JP2684106B2 - Graphite base material for ceramic coating and internal parts for CVD furnace - Google Patents
Graphite base material for ceramic coating and internal parts for CVD furnaceInfo
- Publication number
- JP2684106B2 JP2684106B2 JP2041619A JP4161990A JP2684106B2 JP 2684106 B2 JP2684106 B2 JP 2684106B2 JP 2041619 A JP2041619 A JP 2041619A JP 4161990 A JP4161990 A JP 4161990A JP 2684106 B2 JP2684106 B2 JP 2684106B2
- Authority
- JP
- Japan
- Prior art keywords
- base material
- graphite
- gas
- graphite base
- cvd
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Carbon And Carbon Compounds (AREA)
- Chemical Vapour Deposition (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は化学気相蒸着(CVD)法により窒化ホウ素(B
N)、炭化ケイ素(SiC)、炭素(C)等のセラミックス
を析出厚いは成長させる際に用いられる黒鉛基材及びセ
ラミックスを被覆した黒鉛基材をCVD炉用内部部品とし
て使用することに関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention uses boron nitride (B) by a chemical vapor deposition (CVD) method.
N), silicon carbide (SiC), carbon (C), etc. The present invention relates to the use of a graphite base material used for depositing and growing ceramics and a graphite base material coated with ceramics as internal parts for a CVD furnace.
[従来の技術] CVD法で成長・析出したBN、SiC、C等のセラミックス
は高純度で緻密なものが得やすい。そこで炭素又は炭化
ケイ素を被覆した黒鉛材は、耐熱性、耐食性、寸法安定
性に優れているため、ダイオード、シリコン半導体、化
合物半導体、炭化ケイ素半導体等の製造用の発熱体、均
熱体、反応管、ボート、サセプター、ヒートシールド、
ルツボ等の熱処理治具、半導体材料載置物、炉内構造物
等に使われている。またプラズマCVD等のCVD用基板載置
治具に音響用振動体としても使用されあるいは期待され
ている。[Prior Art] Ceramics such as BN, SiC, and C grown and deposited by the CVD method are easy to obtain with high purity and density. Therefore, the graphite material coated with carbon or silicon carbide is excellent in heat resistance, corrosion resistance, and dimensional stability, so that a heating element, a soaking body, a reaction material for the production of diodes, silicon semiconductors, compound semiconductors, silicon carbide semiconductors, etc. Tube, boat, susceptor, heat shield,
It is used for heat treatment jigs such as crucibles, semiconductor material mounting objects, furnace internal structures, etc. It is also used or expected as an acoustic vibrator for CVD substrate mounting jigs such as plasma CVD.
またGa−As単結晶引上用の熱分解BN(PBN)るつぼ、
セラミックス音響振動体を製造する際にもそれらのCVD
成長基板として黒鉛は使用されている。Pyrolysis BN (PBN) crucible for pulling Ga-As single crystal,
Even when manufacturing ceramic acoustic vibrators, their CVD
Graphite is used as the growth substrate.
成長基材あるいは基材だけに限らずそれらのCVD成長
炉内に治具、発熱体、均熱体、ガスノズル等黒鉛材が使
われている。Not only the growth base material or the base material, but also the graphite materials such as jigs, heating elements, soaking bodies, and gas nozzles are used in those CVD growth furnaces.
しかし乍らCVD法によって黒鉛基材上に成長したSIC、
BN、C等は緻密に欠ける場合が多くあった。However, SIC grown on a graphite substrate by the CVD method,
BN, C, etc. were often lacking in detail.
[発明が解決しようとする問題点] 本発明が解決しようとする課題は従来技術の上記難点
を解決することであり、これを換言すれば緻密性の優れ
たSiC、BN、C等のセラミックス被膜をCVD法により形成
するための黒鉛基材を新たに開発することである。[Problems to be Solved by the Invention] The problem to be solved by the present invention is to solve the above-mentioned drawbacks of the prior art. In other words, a ceramic film of SiC, BN, C or the like having excellent compactness. Is to develop a new graphite base material for the formation of CVD by the CVD method.
[課題を解決するための手段] 本発明者は黒鉛基材上にCVD法によって成長せしめたB
N、SiC、C等のセラミックスの緻密性低下の原因につい
て鋭意研究した結果、CVD成長過程に於いて黒鉛基材か
ら放出されるガス(特にCO、H20、H2等が多い)に大き
く関与すること、即ち緻密性に欠ける多孔質な成長層が
成長するか否かについては黒鉛基材のガス放出性が大き
く関与することが判明した。更に引き続く研究に於いて
黒鉛基材のガス放出のうち特にそのガス放出速度が大き
く影響し、ガス放出速度が大きい場合は緻密なセラミッ
クス層が得られず、ガス放出速度の小さな黒鉛基材を用
いると緻密で均一なセラミックスが得られることを発見
し、本発明を完成した。[Means for Solving the Problem] The present inventor has grown B on a graphite substrate by the CVD method.
