JP2002097092A - Glassy carbon material coated with silicon carbide film and method for producing the same - Google Patents

Glassy carbon material coated with silicon carbide film and method for producing the same

Info

Publication number
JP2002097092A
JP2002097092A JP2000285026A JP2000285026A JP2002097092A JP 2002097092 A JP2002097092 A JP 2002097092A JP 2000285026 A JP2000285026 A JP 2000285026A JP 2000285026 A JP2000285026 A JP 2000285026A JP 2002097092 A JP2002097092 A JP 2002097092A
Authority
JP
Japan
Prior art keywords
carbon material
glassy carbon
sic
film
sic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000285026A
Other languages
Japanese (ja)
Other versions
JP4736076B2 (en
Inventor
Takaomi Sugihara
孝臣 杉原
Mitsuaki Dosono
充昭 堂薗
Kenzo Okamoto
賢三 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2000285026A priority Critical patent/JP4736076B2/en
Publication of JP2002097092A publication Critical patent/JP2002097092A/en
Application granted granted Critical
Publication of JP4736076B2 publication Critical patent/JP4736076B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a glassy carbon material coated with SiC film, which is suitably employed as a heat treatment member for a semiconductor producing apparatus and also as a heat resistant member used in the atmosphere of high temperature and of high purity, and provide a method for producing the same. SOLUTION: The SiC film is coated on the glassy carbon material by a chemical vapor deposition(CVD) method, the X-ray diffraction peak strength of the SiC crystal face (111) of the film is <=10 kc.p.s, and the diffraction peak strength of the SiC crystal face (111) is >=80% of the diffraction peak strength of the whole crystal faces (hkl). The above diffraction peak strength is determined under the following conditions: X-ray source is Cuk α; tube bulb voltage is 40 kV; tube bulb current is 20 mA; filter is Ni-filter; divergent slit is 1 deg., scattering slit is 1 deg.; and light receiving slit is 0.3 mm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、サセプタ、プロセ
スチューブ、ウエハーボートなどの半導体製造装置用部
材や高温、高純度雰囲気下で使用される耐酸化、耐熱部
材として好適に用いられるSiC膜被覆ガラス状炭素材
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a glass coated with a SiC film which is suitably used as a member for semiconductor manufacturing equipment such as a susceptor, a process tube, a wafer boat or the like, and an oxidation-resistant and heat-resistant member used in a high-temperature, high-purity atmosphere. Carbonaceous material.

【0002】[0002]

【従来の技術】ガス不透過性、耐摩耗性、耐食性、表面
平滑性などの優れた特性をそなえたガラス状炭素材に、
CVD法により高純度で緻密なSiC膜を被覆して、耐
高温酸化性などの特性をさらに改良したSiC膜被覆ガ
ラス状炭素材は、プロセスチューブ、ウエハーボートな
どの半導体製造装置用部材として使用されている(特開
平3−217016号公報など)。
2. Description of the Related Art A glassy carbon material having excellent properties such as gas impermeability, abrasion resistance, corrosion resistance, surface smoothness, etc.
A glass-like carbon material coated with a high-purity, dense SiC film by CVD and further improved in properties such as high-temperature oxidation resistance is used as a member for semiconductor manufacturing equipment such as process tubes and wafer boats. (JP-A-3-217016, etc.).

【0003】SiC膜被覆ガラス状炭素材は、従来、半
導体製造装置用部材として使用されていた石英などと比
べて優れた特性を有しているが、SiC膜とガラス状炭
素材との熱膨張係数の差に起因して、成膜後の冷却過程
でクラックが生じたり、SiC膜が剥離するという難点
があり、その改善が要望されている。
A glassy carbon material coated with a SiC film has excellent characteristics as compared with quartz or the like which has been conventionally used as a member for semiconductor manufacturing equipment. Due to the difference in the coefficients, cracks occur in the cooling process after film formation, and the SiC film peels off, and there is a demand for improvement.

【0004】上記の問題を解決するために、発明者ら
は、先に、CVD法により原料ガスを気相熱分解してガ
ラス状炭素材にSiC膜を被覆するに際し、気相熱分解
温度を、初期成膜過程から最終成膜過程にかけて徐々に
昇温し、最終成膜過程の気相温度に所定時間保持するこ
とにより、耐熱衝撃性が高く、ガラス状炭素材とSiC
膜との密着性にも優れたSiC膜被覆ガラス状炭素材の
製造方法を提案した(特願平11−225901号)。
[0004] In order to solve the above-mentioned problems, the present inventors have previously set the gas phase pyrolysis temperature at the time of coating the glassy carbon material with the SiC film by performing the gas phase pyrolysis of the raw material gas by the CVD method. By gradually increasing the temperature from the initial film forming process to the final film forming process and maintaining the gas phase temperature in the final film forming process for a predetermined time, the heat shock resistance is high, and the glassy carbon material and SiC
A method for producing a glassy carbon material coated with a SiC film having excellent adhesion to the film was proposed (Japanese Patent Application No. 11-225901).

