formed by chemical vapor deposition and methods for their manufacture
JPH1012692A (en) Dummy wafer
JPH08188408A (en) Silicon carbide molded product by chemical vapor deposition and its production
RU2684128C1 (en) Article with silicon carbide coating and method for manufacturing of article with silicon carbide coating
JP3942158B2 (en) Method for producing cylindrical SiC molded body
JP4595153B2 (en) Silicon carbide body and method for producing the same
JP4702712B2 (en) Tubular SiC molded body and method for producing the same
JP2002097092A (en) Glassy carbon material coated with silicon carbide film and method for producing the same
JP4455895B2 (en) Method for producing vapor-deposited ceramic coating material
JP3790029B2 (en) SiC dummy wafer
JP3857446B2 (en) SiC molded body
JP2002003275A (en) SiC FORMED BODY WITH HINDERING LIGHT TRANSMISSION AND ITS MANUFACTURING METHOD
JP3925884B2 (en) Method for coating SiC film
JP2003068594A (en) SiC DUMMY WAFER AND ITS PRODUCING METHOD
JP2000109989A (en) Inner wall protective member of plasma treatment device
JP2003268548A (en) SiC FILM-FORMED GLASSY CARBON STOCK
WO2021034214A1 (en) Article with silicon carbide coating and method for producing article with silicon carbide coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070402

R150 Certificate of patent or registration of utility model

Ref document number: 3942158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term