As a result of diligent research on the cause of the decrease in the density of ceramics such as N, SiC, and C, the gas (especially CO, H 2 0, H 2, etc.) released from the graphite base material during the CVD growth process is greatly affected. It has been found that the gas releasing property of the graphite base material has a great influence on the involvement, that is, whether or not the porous growth layer lacking the denseness grows. In further research, the outgassing rate of the graphite base material greatly affects the gas release rate. When the gas release rate is high, a dense ceramic layer cannot be obtained, and a graphite base material with a low gas release rate is used. It was discovered that dense and uniform ceramics were obtained, and the present invention was completed.
[発明の構成並びに作用] 本発明に於いては特定条件下で測定したガス放出速度
が2×10-2Pam2/(s・kg)以下であるという特性を有
する黒鉛をCVD法により、その表面に炭素、炭化ケイ
素、BN等のセラミックス被膜を形成させる基材として使
用することを大きな要旨としている。即ち、大きさ10×
10×1mmのものを1k/sの昇温速度で加熱した時の673〜14
73Kに於けるガス放出速度の平均値が上記特定値を有す
る黒鉛を、CVD法によるセラミックス被覆用黒鉛基材と
して使用することであり、このような特定のガス放出速
度を有する黒鉛を上記特定用途に適用するときは、CVD
の成長により得られるセラミックス等が極めて緻密のあ
るものとなるという作用効果を発揮する。[Structure and Action of the Invention] In the present invention, graphite having a characteristic that the gas release rate measured under specific conditions is 2 × 10 −2 Pam 2 / (s · kg) or less is obtained by a CVD method. The main idea is to use it as a substrate for forming a ceramic coating of carbon, silicon carbide, BN, etc. on the surface. That is, size 10 ×
673 to 14 when a 10 x 1 mm object is heated at a heating rate of 1 k / s
A graphite having an average value of the gas release rate at 73 K is used as a graphite base material for a ceramic coating by a CVD method, and a graphite having such a specific gas release rate is used for the specific application. When applied to CVD
The effect that the ceramics and the like obtained by the growth of the will become extremely dense will be exhibited.
先ずガス放出速度を測定する装置の一例を第1図を用
いて説明する。この第1図の装置はその代表例の概略図
であり、(1)は被測定物のタンタル製ホルダー兼ヒー
ター、(2)は被測定物たる黒鉛片、(3)はφ21cm×
l42cmのステンレス鋼製真空容器、(4)はターボ分子
ポンプ、(5)はB−A型電離真空計(全圧計)、
(6)は四重極質量計(分圧計)、(7)はダイヤフラ
ムポンプ、(8)はオリフィス、(9)は熱電対、(1
0)は被測定物マニュピュレーター、(11)は覗窓、(1
2)はピラニ真空計、(13)はペニング真空計、(14)
は被測定物準備室、(15)はターボ分子ポンプ、(16)
はロータリーポンプ、(17)は被測定物導入マニュピュ
レーター、及び(18)はゲートバルブである。First, an example of an apparatus for measuring the gas release rate will be described with reference to FIG. The apparatus shown in FIG. 1 is a schematic view of a typical example thereof. (1) is a holder and heater made of tantalum for the object to be measured, (2) is a graphite piece as the object to be measured, and (3) is φ21 cm ×
l42cm stainless steel vacuum container, (4) turbo molecular pump, (5) BA type ionization vacuum gauge (total pressure gauge),
(6) is a quadrupole mass meter (partial pressure gauge), (7) is a diaphragm pump, (8) is an orifice, (9) is a thermocouple, and (1
(0) is the object manipulator, (11) is the viewing window, (1)
2) is Pirani vacuum gauge, (13) is Penning vacuum gauge, (14)
Is an object preparation room, (15) is a turbo molecular pump, (16)
Is a rotary pump, (17) is a manipulator for introducing an object to be measured, and (18) is a gate valve.
この第1図の装置を用いてガス放出速度を測定するに
際しては被測定物たる黒鉛片(10×10×1mm)(2)を
ホルダー兼ヒーター(1)にセットし、真空容器(3)
内に載置し、ターボ分子ポンプ(4)及びダイヤフラム
ポンプ(7)により数時間を要して10-5〜10-6Pa以下に
減圧、排気する。真空容器(3)には全圧を測定するた
めの電離真空計(5)、分圧を測定するための四重極質
量計(6)が付設されており、全圧、分圧を測定できる
ようになっている。昇温速度1k/sで室温から1773Kまで
加熱しながら15秒毎に全圧、分圧を測定する。When measuring the gas release rate using the apparatus of FIG. 1, the graphite piece (10 × 10 × 1 mm) (2) to be measured is set in the holder / heater (1) and the vacuum container (3) is set.