【0005】この方法により、熱サイクルによるクラッ
クの発生が軽減され、密着性の改善されたSiC膜被覆
ガラス状炭素材を得ることができる。しかしながら、近
年、シリコンウエハの大径化に伴う半導体製造装置用部
材の大型化の要求から、部材としてのSiC膜被覆ガラ
ス状炭素材についても大型化が検討されており、SiC
膜被覆ガラス状炭素材を大型化した場合には、SiC膜
とガラス状炭素材との熱膨張係数の差によるクラックが
さらに生じ易くなるという問題点があり、前記の製造方
法によるSiC膜被覆ガラス状炭素材においても、大型
化した場合における上記問題点を解決することができな
いことが明らかとなってきた。
According to this method, the occurrence of cracks due to thermal cycling is reduced, and a glassy carbon material coated with a SiC film having improved adhesion can be obtained. However, in recent years, due to a demand for a large-sized member for a semiconductor manufacturing apparatus in accordance with an increase in the diameter of a silicon wafer, an increase in the size of a glassy carbon material coated with a SiC film as a member has been studied.
If the film-coated glassy carbon material is enlarged, cracks are more likely to occur due to the difference in thermal expansion coefficient between the SiC film and the glassy carbon material. It has been clarified that the above-described problems in the case of a large-sized carbon material cannot be solved even when the size is increased.

【0006】[0006]

【発明が解決しようとする課題】本発明は、SiC膜に
おけるSiCの結晶構造についての研究過程において、
SiC結晶面の性状と耐熱衝撃性との関連を見出したこ
とに基づいてなされたものであり、その目的は、CVD
法によりSiC膜を被覆したSiC膜被覆ガラス状炭素
材において、大型化した場合でも、急速加熱や急速冷却
などによる熱衝撃に耐え得る優れた耐熱衝撃性および耐
酸化性を有し、SiC膜の密着性が良好で、SiC膜が
強固に密着したSiC膜被覆ガラス状炭素材およびその
製造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention relates to a process for studying the crystal structure of SiC in a SiC film.
This is based on the finding of the relationship between the properties of the SiC crystal plane and the thermal shock resistance.
The SiC film-coated glassy carbon material coated with the SiC film by the method has excellent thermal shock resistance and oxidation resistance that can withstand thermal shock due to rapid heating and rapid cooling even when the size is increased. An object of the present invention is to provide a SiC film-coated glassy carbon material having good adhesion and a SiC film firmly adhered thereto, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めの本発明の請求項1によるSiC膜被着ガラス状炭素
材は、CVD法によりSiC膜を被覆したSiC膜被覆
ガラス状炭素材において、X線回折によるSiC膜のS
iC(111)結晶面の回折ピーク強度が10kc.
p.s以下であり、該SiC(111)結晶面の回折ピ
ーク強度が全結晶面(hkl)の回折ピーク強度の80
%以上であることを特徴とする。但し、上記の回折ピー
ク強度とは、CuKαをX線源、管球電圧を40kV、
管球電流を20mAとし、Niフィルターを用い、発散
スリットに1°、散乱スリットに1°、受光スリットに
0.3mmを使用した場合のピーク強度をいう。
According to a first aspect of the present invention, there is provided a glass-like carbon material coated with a SiC film by a CVD method. Of SiC film by X-ray diffraction
The diffraction peak intensity of the iC (111) crystal plane is 10 kc.
p. s or less, and the diffraction peak intensity of the SiC (111) crystal plane is 80% of the diffraction peak intensity of the entire crystal plane (hkl).
% Or more. However, the above-mentioned diffraction peak intensity means that CuKα is an X-ray source, a tube voltage is 40 kV,
This refers to the peak intensity when the tube current is 20 mA, the Ni filter is used, the divergence slit is 1 °, the scattering slit is 1 °, and the light receiving slit is 0.3 mm.

【0008】請求項2によるSiC膜被覆ガラス状炭素
材は、請求項1において、前記SiC膜の膜厚を5〜3
0μmとすることを特徴とする。
[0010] In the glass-like carbon material coated with the SiC film according to claim 2, the thickness of the SiC film is 5 to 3 in claim 1.
It is characterized by being 0 μm.

【0009】また、請求項3によるSiC膜被覆ガラス
状炭素材の製造方法は、請求項1または2記載のSiC
膜被覆ガラス状炭素材を製造する方法であって、CVD
法により原料ガスを気相熱分解してガラス状炭素材にS
iC膜を被覆するに際し、気相熱分解温度を1050〜
1150℃とすることを特徴とする。
Further, the method for producing a glassy carbon material coated with a SiC film according to claim 3 is characterized in that the method comprises the steps of:
A method for producing a film-coated glassy carbon material, comprising:
Gas into the glassy carbon material by pyrolysis
In coating the iC film, the gas phase pyrolysis temperature was set at 1050 to 1050.
The temperature is 1150 ° C.

【0010】[0010]

【発明の実施の形態】本発明において適用するガラス状
炭素材については特に限定はなく、従来と同様、原料と
して、フェノール系、フラン系、ポリイミド系などの熱
硬化性樹脂を成形硬化したのち、非酸化性雰囲気中で例
えば800℃以上の温度に加熱して焼成炭化処理して得
られるものである。半導体製造の熱処理用部材として使
用するものは、ハロゲンガス雰囲気中で2000℃程度
まで加熱して高純度化し、更に表面粗さRa:0.4〜
15μmの表面性状にするのが好ましい。Ra:0.4
μm未満の場合には剥離し易くなり、Ra:15μmを
越えると基材の強度が低下する。
BEST MODE FOR CARRYING OUT THE INVENTION The glassy carbon material applied in the present invention is not particularly limited, and a phenol-based, furan-based, polyimide-based, etc. thermosetting resin is molded and cured as a raw material as in the prior art. It is obtained by heating to a temperature of, for example, 800 ° C. or more in a non-oxidizing atmosphere, followed by calcining and carbonizing. Materials used as heat treatment members for semiconductor manufacturing are heated to about 2000 ° C. in a halogen gas atmosphere to be highly purified, and are further provided with a surface roughness Ra: 0.4 to
It is preferable to have a surface texture of 15 μm. Ra: 0.4
If it is less than μm, it will be easy to peel off, and if it exceeds Ra: 15 μm, the strength of the substrate will decrease.

【0011】ガラス状炭素材に対するCVD法によるS
iC膜の被着は、ガラス状炭素を基材としてCVD反応
装置内にセットし、反応系内の空気を排気した後、所定
の温度に加熱し、原料ガスを気相熱分解して基材面にS
iCを析出させ、SiC膜を被着させることにより行わ
れる。原料ガスとしては1分子中にSi原子とC原子を
含む、例えばトリクロロメチルシラン(CH3SiCl3)、ジク
ロロメチルシラン(CH3SiHCl2) 、トリクロロフェニルシ
ラン(C6H5SiCl3) などのハロゲン化有機珪素化合物が用
いられ、これらの原料ガスをキャリアガスの水素ガスと
ともに反応チャンバー内に送入して気相還元して熱分解
させ、あるいは、四塩化炭素(SiCl4) などの珪素化合物
とメタン(CH4) のような炭素化合物をキャリアーガスの
水素やアルゴンガスとともに反応チャンバー内に送入し
て気相反応させることによりSiCを析出させ、ガラス
状炭素材の基材面に被着させる。
S by CVD for glassy carbon material
The deposition of the iC film is performed by setting a glassy carbon substrate as a substrate in a CVD reactor, exhausting air in the reaction system, heating the gas to a predetermined temperature, and thermally decomposing a raw material gas in a gas phase. S on the surface
This is performed by depositing iC and depositing a SiC film. The source gas contains Si and C atoms in one molecule, such as trichloromethylsilane (CH 3 SiCl 3 ), dichloromethylsilane (CH 3 SiHCl 2 ), and trichlorophenylsilane (C 6 H 5 SiCl 3 ). Halogenated organosilicon compounds are used, and these raw material gases are fed into a reaction chamber together with a carrier gas, hydrogen gas, to be reduced in the gas phase and thermally decomposed, or silicon compounds such as carbon tetrachloride (SiCl 4 ). And a carbon compound such as methane (CH 4 ) are fed into the reaction chamber together with the carrier gas hydrogen or argon gas to cause a gas phase reaction to precipitate SiC, which is deposited on the base surface of the glassy carbon material. Let it.

【0012】本発明においては、CVD法によりガラス
状炭素材に被覆されたSiC膜において、X線回折によ
り測定されたSiC膜のSiC(111)結晶面の回折
ピーク強度が10kc.p.s以下であり、該SiC
(111)結晶面の回折ピーク強度が全結晶面(hk
l)の回折ピーク強度の80%以上であることを特徴と
する。但し、回折ピーク強度とは、CuKαをX線源、
管球電圧を40kV、管球電流を20mAとし、Niフ
ィルターを用い、発散スリットに1°、散乱スリットに
1°、受光スリットに0.3mmを使用した場合のピー
ク強度をいう。
In the present invention, in a SiC film coated on a glassy carbon material by a CVD method, the diffraction peak intensity of the SiC (111) crystal plane of the SiC film measured by X-ray diffraction is 10 kc. p. s or less, and the SiC
The diffraction peak intensity of the (111) crystal plane is
1) It is characterized by being 80% or more of the diffraction peak intensity. However, the diffraction peak intensity means that CuKα is an X-ray source,
The peak intensity when the tube voltage is 40 kV, the tube current is 20 mA, and a Ni filter is used, and the divergence slit is 1 °, the scattering slit is 1 °, and the light receiving slit is 0.3 mm.

【0013】SiC膜のSiC(111)結晶面の回折
ピーク強度が10kc.p.sを越えた場合、または、
SiC(111)結晶面の回折ピーク強度が全結晶面
(hkl)の回折ピーク強度の80%未満の場合には、
SiC膜被覆ガラス状炭素材の耐熱衝撃性が不十分とな
り、熱サイクルでクラックが生じ易く、また、SiC膜
の密着性も低下する。
The diffraction peak intensity of the SiC (111) crystal plane of the SiC film is 10 kc. p. s is exceeded, or
When the diffraction peak intensity of the SiC (111) crystal plane is less than 80% of the diffraction peak intensity of the entire crystal plane (hkl),
The thermal shock resistance of the glass-like carbon material coated with the SiC film becomes insufficient, cracks are likely to occur in a thermal cycle, and the adhesion of the SiC film also decreases.