It is placed inside and decompressed and evacuated to 10 -5 to 10 -6 Pa or less by using a turbo molecular pump (4) and a diaphragm pump (7) over several hours. The vacuum container (3) is equipped with an ionization vacuum gauge (5) for measuring the total pressure and a quadrupole mass meter (6) for measuring the partial pressure so that the total pressure and the partial pressure can be measured. It is like this. While heating from room temperature to 1773K at a heating rate of 1 k / s, total pressure and partial pressure are measured every 15 seconds.
灰分量の異なる等方性黒鉛3種について第1図の装置
を用いて測定した場合を一例として説明する。尚これ等
3種の黒鉛の質量スペクトルの1例を第2〜4図に示
す。An example will be described in which three types of isotropic graphite having different ash contents are measured using the apparatus shown in FIG. An example of mass spectra of these three kinds of graphite is shown in FIGS.
但し第2〜4図の(a)、(b)、(c)は夫々573
K、873K、1473Kに於ける結果を示し、いずれもm/e=2
(H2),18(H20),28(CO)が多いことが判る。However, FIGS. 2 (a), 2 (b) and 2 (c) are 573 respectively.
The results at K, 873K, and 1473K are shown, and all are m / e = 2
It can be seen that there are many (H 2 ), 18 (H 20 ) and 28 (CO).
第5図(A)にこれ等等方性黒鉛3種の全圧の温度依
存性を示す。全圧は温度とともに増加し、573〜673Kで
一定となり、1673K以上で再び増加している。この1673K
以上での増加は、被測定物以外からの放出ガス、例えば
真空容器(3)が測定中に加熱されて温度が上がるため
真空容器(3)の壁に吸着していたガスが放出されるこ
とを示し、被測定物からガスが放出されたためでなは
い。FIG. 5 (A) shows the temperature dependence of the total pressure of these three types of isotropic graphite. The total pressure increases with temperature, stays constant between 573 and 673K, and increases again above 1673K. This 1673K
The above increase means that the gas released from other than the object to be measured, for example, the gas adsorbed on the wall of the vacuum container (3) is released because the vacuum container (3) is heated during measurement and its temperature rises. This is not because the gas was released from the object to be measured.
ここで、本発明に使用した装置では、1673K以上の温
度に到達後で、被測定物以外からの放出ガス、例えば真
空容器の内壁に吸着していたガスが放出されるのを観測
できたが、真空容器の内壁とヒーターとの距離が本発明
に使用した装置の距離より近い装置等の別の装置で測定
を行うと、1673K以下の温度でも、真空容器の内壁から
放出のガスが観測される場合がある。このような場合に
は被測定物をホルダーに入れないで測定(いわゆるブラ
ンク測定)を行い、この測定結果を被測定物以外から放
出されたガスと見なし、被測定物をホルダーに入れて測
定した結果から、このブランク測定の値を引けば良い。Here, in the apparatus used in the present invention, after reaching a temperature of 1673 K or higher, it was possible to observe that the gas released from other than the object to be measured, for example, the gas adsorbed on the inner wall of the vacuum container was released. When the distance between the inner wall of the vacuum container and the heater is measured with another device such as a device closer than the distance of the device used in the present invention, the gas released from the inner wall of the vacuum container is observed even at a temperature of 1673 K or less. There is a case. In such a case, measurement (so-called blank measurement) was performed without putting the DUT in the holder, and the measurement result was regarded as gas emitted from other than the DUT, and the DUT was put in the holder for measurement. The value of this blank measurement should be subtracted from the result.
尚被測定物は夫々いずれも東洋炭素(株)製であり、
これらの灰分を調整したものである。「IG−11」は400p
pmの灰分を持ち、「IG−110」は10ppmの灰分まで高純度
(脱灰)したものである。「IG−110U」は「IG−11」を
灰分2ppmまで高純度化し、更に高温で減圧下し、脱ガス
したものである。Each of the measured objects is manufactured by Toyo Tanso Co., Ltd.
These ash contents are adjusted. "IG-11" is 400p
It has an ash content of pm, and "IG-110" is highly purified (deashed) to an ash content of 10 ppm. "IG-110U" is obtained by purifying "IG-11" to a high ash content of 2 ppm and degassing it under reduced pressure at high temperature.
この結果から不純物(灰分)が多いと全圧も高くなる
ことがわかる。この灰分量はJIS R7223に従って測定し
た値である。From this result, it can be seen that the total pressure increases as the amount of impurities (ash) increases. This ash content is a value measured according to JIS R7223.
もちろん高温で長時間脱ガス処理すると、全圧は低く
なる。1mmの厚みの場合1時間加熱脱ガスすると「IG−1
1」が「IG−110」とほぼ同じ全圧(ガス放出速度)とな
る。第7図に10×10×1mmの「IG−110」を1k/sの昇温速
度で900℃まで加熱した後、35分間900℃に保持した時の
全圧の変化を測定した結果を示す。Of course, when degassing is performed at high temperature for a long time, the total pressure becomes low. If the thickness is 1 mm, heating and degassing for 1 hour will result in "IG-1
"1" has almost the same total pressure (gas release rate) as "IG-110". Figure 7 shows the results of measuring the change in total pressure when 10 × 10 × 1 mm “IG-110” was heated to 900 ° C at a heating rate of 1 k / s and kept at 900 ° C for 35 minutes. .
保持時間とともに全圧が下がり35分後13%の全圧にな
った。このように時間をかければ全圧即ちガス放出速度
は減少する。しかし、黒鉛の厚みが厚くなる程、また寸
法が大きくなる程脱ガス処理に時間を要する。また真空
加熱脱ガス処理しても、真空容器より取り出すと、雰囲
気(例えば空気中)にさらされて雰囲気中のガス(例え
ば、CO、H2O、炭化水素等)を吸着し、脱ガスの効果は
曝露日数と共に徐々に減少し、ついにはほとんどその効
果がなくなる。従って、ガス放出速度の小さい黒鉛を選
ぶことによって後の脱ガス処理が簡単になる。The total pressure decreased with the holding time, and after 35 minutes, the total pressure reached 13%. Thus, over time, the total pressure or outgassing rate decreases. However, the thicker the graphite and the larger its size, the longer the degassing process takes. Even if the vacuum heating degassing process is performed, when taken out from the vacuum container, it is exposed to the atmosphere (for example, in the air) and adsorbs the gas (for example, CO, H 2 O, hydrocarbons, etc.) in the atmosphere and degasses it. The effect gradually diminishes with the number of exposure days until it almost disappears. Therefore, the subsequent degassing process is simplified by selecting graphite with a low gas release rate.
第1図の排気装置((4)+(7))の排気速度はN2
換算で55l/sである。ここでN2換算とは、ガスの種類に
より排気装置の排気速度が異なるため、N2ガスを基準と
して排気速度を代表させる意味である。また第5図
(A)の全圧は、N2換算値である。電離真空計の感度は
ガスの種類によって異なるため便宜上、N2ガスで矯正し
ており、その数値を用いる。The exhaust speed of the exhaust system ((4) + (7)) in Fig. 1 is N 2
It is 55l / s in conversion. Here, the N 2 conversion means that the exhaust speed of the exhaust device differs depending on the type of gas, and therefore the exhaust speed is represented on the basis of N 2 gas. The total pressure in FIG. 5 (A) is an N 2 conversion value. Since the sensitivity of the ionization vacuum gauge depends on the type of gas, it is corrected with N 2 gas for convenience, and the value is used.
放出ガス速度Sは、 [Pi=ガス種iの分圧(QMSより求められる) Vi=排気装置のガス種iに対する排気速度] で与えられる(第1図の場合N2で55l/sである)。すべ
てのガスについて積分するのは工業的ではない。そこで
簡便法として、 So=Po×Vo … [Po:B−A型電離真空計の表示圧(N2換算値) Vo:N2に対する排気速度] で算出する。以下式で算出されたガス放出速度Soを用
いる。また前述のように本発明に使用した装置を用いる
と、1673K以上では、Soに真空容器からの放出ガスも含
まれ、真の黒鉛からのガス放出速度にはならない。そこ
で、温度範囲673〜1473Kとしてこの弊害を除去する。ま
た、1673K以下でも被測定物以外からの放出ガスが無視
できない場合は、前述のようにブランク測定の値を引い
た結果の温度範囲673〜1473Kにおけるガス放出速度とす
る。昇温過程も規定し、脱ガス結果によるガス放出速度
の変化を無視できるように1k/sとした。即ち、本発明で
ガス放出速度So※とは、 黒鉛の試験片寸法を10×10×1mmとし、10-5Pa以下に
予備排気した後1k/sの昇温速度で室温から1773Kまで加
熱した時N2換算値での全圧PoとN2換算の排気速度Voとか
ら式で算出されたもの と定義する。第5図(A)の全圧より算出したガス放出
速度So※を第5図(B)に示す。単位重量当たりの値で
示してある。The discharge gas velocity S is [Pi = partial pressure of gas species i (obtained from QMS) Vi = exhaust speed of exhaust device with respect to gas species i] (in the case of FIG. 1, N 2 is 55 l / s). It is not industrial to integrate for all gases. Therefore, as a simple method, So = Po × Vo ... [Po: B-A type ionization vacuum gauge display pressure (N 2 converted value) Vo: N 2 exhaust speed] The gas release rate So calculated by the following formula is used. Further, as described above, when the device used in the present invention is used, the gas released from the vacuum container is also contained in So at 1673 K or higher, and the true gas release rate from graphite is not obtained. Therefore, this adverse effect is removed by setting the temperature range to 673 to 1473K. If the gas released from other than the measured object is not negligible even at 1673K or less, the gas release rate is set in the temperature range 673 to 1473K as a result of subtracting the blank measurement value as described above. The temperature rise process was also defined and set to 1 k / s so that the change in the gas release rate due to the degassing result could be ignored. That is, the gas release rate So * in the present invention means that the graphite specimen size is 10 × 10 × 1 mm, pre-evacuated to 10 −5 Pa or less, and then heated from room temperature to 1773 K at a heating rate of 1 k / s. It is defined as being calculated by the formula from the total pressure Po at the time N 2 conversion value and the N 2 conversion exhaust speed Vo. The gas release rate So * calculated from the total pressure in FIG. 5 (A) is shown in FIG. 5 (B). It is shown as a value per unit weight.