【0014】ガラス状炭素材に成膜されるSiC膜の膜
厚は5〜30μmが好ましく、5μm未満では、SiC
膜で被覆されていない個所や膜厚のきわめて薄い個所が
存在する可能性が高く、十分な耐酸化性が得られない場
合があり、30μmを越えると、成膜後にクラックや剥
離が生じ易くなる。
The thickness of the SiC film formed on the glassy carbon material is preferably 5 to 30 μm, and if it is less than 5 μm, the SiC film
There is a high possibility that there is a portion not covered with the film or a portion with a very thin film thickness, and sufficient oxidation resistance may not be obtained. If the thickness exceeds 30 μm, cracks and peeling are likely to occur after film formation. .

【0015】本発明によるSiC膜被覆ガラス状炭素材
の製造は、ガラス状炭素材に対するSiC膜の成膜工
程、すなわち、原料ガスを送入して気相熱分解反応を生
起させる工程において、原料ガス流量、キャリアガス流
量、あるいはこれらのガス流量の比率を調整するととも
に、反応温度を1050〜1150℃に設定することに
より行うのが好ましい。このうち、反応温度は、本発明
のSiC膜被覆ガラス状炭素材の製造におけるきわめて
重要な要件であり、通常のガス流量を適用した場合で
も、上記温度域での反応により本発明のSiC膜被覆ガ
ラス状炭素材の製造が可能な場合が少なくない。
In the production of the SiC film-coated glassy carbon material according to the present invention, in the step of forming the SiC film on the glassy carbon material, ie, in the step of feeding the raw material gas to cause the gas phase pyrolysis reaction, The reaction is preferably performed by adjusting the gas flow rate, the carrier gas flow rate, or the ratio of these gas flow rates, and setting the reaction temperature to 1050 to 1150 ° C. Of these, the reaction temperature is a very important requirement in the production of the glassy carbonaceous material coated with the SiC film of the present invention. Even when a normal gas flow rate is applied, the reaction in the above temperature range causes the reaction of the SiC film coated with the present invention. In many cases, production of glassy carbon materials is possible.

【0016】反応温度が1050℃未満では、SiC膜
中に遊離Siが生成し易く、耐薬品性や耐酸化性が低下
し、反応温度が1150℃を越えると、形成されたSi
C膜のSiC(111)結晶面の回折ピーク強度が10
kc.p.sを越え易く、反応温度がさらに高くなる
と、SiC(111)結晶面の回折ピーク強度が全結晶
面(hkl)の回折ピーク強度の80%未満となり易
く、いずれもSiC膜にクラックや剥離が生じるおそれ
がある。
When the reaction temperature is lower than 1050 ° C., free Si is easily generated in the SiC film, and the chemical resistance and oxidation resistance are lowered. When the reaction temperature exceeds 1150 ° C., the formed Si
The diffraction peak intensity of the SiC (111) crystal plane of the C film is 10
kc. p. When the reaction temperature is further increased, the diffraction peak intensity of the SiC (111) crystal plane is apt to be less than 80% of the diffraction peak intensity of the entire crystal plane (hkl), and cracks and peeling occur in the SiC film in any case. There is a risk.

【0017】なお、原料ガス流量、キャリアガス流量、
あるいはこれらのガス流量の比率を調整するのみでも、
成膜速度の低下や膜厚の均一性の低下の問題はあるが、
本発明によるSiC膜被覆ガラス状炭素材の製造が可能
である。
The raw material gas flow rate, the carrier gas flow rate,
Or just adjusting the ratio of these gas flow rates,
Although there are problems such as a decrease in the film formation rate and a decrease in the uniformity of the film thickness,
The production of a glassy carbon material coated with a SiC film according to the present invention is possible.

【0018】[0018]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。これらの実施例は本発明の一実施態様を示すも
のであり、本発明はこれらに限定されるものではない。
Hereinafter, examples of the present invention will be described in comparison with comparative examples. These examples show one embodiment of the present invention, and the present invention is not limited to these.

【0019】実施例1 減圧蒸留により生成したフェノールおよびホルマリンか
ら調製したフェノール樹脂初期縮合物をポリプロピレン
製のバット(成形型)に流し込み、10Torrの減圧下で
3時間脱気処理した後、80℃の電気オーブンに入れ成
形した。
Example 1 A phenolic resin precondensate prepared from phenol and formalin produced by distillation under reduced pressure was poured into a polypropylene vat (mold), degassed under a reduced pressure of 10 Torr for 3 hours, and then heated at 80 ° C. It was placed in an electric oven and molded.

【0020】ついで、成形型から取り出し、10℃/時
の昇温速度で180℃まで昇温し、24時間保持して硬
化した。この硬化樹脂成形体を高純度黒鉛板で挟み付け
た状態で電気炉に入れ、周囲を総灰分100 ppm未満の
黒鉛粉で被包して2℃/時の昇温速度で1000℃に加
熱して焼成炭化処理し、さらに、雰囲気置換可能な真空
炉に移し、炉内に塩素/ヘリウム(モル比:5/95)の精
製ガスを5リットル/分の割合で供給しながら2000
℃まで昇温して高純度化処理し、更に好ましい表面粗さ
(Ra)を得るための表面処理を施した。
Then, the mold was taken out of the mold, heated to 180 ° C. at a rate of 10 ° C./hour, and held for 24 hours to cure. The cured resin molded body is placed in an electric furnace while being sandwiched between high-purity graphite plates, and its surroundings are covered with graphite powder having a total ash content of less than 100 ppm, and heated to 1000 ° C. at a rate of 2 ° C./hour. And then transferred to a vacuum furnace in which the atmosphere can be replaced, and supplied with a purified gas of chlorine / helium (molar ratio: 5/95) into the furnace at a rate of 5 L / min.
The temperature was raised to ° C. to perform a high-purity treatment, and a surface treatment for obtaining a more preferable surface roughness (Ra) was performed.