本発明に於いて使用する黒鉛としては各種のものが使
用され、等方性黒鉛を代表例として例示できるが、その
他異方性黒鉛、難黒鉛性骨材を使用した炭素材、断熱
材、ホウ素又はシリコン等の他の元素が含有された(炭
化物になっている場合が多い)黒鉛でも良い。その形状
等も何等限定されない。Various types of graphite are used in the present invention, and isotropic graphite can be exemplified as a typical example. Other anisotropic graphite, carbon material using non-graphite aggregate, heat insulating material, boron Alternatively, graphite containing another element such as silicon (often a carbide) may be used. The shape and the like are not limited at all.
このように本発明の黒鉛基材としては、この上にCVD
法により、炭素、炭化ケイ素、BN等のセラミックスを被
覆するために使用されるものであり、この本発明黒鉛基
材に、上記セラミックスを被覆したものは従来と同様に
CVD炉用の炉内部品として使用できる。Thus, as the graphite base material of the present invention, CVD
By the method, carbon, silicon carbide, is used for coating ceramics such as BN, the graphite substrate of the present invention, the above-mentioned ceramic coating is the same as conventional
It can be used as a furnace part for a CVD furnace.
CVD炉用内部部品としては、CVD炉に使用されるすべて
を包含する。ここでCVD炉用内部部品としては、例えばC
VD炉内の保持、構造部材、並びに緊締用部材、持具類、
CVD炉用内壁材等を例示できる。Internal parts for a CVD furnace include all those used in a CVD furnace. Here, as the internal parts for the CVD furnace, for example, C
Holding in VD furnace, structural members, tightening members, holding tools,
Examples include inner wall materials for CVD furnaces.
[実施例] 以下実施例で本発明を詳しく説明するが、本発明を制
限するものではない。[Examples] The present invention is described in detail below with reference to Examples, but the invention is not limited thereto.
また、以下に記録されているASo※とは、673〜1473K
間に測定されたSo※の平均値を示している。Also, ASO * recorded below is 673 to 1473K.
Shows the average value of So * measured during the period.
実施例1及び比較例1 第1表に示す東洋炭素(株)製等方性鉛「SIC−6」
及び「IG−610」を用いて、SiCl4とC3H8を原料とし、キ
ャリアガスをH2として、黒鉛上に1673KでCVD法により炭
化ケイ素を熱分解させ、成長させた。その結果第1表に
示すごとく、ガス放出速度(ASo※)の大きく灰分の多
い「SIC−6」上には黄色で一部灰色の不均一な多孔質
な炭化ケイ素膜が成長した。この顕微鏡写真を第6図に
示す。尚、第6図(1)は実施例の、第6図(2)は比
較例のものを示す。一方、ガス放出速度の小さな「IG−
610」(「SIC−6」を高純度したもの)上には均一な灰
色で透明で緻密な炭化ケイ素膜が成長した。Example 1 and Comparative Example 1 Isotropic lead "SIC-6" manufactured by Toyo Tanso Co., Ltd. shown in Table 1
Using "IG-610", SiCl 4 and C 3 H 8 were used as raw materials, H 2 was used as a carrier gas, and silicon carbide was thermally decomposed and grown on the graphite at 1673 K by the CVD method. As a result, as shown in Table 1, a yellow, partially gray, non-uniform porous silicon carbide film was grown on "SIC-6" having a large gas release rate (ASo *) and a large amount of ash. This micrograph is shown in FIG. Incidentally, FIG. 6 (1) shows an example, and FIG. 6 (2) shows a comparative example. On the other hand, the "IG-
A uniform, transparent, dense and dense silicon carbide film was grown on "610" (highly purified "SIC-6").