【0021】上記の工程で得られた高純度のガラス状炭
素材を、縦300mm、横300mm、厚さ4mmに加
工して、CVD反応装置の反応管内にセットし、系内の
空気を排気した後、所定温度に加熱し、常圧(0.1M
Pa)下で水素ガスを送入して水素ガス雰囲気に置換し
た。つぎに、原料ガスとしてトリクロロメチルシラン
(CH3SiCl3)、キャリアガスとして水素を用いて、(ト
リクロロメチルシラン/水素ガス)の混合ガス中のトリ
クロロメチルシランの流量の比率(CH3SiCl3/H2のvol
%)および反応温度を変えて、ガラス状炭素材にSiC
膜を被覆した。トリクロロメチルシランの流量の比率、
反応温度(成膜温度)およびガラス状炭素材の表面粗さ
を表1に示す。
The high-purity glassy carbon material obtained in the above process was processed to a length of 300 mm, a width of 300 mm, and a thickness of 4 mm, set in a reaction tube of a CVD reactor, and exhausted air from the system. Then, it is heated to a predetermined temperature,
Under Pa), a hydrogen gas was fed to replace the atmosphere with a hydrogen gas atmosphere. Next, using trichloromethylsilane (CH 3 SiCl 3 ) as a raw material gas and hydrogen as a carrier gas, a flow rate ratio of trichloromethylsilane (CH 3 SiCl 3 / H 2 vol
%) And the reaction temperature to change the glassy carbon material to SiC.
The membrane was coated. Trichloromethylsilane flow rate ratio,
Table 1 shows the reaction temperature (film formation temperature) and the surface roughness of the glassy carbon material.

【0022】製造されたSiC膜被覆ガラス状炭素材
(試験材No.1〜3)について、以下の方法により、
SiC膜の膜厚の測定、SiC膜表面のX線回折、外観
観察(色斑、クラック、剥離の有無)、耐熱衝撃試験お
よび耐酸化試験を行った。結果を表1〜2に示す。 SiC膜の膜厚測定:SiC膜被覆ガラス状炭素材を切
断して、その断面をSEMにより観察することによりS
iC膜の膜厚を測定する。
The produced SiC film-coated glassy carbon material (test materials Nos. 1 to 3) was obtained by the following method.
Measurement of the thickness of the SiC film, X-ray diffraction of the surface of the SiC film, observation of the appearance (presence or absence of color spots, cracks, and peeling), a thermal shock test, and an oxidation resistance test were performed. The results are shown in Tables 1 and 2. Measurement of the thickness of the SiC film: By cutting the glassy carbon material coated with the SiC film and observing the cross section by SEM,
The thickness of the iC film is measured.

【0023】SiC膜表面のX線回折:SiC膜表面の
X線回折により、SiC(111)結晶面および全結晶
面(hkl)の回折ピーク強度を求め、全結晶面(hk
l)の回折ピーク強度に対するSiC(111)結晶面
の回折ピーク強度比、(111)/Σ(hkl)、を算
出した。なお、X線回折は、前記のとおり、CuKαを
X線源、管球電圧を40kV、管球電流を20mAと
し、Niフィルターを用い、発散スリットに1°、散乱
スリットに1°、受光スリットに0.3mmを使用して
行った。
X-ray diffraction of the surface of the SiC film: X-ray diffraction of the surface of the SiC film determines the diffraction peak intensities of the SiC (111) crystal plane and the entire crystal plane (hkl).
The diffraction peak intensity ratio of the SiC (111) crystal plane to the diffraction peak intensity of 1), (111) / Σ (hkl), was calculated. As described above, the X-ray diffraction was performed using CuKα as an X-ray source, a tube voltage of 40 kV, a tube current of 20 mA, and a Ni filter using a Ni filter at 1 ° for a divergence slit, 1 ° for a scattering slit, and a light receiving slit. Performed using 0.3 mm.

【0024】耐熱衝撃試験:1200℃に加熱した電気
炉内に、SiC膜被覆ガラス状炭素材を一気に投入し、
1200℃に10分間保持した後、炉から一気に取り出
して200℃まで冷却する熱サイクル試験を繰り返し行
い、SiC膜にクラックや剥離が生じた時の試験回数を
求めた。但し、本実施例においては、熱サイクル試験を
50回繰り返し行った後の状況を示す。
Thermal shock test: A glassy carbon material coated with a SiC film was put into an electric furnace heated to 1200 ° C. at a stretch,
After holding at 1200 ° C. for 10 minutes, a thermal cycle test in which the sample was taken out of the furnace at a stretch and cooled to 200 ° C. was repeated, and the number of tests when cracks and peeling occurred in the SiC film was obtained. However, in this example, the situation after performing the heat cycle test 50 times is shown.

【0025】耐酸化試験:大気雰囲気において、100
0℃の温度に24時間保持した後の重量を測定して、重
量減少率を算出した。
Oxidation resistance test: 100 in air atmosphere
The weight after holding at a temperature of 0 ° C. for 24 hours was measured to calculate a weight loss rate.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】表1〜2にみられるように、本発明に従う
試験材No.1〜5は、いずれも、50回の熱サイクル
の繰り返しによってもクラックの発生が無く、酸化消耗
も重量減少率で0.1%未満であり、優れた耐熱衝撃性
および耐酸化性をそなえている。
As shown in Tables 1 and 2, the test material No. Each of Nos. 1 to 5 has no cracks even after repetition of 50 heat cycles, has less than 0.1% in weight loss by oxidation, and has excellent thermal shock resistance and oxidation resistance. I have.

【0029】比較例1 実施例1と同様にして高純度のガラス状炭素材を作製
し、得られた高純度のガラス状炭素材について、実施例
1と同じ方法により、(トリクロロメチルシラン/水素
ガス)の混合ガス中のトリクロロメチルシランの濃度
(CH3SiCl3/H2のvol %)および反応温度を変えて、ガ
ラス状炭素材のSiC膜を被覆した。トリクロロメチル
シランの流量の比率、反応温度(成膜温度)およびガラ
ス状炭素材の表面粗さを表1に示す。
Comparative Example 1 A high-purity glassy carbon material was prepared in the same manner as in Example 1, and the obtained high-purity glassy carbon material was prepared by the same method as in Example 1 (trichloromethylsilane / hydrogen). The concentration of trichloromethylsilane (vol.% Of CH 3 SiCl 3 / H 2 ) and the reaction temperature in the mixed gas of (Gas) were changed to cover the SiC film of the glassy carbon material. Table 1 shows the ratio of the flow rate of trichloromethylsilane, the reaction temperature (film formation temperature), and the surface roughness of the glassy carbon material.

【0030】製造されたSiC膜被覆ガラス状炭素材
(試験材No.6〜12)について、実施例1と同一の
方法により、SiC膜の膜厚の測定、SiC膜表面のX
線回折、外観観察(色斑、クラック、剥離の有無)、耐
熱衝撃性試験および耐酸化性試験を行った。結果を表3
〜4に示す。
For the manufactured SiC film-coated glassy carbon material (test materials Nos. 6 to 12), the thickness of the SiC film was measured by the same method as in Example 1, and the X on the surface of the SiC film was measured.
Line diffraction, appearance observation (color spots, cracks, presence or absence of peeling), thermal shock resistance test, and oxidation resistance test were performed. Table 3 shows the results
Are shown in FIGS.

【0031】[0031]

【表3】 《表注》SiC(111)面回折ピーク強度 ※:Siのピーク有り[Table 3] << Table note >> SiC (111) plane diffraction peak intensity *: Si peak

【0032】[0032]

【表4】 [Table 4]

【0033】表3〜4に示すように、試験材No.6は
SiC膜が薄いため色斑が生じ、また耐酸化性が劣って
いる。試験材No.7はSiC膜が厚いため、SiC成
膜後のクラックが認められ、また、耐熱衝撃試験でクラ
ックが発生し、耐酸化性も劣っている。試験材No.8
は成膜温度は低いため、X線回折でSiのピークが求め
られ、耐酸化性に劣る。試験材No.9、No.10は
成膜温度は高いため、成膜後にクラック、膜剥離が観察
され、耐酸化性に劣る。なお、SiC膜を成膜しないガ
ラス状炭素材について、耐酸化試験を行った結果、酸化
消耗による重量減少率は6.15%と極めて大きかっ
た。試験材No.11は基材であるガラス状炭素材の表
面粗さが小さいため、SiC成膜後にクラックが認めら
れ、また耐熱衝撃試験で膜剥離が観察され、耐熱衝撃
性、耐酸化性に劣るものとなった。試験材No.12は
基材であるガラス状炭素材の表面粗さが大きいため、耐
熱衝撃試験でクラックが発生し、耐熱衝撃性、耐酸化性
に劣る。
As shown in Tables 3 and 4, the test material No. Sample No. 6 has a thin SiC film, causing color spots, and has poor oxidation resistance. Test material No. 7 has a thick SiC film, so cracks are observed after the formation of the SiC film, cracks are generated in a thermal shock test, and the oxidation resistance is poor. Test material No. 8
Since the film formation temperature is low, a peak of Si is required by X-ray diffraction, and the oxidation resistance is poor. Test material No. 9, No. Since No. 10 has a high film forming temperature, cracks and film peeling are observed after film formation, and the film has poor oxidation resistance. In addition, as a result of performing an oxidation resistance test on a glassy carbon material on which no SiC film was formed, the weight loss rate due to oxidation consumption was extremely large at 6.15%. Test material No. No. 11 has a small surface roughness of the glassy carbon material as the base material, so cracks are observed after the formation of the SiC film, and film peeling is observed in the thermal shock test, resulting in poor thermal shock resistance and oxidation resistance. Was. Test material No. In No. 12, since the surface roughness of the glassy carbon material as the base material is large, cracks occur in the thermal shock test, and the thermal shock resistance and the oxidation resistance are poor.