実施例2及び比較例2 第2表に示す東洋炭素(株)製等方性黒鉛「IG−11」
とその高純度品「IG−110」より、φ100×100mmの円柱
に切り出し、それらを2223K(ホットウォール法)に加
熱し、NH3及びBCl3をH2をキャリアガスとして流してPBN
を成長させた。成長したPBNの組織を第2表に示す。ガ
ス放出速度の小さい「IG−110」上には均一で緻密なPBN
が成長した。一方、ガス放出速度の大きい「IG−11」上
には斑点状のしみが発生した。 Example 2 and Comparative Example 2 Isotropic graphite "IG-11" manufactured by Toyo Tanso Co., Ltd. shown in Table 2
And its high-purity product "IG-110" were cut into cylinders with a diameter of 100 x 100 mm, heated to 2223 K (hot wall method), and NH 3 and BCl 3 were made to flow with H 2 as a carrier gas to produce PBN.
Grew. Table 2 shows the structure of the grown PBN. Uniform and dense PBN on "IG-110" with low outgassing rate
Grew. On the other hand, spotted spots were formed on "IG-11", which has a high gas release rate.
実施例3及び比較例3 第2表に示す同じ材質のものを10×100×100mmに切り
出し1537Kに加熱し、プロパンガスとH2ガスを流して、
その上に熱分解炭素を析出させた。ガス放出速度の小さ
な「IG−110」には均質な銀色の緻密な熱分解炭素膜が
成長した。この結果を第3表に示す。 Example 3 and Comparative Example 3 The same material as shown in Table 2 was cut into 10 × 100 × 100 mm and heated to 1537K, and propane gas and H 2 gas were flowed,
Pyrolytic carbon was deposited on it. A homogeneous silver-colored dense pyrolytic carbon film was grown on "IG-110" with a low gas release rate. Table 3 shows the results.
実施例4 「IG−11」[(寸法5×5×40mm ASo※:3.9×10-2Pa
・m3/(s・kg)]を2300Kで5時間真空下(1Pa以下)
で脱ガスした後2300Kに加熱してプロパンガスとH2ガス
を流して得たもの[ASo※:2.0×10-2Pa・m3/(s・k
g)]上に熱分解炭素を析出させた。成長した炭素膜は
灰銀色で均一で緻密であった。 Example 4 “IG-11” [(Dimension 5 × 5 × 40 mm ASo *: 3.9 × 10 −2 Pa
・ M 3 / (s ・ kg)] under vacuum at 2300K for 5 hours (1 Pa or less)
Obtained by degassing at 2300 K and then flowing propane gas and H 2 gas [ASo *: 2.0 × 10 -2 Pa ・ m 3 / (s ・ k
g)] on top of which pyrolytic carbon was deposited. The grown carbon film was gray-grey, uniform and dense.
実施例5 「SIC−6」[(寸法φ700×20tmm、ASo※:3.8×10-2
Pa・m3/(s・kg)]を1973Kで真空下(50Pa以下)48時
間脱ガスしたもの[ASo※:1.8×10-2Pa・m3/(s・k
g)]を用い、1973Kに加熱してSiOガス、COガス及びAr
ガスの混合ガスの雰囲気全圧100Paの減圧中で表面に炭
化ケイ素層を100μm成長させた。Example 5 “SIC-6” [(dimension φ700 × 20 t mm, ASo *: 3.8 × 10 −2
Pa · m 3 / (s ・ kg)] degassed under vacuum (50 Pa or less) for 48 hours at 1973K [ASo *: 1.8 × 10 -2 Pa ・ m 3 / (s ・ k)
g)] and heated to 1973K to heat SiO gas, CO gas and Ar
A silicon carbide layer was grown to 100 μm on the surface under a reduced pressure of a total pressure of 100 Pa of a mixed gas atmosphere.
成長した炭化ケイ素層は均一で緻密なβ型(3C型)の
炭化ケイ素であった。この例のように炭化ケイ素層形成
前に充分ガス発生を抑止する操作を行っておくと、比較
的良い被覆層が形成されることが判る。しかしCVD炉内
でこのような時間のかかる操作を行うことは不経済であ
るので、本発明のように炉に充填する前に予めASo※を
下げたものを使用することが有利である。The grown silicon carbide layer was uniform and dense β-type (3C-type) silicon carbide. It can be seen that a relatively good coating layer is formed if the operation of sufficiently suppressing the gas generation is performed before forming the silicon carbide layer as in this example. However, since it is uneconomical to perform such a time-consuming operation in the CVD furnace, it is advantageous to use the one in which ASo * has been lowered in advance before filling the furnace as in the present invention.