【0034】[0034]

【発明の効果】以上のとおり、本発明によれば、耐熱衝
撃性および耐酸化性に優れたSiC膜被覆ガラス状炭素
材およびその製造方法が提供される。当該SiC膜被覆
ガラス状炭素材は、ガイドリング、サセプタ、ライナー
チューブ、プロセスチューブ、ウエハーボート、単結晶
引き上げ用装置など、半導体製造に用いられる各種熱処
理用部材や、耐熱衝撃性、耐酸化性が要求される各種耐
熱部材として好適に使用できる。
As described above, according to the present invention, a glassy carbon material coated with a SiC film having excellent thermal shock resistance and oxidation resistance and a method for producing the same are provided. The SiC film-coated glassy carbon material has various heat treatment members used in semiconductor manufacturing, such as a guide ring, a susceptor, a liner tube, a process tube, a wafer boat, a device for pulling a single crystal, and a thermal shock resistance and an oxidation resistance. It can be suitably used as required various heat resistant members.

フロントページの続き (72)発明者 岡本 賢三 東京都港区北青山一丁目2番3号 東海カ ーボン株式会社内 Fターム(参考) 4G032 AA07 AA33 BA00 BA01 GA19 4K030 AA03 AA06 AA09 AA17 BA37 CA01 DA03 FA10 JA01 JA10 JA20 LA11 5F004 BB29 5F045 AB06 EB03 EC05 EM09 Continued on front page (72) Inventor Kenzo Okamoto 1-3-2 Kitaaoyama, Minato-ku, Tokyo Tokai Carbon Co., Ltd. F-term (reference) 4G032 AA07 AA33 BA00 BA01 GA19 4K030 AA03 AA06 AA09 AA17 BA37 CA01 DA03 FA10 JA01 JA10 JA20 LA11 5F004 BB29 5F045 AB06 EB03 EC05 EM09

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 CVD法によりSiC膜を被覆したSi
C膜被覆ガラス状炭素材において、X線回折によるSi
C膜のSiC(111)結晶面の回折ピーク強度が10
kc.p.s以下であり、該SiC(111)結晶面の
回折ピーク強度が全結晶面(hkl)の回折ピーク強度
の80%以上であることを特徴とするSiC膜被覆ガラ
ス状炭素材。但し、回折ピーク強度とは、CuKαをX
線源、管球電圧を40kV、管球電流を20mAとし、
Niフィルターを用い、発散スリットに1°、散乱スリ
ットに1°、受光スリットに0.3mmを使用した場合
のピーク強度をいう。
1. Si coated with a SiC film by a CVD method
In a C-film-coated glassy carbon material, X-ray diffraction
The diffraction peak intensity of the SiC (111) crystal plane of the C film is 10
kc. p. s or less, and the diffraction peak intensity of the SiC (111) crystal plane is 80% or more of the diffraction peak intensity of the entire crystal plane (hkl). However, the diffraction peak intensity means that CuKα is X
The source, the tube voltage is 40 kV, the tube current is 20 mA,
This refers to the peak intensity when using a Ni filter, 1 ° for the divergence slit, 1 ° for the scattering slit, and 0.3 mm for the light receiving slit.
【請求項2】 前記SiC膜の膜厚を5〜30μmとす
ることを特徴とする請求項1記載のSiC膜被覆ガラス
状炭素材。
2. The glassy carbon material coated with a SiC film according to claim 1, wherein the thickness of the SiC film is 5 to 30 μm.
【請求項3】 CVD法により原料ガスを気相熱分解し
てガラス状炭素材にSiC膜を被覆する方法において、
気相熱分解温度を1050〜1150℃とすることを特
徴とする請求項1または2記載のSiC膜被覆ガラス状
炭素材の製造方法。
3. A method of coating a glassy carbon material with a SiC film by vapor-phase pyrolysis of a raw material gas by a CVD method,
The method for producing a glassy carbon material coated with a SiC film according to claim 1 or 2, wherein the gas phase pyrolysis temperature is set to be from 1050 to 1150 ° C.
JP2000285026A 2000-09-20 2000-09-20 SiC film-covered glassy carbon material and method for producing the same Expired - Fee Related JP4736076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000285026A JP4736076B2 (en) 2000-09-20 2000-09-20 SiC film-covered glassy carbon material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000285026A JP4736076B2 (en) 2000-09-20 2000-09-20 SiC film-covered glassy carbon material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002097092A true JP2002097092A (en) 2002-04-02
JP4736076B2 JP4736076B2 (en) 2011-07-27

Family

ID=18769159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000285026A Expired - Fee Related JP4736076B2 (en) 2000-09-20 2000-09-20 SiC film-covered glassy carbon material and method for producing the same

Country Status (1)