実施例及び比較例より、673〜1473Kの温度範囲内にお
けるSo※の平均値、即ちASo※が2×10-2Pam3/(s・k
g)以下の黒鉛を用いると均一で緻密なセラミックスのC
VD層が容易に成長する。一方3×10-2Pam3/(s・kg)
以上の場合には1973K以上などの高温度で脱ガス処理を
して、ASo※を2×10-2Pam3/(s・kg)以下にしないと
緻密で均一なセラミックス層はCVD法では得にくいこと
がわかって本発明を完成したものである。従ってASo※
が予め2×10-2Pam3/(s・kg)以下になっている場合
は、そのままで使用でき、ASo※が3×10-2Pam3/(s・
kg)以上の場合も、高温で脱ガス処理をして2×10-2Pa
m3/(s・kg)以下にすれば使用できるものになり、本
発明は、脱ガス処理を行うか否かを問わない。From the examples and comparative examples, the average value of So * in the temperature range of 673 to 1473K, that is, ASo * is 2 × 10 −2 Pam 3 / (s · k
g) C of homogeneous and dense ceramic
The VD layer grows easily. On the other hand, 3 × 10 -2 Pam 3 / (s ・ kg)
In the above case, degassing should be performed at a high temperature such as 1973K or higher, and ASo * should be 2 × 10 -2 Pam 3 / (s · kg) or less to obtain a dense and uniform ceramic layer by the CVD method. The present invention has been completed because it was found to be difficult. Therefore, ASo *
If is less than 2 × 10 -2 Pam 3 / (s ・ kg) in advance, you can use it as it is, and ASo * is 3 × 10 -2 Pam 3 / (s ・ kg).
2 kg / kg or more, degassing is performed at high temperature to reach 2 × 10 -2 Pa
If it is less than or equal to m 3 / (s · kg), it can be used, and the present invention does not matter whether degassing treatment is performed or not.
また従来、CVD炉内では、炉内部の部品に膜が堆積
し、これらの膜が剥離して粉塵やダストが発生して炉内
を汚染するばかりか、生成する膜の純度を低下させてし
まっていた。しかし乍ら、本発明黒鉛基材上にセラミッ
クスを被覆したものを炉内部の部品として使用すると、
元来本発明黒鉛基材上に予め形成された膜は均一で緻密
な膜なので、この上に更に成長する膜は剥離し難く、粉
塵やダストの発生を抑えることができ、ひいては基材上
の膜の純度を保つことができる。Further, conventionally, in the CVD furnace, films are deposited on the parts inside the furnace, and these films are peeled off to generate dust or dust to contaminate the inside of the furnace and reduce the purity of the generated film. Was there. However, when the graphite base material of the present invention coated with ceramics is used as a part inside the furnace,
Since the film previously formed on the graphite base material of the present invention is a uniform and dense film originally, the film further growing on it is difficult to peel off, and the generation of dust or dust can be suppressed, and by extension, on the base material. The purity of the film can be maintained.
第1図は本発明のガス放出速度を測定するための装置の
概略図、第2〜4図は黒鉛材の質量スペクトル、第5図
はガス圧測定結果、第6図は実施例及び比較例1の顕微
鏡写真の模擬図である。第7図は900℃保持による全圧
の時間依存性測定結果である。FIG. 1 is a schematic view of an apparatus for measuring a gas release rate of the present invention, FIGS. 2 to 4 are mass spectra of graphite materials, FIG. 5 is a gas pressure measurement result, and FIG. 6 is an example and a comparative example. It is a mimic diagram of the micrograph of FIG. FIG. 7 shows the results of measuring the time dependence of the total pressure at 900 ° C.
Claims (3)
素(BN)、炭化ケイ素(SiC)、炭素(C)等のセラミ
ックスを析出或は成長させる際に用いられ、10×10×1m
mのサイズとして1K/sの昇温速度で加熱した時の673〜14
73Kの温度に於けるガス放出速度の平均値がN2換算で2
×10-2Pa・m/(s・kg)以下であることを特徴とするセ
ラミックス被覆用黒鉛基材。1. Used for depositing or growing ceramics such as boron nitride (BN), silicon carbide (SiC) and carbon (C) by a chemical vapor deposition method (CVD method), 10 × 10 × 1 m
673 to 14 when heated at a heating rate of 1 K / s as m size
The average gas release rate at a temperature of 73K is 2 in N 2 conversion.
A graphite base material for ceramics coating, characterized by having a density of × 10 -2 Pa · m / (s · kg) or less.
項(1)に記載の黒鉛基材。2. The graphite base material according to claim 1, wherein the ash content of the graphite base material is 50 ppm or less.
の黒鉛基材にセラミックスを被覆したものを用いたCVD
炉用内部部品。3. A CVD method using the graphite base material according to claim 1 or 2 coated with ceramics.
Internal parts for the furnace.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2041619A JP2684106B2 (en) | 1990-02-22 | 1990-02-22 | Graphite base material for ceramic coating and internal parts for CVD furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2041619A JP2684106B2 (en) | 1990-02-22 | 1990-02-22 | Graphite base material for ceramic coating and internal parts for CVD furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03243776A JPH03243776A (en) | 1991-10-30 |
JP2684106B2 true JP2684106B2 (en) | 1997-12-03 |
Family
ID=12613357
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2041619A Expired - Lifetime JP2684106B2 (en) | 1990-02-22 | 1990-02-22 | Graphite base material for ceramic coating and internal parts for CVD furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2684106B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011081210A1 (en) | 2009-12-28 | 2011-07-07 | 東洋炭素株式会社 | Tantalum carbide-coated carbon material and manufacturing method for same |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5657949B2 (en) * | 2000-12-18 | 2015-01-21 | 東洋炭素株式会社 | Low nitrogen concentration graphite material and storage method thereof |
JP5051875B2 (en) * | 2006-12-25 | 2012-10-17 | 東京エレクトロン株式会社 | Film forming apparatus and film forming method |
JP4641536B2 (en) * | 2007-07-27 | 2011-03-02 | 東洋炭素株式会社 | Carbon composite material for reducing atmosphere furnace and method for producing the same |
JP4641535B2 (en) * | 2007-07-27 | 2011-03-02 | 東洋炭素株式会社 | Carbon composite material for reducing atmosphere furnace and method for producing the same |
JP5333804B2 (en) * | 2012-06-08 | 2013-11-06 | 東京エレクトロン株式会社 | Film forming apparatus and film forming method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5884181A (en) * | 1981-11-11 | 1983-05-20 | 松下電器産業株式会社 | Carbon member purifying treatment |
JPS6378759A (en) * | 1986-09-22 | 1988-04-08 | Nec Corp | Thermal head |
-
1990
- 1990-02-22 JP JP2041619A patent/JP2684106B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011081210A1 (en) | 2009-12-28 | 2011-07-07 | 東洋炭素株式会社 | Tantalum carbide-coated carbon material and manufacturing method for same |
Also Published As
Publication number | Publication date |
---|---|
JPH03243776A (en) | 1991-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200331816A1 (en) | Process for manufacturing a silicon carbide coated body | |
US12077441B2 (en) | Process for manufacturing a silicon carbide coated body | |
US20210017092A1 (en) | Process for manufacturing a silicon carbide coated body | |
EP0723600B1 (en) | Process for the preparation of silicon carbide films using single organosilicon compounds | |
US4717693A (en) | Process for producing beta silicon nitride fibers | |
JP2684106B2 (en) | Graphite base material for ceramic coating and internal parts for CVD furnace | |
JP4071919B2 (en) | SiC-coated graphite member and method for producing the same | |
US20200325078A1 (en) | Process for manufacturing a silicon carbide coated body | |
US20240158911A1 (en) | Process for manufacturing a silicon carbide coated body | |
JP3638345B2 (en) | Pyrolytic boron nitride container | |
US20210017029A1 (en) | Process for manufacturing a silicon carbide coated body | |
JP4736076B2 (en) | SiC film-covered glassy carbon material and method for producing the same | |
JP3500278B2 (en) | Corrosion resistant materials for semiconductor manufacturing | |
RU98120361A (en) | METHOD FOR FORMING COATINGS BASED ON SILICON-BORON Pyrolytic Nitride | |
WO2024203034A1 (en) | Metal carbide-coated carbon material | |
JP2000507647A (en) | Method of forming pyrolytic SiBN coating | |
JP3553744B2 (en) | Manufacturing method of laminated member | |
JPS62123094A (en) | Susceptor for vapor growth of semiconductor | |
JPS63102311A (en) | Manufacture of 3c-sic semiconductor device | |
JPH05124864A (en) | Production of high purity silicon carbide body | |
JPH05124863A (en) | Production of high purity silicon carbide body | |
JPH11293471A (en) | Deposition method by cvd process | |
Scheiffarth et al. | Increasing high temperature oxidation and corrosion resistance of graphite and carbon-fiber-reinforced carbon by deposition of a low pressure chemically vapor-deposited silicon carbide coating | |
JPS6117910B2 (en) | ||
JPS627620A (en) | Reaction tube for producing polycrystalline silicon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090815 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100815 Year of fee payment: 13 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100815 Year of fee payment: 13 |