Country Link
JP (1) JP4736076B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006135290A (en) * 2004-10-07 2006-05-25 Ibiden Co Ltd Semiconductor manufacturing device and member therefor
US7216534B2 (en) 2003-05-27 2007-05-15 Dainippon Screen Mfg. Co., Ltd. Substrate processing apparatus and thermal type flowmeter suitable to the same
JP2007150124A (en) * 2005-11-30 2007-06-14 Koyo Thermo System Kk Thermal processing method, tube for thermal processor, thermal processor using the same
WO2011046191A1 (en) * 2009-10-14 2011-04-21 旭硝子株式会社 Jig for semiconductor production and method for producing same
JP2013046020A (en) * 2011-08-26 2013-03-04 Taiyo Nippon Sanso Corp Silicon carbide deposition device and silicon carbide removal method
CN103910456A (en) * 2013-03-28 2014-07-09 久沛(上海)环保科技有限公司 Method for utilizing semiconductor membrane to process wastewater
WO2021060515A1 (en) * 2019-09-27 2021-04-01 東海カーボン株式会社 Polycrystalline sic molded body and method for manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214881A (en) * 1988-06-30 1990-01-18 Kobe Steel Ltd Surface deposited carbonaceous material
JPH0826714A (en) * 1994-07-18 1996-01-30 Tokai Carbon Co Ltd Production of silicon carbide formed body
JPH09235163A (en) * 1995-12-26 1997-09-09 Tokai Carbon Co Ltd Heat-treatment jig and production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0214881A (en) * 1988-06-30 1990-01-18 Kobe Steel Ltd Surface deposited carbonaceous material
JPH0826714A (en) * 1994-07-18 1996-01-30 Tokai Carbon Co Ltd Production of silicon carbide formed body
JPH09235163A (en) * 1995-12-26 1997-09-09 Tokai Carbon Co Ltd Heat-treatment jig and production thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7216534B2 (en) 2003-05-27 2007-05-15 Dainippon Screen Mfg. Co., Ltd. Substrate processing apparatus and thermal type flowmeter suitable to the same
JP2006135290A (en) * 2004-10-07 2006-05-25 Ibiden Co Ltd Semiconductor manufacturing device and member therefor
JP2007150124A (en) * 2005-11-30 2007-06-14 Koyo Thermo System Kk Thermal processing method, tube for thermal processor, thermal processor using the same
WO2011046191A1 (en) * 2009-10-14 2011-04-21 旭硝子株式会社 Jig for semiconductor production and method for producing same
JPWO2011046191A1 (en) * 2009-10-14 2013-03-07 旭硝子株式会社 Semiconductor manufacturing jig and manufacturing method thereof
JP5652402B2 (en) * 2009-10-14 2015-01-14 旭硝子株式会社 Semiconductor manufacturing jig and manufacturing method thereof
US9194042B2 (en) 2009-10-14 2015-11-24 Asahi Glass Company, Limited Jig for semiconductor production and method for producing same
JP2013046020A (en) * 2011-08-26 2013-03-04 Taiyo Nippon Sanso Corp Silicon carbide deposition device and silicon carbide removal method
CN103910456A (en) * 2013-03-28 2014-07-09 久沛(上海)环保科技有限公司 Method for utilizing semiconductor membrane to process wastewater
CN103910456B (en) * 2013-03-28 2015-04-15 苏州久沛环保科技有限公司 Method for utilizing semiconductor membrane to process wastewater
WO2021060515A1 (en) * 2019-09-27 2021-04-01 東海カーボン株式会社 Polycrystalline sic molded body and method for manufacturing same

Also Published As

Publication number Publication date
JP4736076B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
TW201435159A (en) Carbide silicon-carbide tantalum compound and carrier
KR100427118B1 (en) Heat treatment jig and its manufacturing method
EP0723600B1 (en) Process for the preparation of silicon carbide films using single organosilicon compounds
JP4071919B2 (en) SiC-coated graphite member and method for producing the same
JP4736076B2 (en) SiC film-covered glassy carbon material and method for producing the same
EP0529593A1 (en) A glass carbon coated graphite chuck for use in producing polycrystalline silicon
KR20220008393A (en) Chemical vapor deposition silicon carbide bulk with enhanced etching properties
KR20190042537A (en) Chemical vapor deposition silicon carbide bulk with improved etching characteristics
JP2000302577A (en) Graphite member coated with silicon carbide
JP2000302576A (en) Graphite material coated with silicon carbide
WO2021117498A1 (en) Tantalum carbonate-coated graphite member and method for producing same
JP2684106B2 (en) Graphite base material for ceramic coating and internal parts for CVD furnace
JP2004075493A (en) CVD-SiC COVERED GRAPHITE MATERIAL AND ITS PRODUCTION METHOD
JPH1135391A (en) Silicon carbide-coated susceptor
JP3739507B2 (en) Manufacturing method of heat treatment jig
JPH0692761A (en) Sic-cvd coated and si impregnated sic product and its manufacture
JPH10209061A (en) Constitution member for semiconductor diffusion furnace
JPH0789776A (en) Production of boron nitride coated carbon material
JP3857446B2 (en) SiC molded body
JP2001048682A (en) Production of glassy carbon material coated with silicon carbide film
JP4556090B2 (en) Member for silicon carbide semiconductor manufacturing apparatus and method for manufacturing the same
JP3925884B2 (en) Method for coating SiC film
JP3220730B2 (en) Graphite wafer holding jig for atmospheric pressure CVD equipment
JP3000789B2 (en) High-purity silicon carbide production equipment
JP2003268548A (en) SiC FILM-FORMED GLASSY CARBON STOCK

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees