JP4641536B2 - Carbon composite material for reducing atmosphere furnace and method for producing the same - Google Patents

Carbon composite material for reducing atmosphere furnace and method for producing the same Download PDF

Info

Publication number
JP4641536B2
JP4641536B2 JP2007195644A JP2007195644A JP4641536B2 JP 4641536 B2 JP4641536 B2 JP 4641536B2 JP 2007195644 A JP2007195644 A JP 2007195644A JP 2007195644 A JP2007195644 A JP 2007195644A JP 4641536 B2 JP4641536 B2 JP 4641536B2
Authority
JP
Japan
Prior art keywords
graphite
base material
tantalum carbide
tantalum
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007195644A
Other languages
Japanese (ja)
Other versions
JP2007308370A (en
Inventor
信介 合田
楽年 何
哲朗 東城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tanso Co Ltd
Original Assignee
Toyo Tanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tanso Co Ltd filed Critical Toyo Tanso Co Ltd
Priority to JP2007195644A priority Critical patent/JP4641536B2/en
Publication of JP2007308370A publication Critical patent/JP2007308370A/en
Application granted granted Critical
Publication of JP4641536B2 publication Critical patent/JP4641536B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、高温下における還元性ガスとの反応抑制効果に優れた炭素複合材料及びその製造方法、さらに詳しくは1000℃を超える高温の還元性ガス雰囲気中においても、炭素材料と還元性ガスとの反応抑制効果を十分に発揮することができる炭化タンタル被覆黒鉛系材料及びその製造方法に関するものである。   The present invention relates to a carbon composite material excellent in the effect of suppressing reaction with a reducing gas at a high temperature and a method for producing the same, and more specifically, even in a high-temperature reducing gas atmosphere exceeding 1000 ° C., the carbon material and the reducing gas The present invention relates to a tantalum carbide-coated graphite material capable of sufficiently exhibiting the reaction suppressing effect of and a method for producing the same.

従来、高温下におけるチッ素ガス、アンモニアガス等の還元性ガス雰囲気下に晒される黒鉛系材料は、当然ながら還元性ガスとの反応によって変質したり目減りし、その材料に求められている本来の機能が十分果たせなくなったとき、寿命が尽きたとして新しい部材と取り換えることが行われる。   Conventionally, graphite materials exposed to a reducing gas atmosphere such as nitrogen gas and ammonia gas at high temperatures are naturally altered or lost by the reaction with the reducing gas. When the function cannot be sufficiently performed, it is replaced with a new member because the lifetime is exhausted.

例えば、炉内に黒鉛系材料からなるヒーターを配置し、炉内にアンモニアガスを導入してアンモニア雰囲気を形成し、そのヒーターで炉内を1200℃程度に加熱保持されたアンモニア雰囲気炉の場合についていえば、ヒーターとしては一般には黒鉛基材の表面に炭化ケイ素を被覆した黒鉛系材料が使用される。これは、黒鉛基材そのものはアンモニアと非常に反応しやすいため、黒鉛製のヒーターでは短時間のうちに消耗が進行し穴が開き始める、つまり断線が生じるため、このような現象を回避して少しでもヒーターとしての寿命を長くできるように、アンモニアとの反応を緩和させる手段として、黒鉛基材の表面に炭化ケイ素を被覆したものである。   For example, in the case of an ammonia atmosphere furnace in which a heater made of graphite material is arranged in the furnace, ammonia gas is introduced into the furnace to form an ammonia atmosphere, and the furnace is heated and held at about 1200 ° C. by the heater. For example, as the heater, a graphite material in which silicon carbide is coated on the surface of a graphite substrate is generally used. This is because the graphite base material itself is very easy to react with ammonia, so in a graphite heater, consumption proceeds in a short time and holes begin to open, that is, disconnection occurs. As a means for relaxing the reaction with ammonia, the surface of the graphite base material is coated with silicon carbide so that the life as a heater can be extended as much as possible.

しかし、上記の炭化ケイ素の被覆という手段は、あくまでもヒーターとアンモニアとの反応を緩慢にしてヒーターの消耗を遅らせることを目的としており、黒鉛基材上の炭化ケイ素被膜とアンモニアとの反応が徐々に進行することに変わりはない。最大の理由は、炭化ケイ素の分解温度が約1400℃であって、その近辺の温度域での蒸気圧が高いことによる。そして、炭化ケイ素被膜がアンモニアとの反応により徐々に薄くなり、黒鉛基材の露出にまで至ると、黒鉛基材とアンモニアが一気に反応し、上述したように短時間のうちに消耗が進行し穴が開き始め、つまり断線が生じ、ヒーターとしての寿命が尽きることになる。   However, the above-mentioned means of coating silicon carbide is intended only to slow down the reaction between the heater and ammonia and delay the consumption of the heater, and the reaction between the silicon carbide coating on the graphite substrate and ammonia gradually There is no change in progress. The biggest reason is that the decomposition temperature of silicon carbide is about 1400 ° C., and the vapor pressure in the temperature range in the vicinity thereof is high. Then, when the silicon carbide coating is gradually thinned by the reaction with ammonia and the graphite base material is exposed, the graphite base material and ammonia react at once, and as described above, the consumption proceeds in a short time and the holes Begins to open, that is, breakage occurs, and the life as a heater is exhausted.

本発明者らは、かねてより還元性雰囲気炉用炭素複合材料の研究を進めており、上記の炭化ケイ素被覆炭素複合材料より優れた材料を開発するための糸口として、遷移金属炭化物では一番融点が高く、かつ化学的安定度が高いとされる炭化タンタル(以下「TaC」で表示する。)に着目した。そして、黒鉛基材(ヒーター)の上にTaCの被膜を形成するに際しては、まず特開平6−280117号公報に開示のプラズマ溶射による物理的蒸着法(いわゆるPVD法)及びCVD法を参考に実験を行った。その後、CVR(化学気相反応)法の実施による実験も行った。   The present inventors have been researching carbon composite materials for reducing atmosphere furnaces for a long time, and as the clue for developing materials superior to the above silicon carbide-coated carbon composite materials, transition metal carbides have the highest melting point. Attention has been focused on tantalum carbide (hereinafter referred to as “TaC”), which has high chemical stability. When a TaC film is formed on a graphite substrate (heater), an experiment is first conducted with reference to a physical vapor deposition method (so-called PVD method) and a CVD method by plasma spraying disclosed in JP-A-6-280117. Went. Thereafter, an experiment was also conducted by performing a CVR (Chemical Vapor Phase Reaction) method.

しかし、TaCの融点が約4000℃と非常に高いため、PVD法の実施は極めて困難であり、またいわゆるCVR法により得られるTaC被膜は多孔質となってしまうため、両法については実用的な成膜法として基本的に採用困難と判断した。結局、CVD法により得られたTaC被覆黒鉛基材を高温の還元性ガス雰囲気中で使用した所、わずか数回(約30時間)の使用でTaC被膜にクラックが生じ、黒鉛基材とTaC被膜との間に剥離が生じた。   However, since the melting point of TaC is about 4000 ° C., the PVD method is extremely difficult to perform, and the TaC film obtained by the so-called CVR method becomes porous. It was judged that it was basically difficult to adopt the film formation method. Eventually, when the TaC-coated graphite base material obtained by the CVD method was used in a high-temperature reducing gas atmosphere, cracks occurred in the TaC film when used only a few times (about 30 hours). Peeling occurred between.

本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、1000℃を超える高温の還元性ガス雰囲気中においても、優れた還元性ガス反応抑制効果を発揮し、製品寿命を大きく延ばすことができる還元性雰囲気炉用炭素複合材料及びその製造方法を提供する点にある。   The present invention has been made in view of the above circumstances, and its purpose is to exhibit an excellent reducing gas reaction suppression effect even in a high temperature reducing gas atmosphere exceeding 1000 ° C. The object of the present invention is to provide a carbon composite material for a reducing atmosphere furnace capable of greatly extending the life and a method for producing the same.

本発明者らは、従来法(CVD法)で得られたTaC被膜と黒鉛基材との間に簡単に生じるクラックや剥離の原因を解明すべく、特に結晶組織面から検討してきた。その結果、黒鉛基材上のTaC被膜の結晶組織は繊維柱状(図5(a)参照)又は柱状(図5(b)参照)をしており、さらにいずれの場合も黒鉛基材とTaC被膜との密着力に弱い構造をしていることが判明した。また、黒鉛基材とTaC被膜の熱膨張係数の差が大きく離れている場合ほど、クラックや剥離の発生、進行の程度が顕著となる傾向にあることも判明した。   The inventors of the present invention have studied especially from the crystal structure surface in order to elucidate the cause of cracks and peeling that easily occur between the TaC film obtained by the conventional method (CVD method) and the graphite substrate. As a result, the crystal structure of the TaC coating on the graphite substrate is fiber columnar (see FIG. 5A) or columnar (see FIG. 5B), and in either case, the graphite substrate and the TaC coating. It was found that it has a weak structure with respect to adhesion. It has also been found that the greater the difference between the thermal expansion coefficients of the graphite substrate and the TaC coating, the more prominent the occurrence and progress of cracks and delamination.

この結果、本発明者らは、TaC被膜の結晶組織として微粒子が緻密に積層した状態を具現できるような結晶組織面からの工夫((イ))と、TaC被膜と黒鉛基材との熱膨張係数差を一定の範囲内に収める等の黒鉛基材の特性面からの工夫((ロ))を施せば、TaC被膜内のクラックの進行を著しく遅らせ、ひいては黒鉛基材とTaC被膜との剥離の発生の大幅な抑制につながるはず、との知見を得ることができ、この知見を基に更に検討を重ねた末、上記(イ)、(ロ)の工夫として最適な具体的手段に到達し、本発明を完成した。 As a result, the present inventors found that the heat for improvement in the crystal sets ruled surface that allows realizing a state in which fine particles are densely stacked as crystal structure of the TaC film and ((b)), and the TaC film and the graphite substrate If a measure ((b)) from the characteristic side of the graphite base material such as keeping the difference in expansion coefficient within a certain range is applied, the progress of cracks in the TaC coating is remarkably delayed. We were able to obtain the knowledge that it should lead to a significant suppression of the occurrence of peeling, and after further investigation based on this knowledge, we reached the optimal specific means as the devices (b) and (b) above. The present invention has been completed.

即ち、上記目的を達成し得た本発明の還元性雰囲気炉用炭素複合材料は、タンタル微粒子を、炭素を含む反応性ガス粒子と共に、黒鉛基材の表面に付着させることによって、前記表面に炭化タンタル微粒子を緻密に積層してなる結晶組織の炭化タンタルの被膜が形成され、かつ該黒鉛基材の特性値として熱膨張係数が、前記炭化タンタル被膜の熱膨張係数±2.0×10−6/Kの範囲内さらに下記(A)(B)(C)のいずれかの特徴を有する。
(A)前記黒鉛基材、0.01〜5μmの平均気孔半径の等方性黒鉛基材である
(B)前記黒鉛基材は、1000℃基準のガス放出圧力が10−4Pa/g以下の等方性黒鉛基材である
(C)前記黒鉛基材は、Al<0.3ppm、Fe<1.0ppm、Mg<0.1ppm、Si<0.1ppmで、灰分が10ppm以下の量の不純物を含有している
また、本発明において、TaC被膜の膜厚が5〜100μmであってもよい。
In other words, the carbon composite material for a reducing atmosphere furnace of the present invention that has achieved the above object is obtained by carbonizing the tantalum fine particles together with the reactive gas particles containing carbon on the surface of the graphite substrate. A tantalum carbide film having a crystalline structure formed by densely laminating tantalum fine particles is formed, and the thermal expansion coefficient as a characteristic value of the graphite base material is a thermal expansion coefficient ± 2.0 × 10 −6 of the tantalum carbide film. Ri Ah in the range of / K, further having any of the following features (a) (B) (C ).
(A) The graphite substrate is an isotropic graphite substrate having an average pore radius of 0.01 to 5 μm.
(B) The graphite base material is an isotropic graphite base material whose gas discharge pressure on the basis of 1000 ° C. is 10 −4 Pa / g or less.
(C) The graphite substrate contains impurities of Al <0.3 ppm, Fe <1.0 ppm, Mg <0.1 ppm, Si <0.1 ppm, and an ash content of 10 ppm or less. in the invention, the thickness of the T aC film may be 5~100μ m.

また、本発明においては、前記還元性雰囲気炉がアンモニア雰囲気炉であってもよいし、前記炭素複合材料成膜炉用ヒーターであってもよい。半導体薄膜としては、Si,GaAs,GaInP,GaN,InGaNなどが例示できる。また、本発明の別の観点によると、ターゲット材としての金属タンタル及び炭素を含む反応ガスを使用して、400〜600℃の雰囲気下でアークイオンプレーティング(AIP)式反応性蒸着法により前記金属タンタルの微粒子を前記反応ガスの粒子と共に黒鉛基材の表面に付着させることによって、前記表面に炭化タンタル微粒子を緻密に積層してなる結晶組織の炭化タンタルの被膜を形成する工程を有しており、前記黒鉛基材の特性値としての熱膨張係数が、前記TaC被膜の熱膨張係数±2.0×10−6/Kの範囲内り、さらに上記(A)(B)(C)のいずれかの特徴を有する還元性雰囲気炉用炭素複合材料の製造方法が提供される。 In the present invention, the reducing atmosphere furnace may be an ammonia atmosphere furnace, the carbon composite material may be heaters for deposition furnace. Examples of the semiconductor thin film include Si, GaAs, GaInP, GaN, and InGaN. Further , according to another aspect of the present invention, the reactive gas containing metal tantalum and carbon as a target material is used, and the reactive ion deposition method is performed by an arc ion plating (AIP) reactive deposition method in an atmosphere of 400 to 600 ° C. A step of forming a tantalum carbide film having a crystalline structure formed by densely laminating fine particles of tantalum carbide on the surface by adhering fine particles of metal tantalum together with particles of the reaction gas to the surface of the graphite substrate. cage, thermal expansion coefficient as the characteristic value of the graphite substrate, wherein Ri Ah within the thermal expansion coefficient of ± 2.0 × 10 -6 / K in the TaC film, further the (a) (B) (C method of making any of a reducing atmosphere furnace carbon composite material that have a characteristic of) the Ru is provided.

本発明によれば、以下の利益((1)〜(4))を享受することができる。
(1)本発明の複合材料は、微粒子状の緻密で均質な積層結晶組織を有するTaC被膜を黒鉛基材の表面に被覆した構成であるため、高温の還元性雰囲気下で黒鉛基材中の不純物(Fe、Al等)が拡散してTaC被膜に到達しても、TaC被膜内からの抜け出しは非常に困難となり、ピンホールが生じるまでの時間を非常に長く延ばすことができる。
According to the present invention, the following benefits ((1) to (4)) can be enjoyed.
(1) Since the composite material of the present invention has a structure in which a TaC film having a fine, dense and homogeneous laminated crystal structure is coated on the surface of the graphite substrate, the composite material in the graphite substrate in a high temperature reducing atmosphere. Even if impurities (Fe, Al, etc.) diffuse and reach the TaC film, it is very difficult to escape from the TaC film, and the time until a pinhole is generated can be extended very long.

また、本発明によれば、上記(A)(B)(C)のいずれかの特徴を有することにより、TaC被膜の剥離の抑制効果(A,Cによる効果)や、高温下で黒鉛基材から放出されるガス量の削減によるピンホールやクラックの抑制効果(A,B)を得ることができる。従って、TaC被膜黒鉛基材との密着性が良くなる。さらに、TaC被膜と黒鉛基材との熱膨張係数差は相対的に±2.0×10−6/K以内に抑えられており、熱膨張係数差に起因したTaC被膜自体の黒鉛基材からの剥離は回避することができる。従って、従来品のようにピンホール及びクラックの促進に起因した剥離という現象も生じないため、この点も一層の相乗効果を生み、上記ピンホール及びクラックが無く、TaC被膜と黒鉛基材の密着性が良い状態となっている。結局、上記の結晶組織面からの改善と黒鉛基材そのものの改善(好ましい基材の選択)とが相まって、ピンホール及びクラックが生じるまではTaCの本来有する好ましい特長である高耐熱性及び化学的安定性が有効に発揮され、複合材料からなる製品の寿命を従来品よりも大きく延ばすことができる。 In addition, according to the present invention, by having any one of the characteristics (A), (B), and (C), the effect of suppressing the peeling of the TaC film (effect by A and C) and the graphite base material at high temperature The effect of suppressing pinholes and cracks (A, B) by reducing the amount of gas released from the gas can be obtained. Therefore, the Ru good kuna adhesion between the TaC film and the graphite substrate. Further, the difference in thermal expansion coefficient between the TaC film and the graphite base material is relatively suppressed to within ± 2.0 × 10 −6 / K, and the TaC film itself is caused by the difference in thermal expansion coefficient from the graphite base material of the TaC film itself. The peeling of can be avoided. Therefore, the phenomenon of peeling due to the promotion of pinholes and cracks does not occur as in the conventional product, so this point also produces a further synergistic effect, there is no pinholes and cracks, and the TaC coating and the graphite substrate are in close contact with each other. It is in a good state. Eventually, the improvement from the crystal structure surface and the improvement of the graphite base material itself (selection of a preferred base material) combined with high heat resistance and chemical properties, which are inherently preferred features of TaC, until pinholes and cracks occur. Stability is effectively exhibited, and the life of the product made of the composite material can be extended more than the conventional product.

(2)また、TaC被膜の厚みを5〜100μm、望ましくは10〜90μmとなるように形成しておくことにより、上記(1)の効果を十分に発揮させつつも、必要以上の被膜形成に要するコストの無駄を省き、製品コストの上昇を防止することができる。
(3)本発明の複合材料を半導体薄膜の成膜炉用ヒーターに適用した場合には、このヒーターの著しい延命化により、半導体薄膜の成膜に要するコストの低減化を図ることができる。
(4)TaC被膜の形成には、コンパクトな汎用装置でもあるAIP装置を利用できるので、経済的である。
(2) Moreover, by forming the thickness of the TaC film to be 5 to 100 μm, preferably 10 to 90 μm, the film can be formed more than necessary while the effect of the above (1) is sufficiently exhibited. It is possible to eliminate unnecessary cost and prevent an increase in product cost.
(3) When the composite material of the present invention is applied to a heater for a semiconductor thin film deposition furnace, the cost required for film formation of the semiconductor thin film can be reduced by significantly extending the life of the heater.
(4) Since the AIP apparatus which is also a compact general-purpose apparatus can be used for forming the TaC film, it is economical.

以下、本発明の実施の形態を図面を参照しつつ説明する。図1は、本発明に係る還元性雰囲気炉用炭素複合材料を示す断面模式図であり、図2は、本発明の製造方法の一例を示す工程図、図3は、AIP処理を実施するためのAIP装置を示す原理説明図である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view showing a carbon composite material for a reducing atmosphere furnace according to the present invention, FIG. 2 is a process diagram showing an example of the production method of the present invention, and FIG. 3 is for carrying out an AIP process. It is a principle explanatory view showing an AIP device.

図1(a)において、本発明の複合材料1は、黒鉛基材2の表面にTaC被膜3が形成された構造をしている。図1(b)は、TaC被膜3の一部を拡大した模式図である。TaC被膜3は、φ1〜10μm程度のTaC微粒子が均質かつ緻密に詰まって積層した状態の結晶組織からなる層であり、その場合嵩密度が14.30g/cm以上であるようなものが望ましい。アウトガスの少ない高純度等方性黒鉛基材を使うのは、高温で黒鉛基材から放出するガス及び不純物が少なく、また電気抵抗率や熱膨張率が各方向における方向性が少なくためである。なお、多孔質のTaC被膜の形成を防ぐため、TaC被膜の嵩密度が14.30g/cm以上とすることによって、外部からのガス侵入を抑制することができる。このような結晶組織及び特性を有するTaC被膜3を形成するには、後に詳記するようにターゲット材としての金属タンタル及び反応ガスを使用したAIP法の実施が有効である。 In FIG. 1A, the composite material 1 of the present invention has a structure in which a TaC film 3 is formed on the surface of a graphite substrate 2. FIG. 1B is an enlarged schematic view of a part of the TaC film 3. The TaC film 3 is a layer composed of a crystal structure in which TaC fine particles having a diameter of about 1 to 10 μm are packed uniformly and densely, and in that case, a bulk density of 14.30 g / cm 3 or more is desirable. . The reason why the high-purity isotropic graphite base material with little outgas is used is that there are few gases and impurities released from the graphite base material at high temperature, and there is little directivity in each direction in electrical resistivity and thermal expansion coefficient. In addition, in order to prevent formation of a porous TaC film, gas penetration from the outside can be suppressed by setting the bulk density of the TaC film to 14.30 g / cm 3 or more. In order to form the TaC film 3 having such a crystal structure and characteristics, it is effective to perform the AIP method using metal tantalum as a target material and a reactive gas as will be described in detail later.

黒鉛基材2としては、TaC被膜3との親和性に良好な高純度等方性黒鉛基材を使用することが望ましく、さらに該黒鉛基材の特性値が以下の条件((1)〜(4))を満たすものを採用することが望ましい。
(1)熱膨張係数が、TaC被膜の熱膨張係数±2.0×10−6/Kである。黒鉛基材とTaC被膜との熱膨張係数差によりTaC膜に発生する熱応力を減少させるためである。
As the graphite substrate 2, it is desirable to use a high purity isotropic graphite substrate having good affinity with the TaC coating 3, and the characteristic values of the graphite substrate are the following conditions ((1) to ( It is desirable to adopt one that satisfies 4)).
(1) The thermal expansion coefficient is the thermal expansion coefficient ± 2.0 × 10 −6 / K of the TaC film. The difference in the thermal expansion coefficient between the graphite substrate and the TaC film is to reduce the thermal stress generated in the TaC target membrane.

(2)平均気孔半径は0.01〜5μmである。ここで「平均気孔半径」とは、水銀ポロシメーターから求めた細孔容積の平均気孔半径の値であって、最大圧力98MPa、試料と水銀の接触角141.3°としたときの累積気孔容積の半分値としたものである。平均気孔半径が0.01μm未満では、いわゆるアンカー効果が十分発揮されず、TaC被膜が剥離しやすくなるからである。一方、5μmを超えると、高温下での黒鉛基材からの放出ガスの量が多くなるからである。 (2) The average pore radius is 0.01 to 5 μm. Here, the “average pore radius” is the value of the average pore radius of the pore volume obtained from the mercury porosimeter, and is the cumulative pore volume when the maximum pressure is 98 MPa and the contact angle between the sample and mercury is 141.3 °. It is a half value. This is because when the average pore radius is less than 0.01 μm, the so-called anchor effect is not sufficiently exhibited and the TaC film is easily peeled off. On the other hand, if the thickness exceeds 5 μm, the amount of gas released from the graphite base material at high temperatures increases.

(3)1000℃基準のガス放出圧力が10−4Pa/g以下である。放出されるガスとしては、H、CH、CO、CO、HOなどがあるが、特にTaCと反応しやすいCO、HOの発生量をできる限り少なくするために、10−4Pa/g以下が望ましい。 (3) The gas discharge pressure based on 1000 ° C. is 10 −4 Pa / g or less. Examples of the released gas include H 2 , CH 4 , CO, CO 2 , and H 2 O. In order to reduce the amount of CO and H 2 O that easily react with TaC as much as possible, 10 − 4 Pa / g or less is desirable.

(4)不純物の含有量がAl<0.3ppm、Fe<1.0ppm、Mg<0.1ppm、Si<0.1ppmで、灰分が10ppm以下である。不純物の量がこの範囲を超えると、高温下におけるTaCとの化学反応により黒鉛基材とTaC膜の界面が剥離しやすくなるため、これを防止するためである。 (4) The impurity content is Al <0.3 ppm, Fe <1.0 ppm, Mg <0.1 ppm, Si <0.1 ppm, and the ash content is 10 ppm or less. When the amount of impurities exceeds this range, the surface of the graphite substrate and TaC the film is easily peeled off by the chemical reaction with TaC in a high temperature, in order to prevent this.

従って、本発明の複合材料1を高温の還元性ガス、例えばアンモニア雰囲気下に晒しても、TaC被膜3としては微粒子が緻密に積層した結晶組織であるために、たとえ黒鉛基材2中の不純物(Fe、Al等)が拡散してTaC被膜3の下層に到達しても、柱状又は繊維柱状結晶組織と異なり微粒子状結晶組織のTaC被膜3内の抜け出しは非常に困難となる。また、高温でTaC被膜にピンホール及びクラックが生じるまでの時間を非常に長く延ばすことができる。   Therefore, even if the composite material 1 of the present invention is exposed to a high-temperature reducing gas, for example, in an ammonia atmosphere, the TaC film 3 has a crystal structure in which fine particles are densely laminated. Even if (Fe, Al, etc.) diffuses and reaches the lower layer of the TaC film 3, it is very difficult to pull out the fine grain crystal structure from the TaC film 3 unlike the columnar or fiber columnar crystal structure. In addition, the time until pinholes and cracks are generated in the TaC film at a high temperature can be extended very long.

また、本発明に係る黒鉛基材2の場合は、上記不純物そのものが当初から極めて少なく、特有の細孔構造を有するため、拡散するガスも非常に少ない。従って、そのような黒鉛基材2上に被覆したTaC被膜3は、黒鉛基材2との密着性が良く、しかも高温で黒鉛基材2から放出されるガスが少ないため、TaC被膜3の劣化やピンホール及びクラックが生じにくくなっている。さらに、TaC被膜3と黒鉛基材2との熱膨張係数差は相対的に±2.0×10-6/K以内に抑えられており、熱膨張係数差に起因したTaC被膜3自体の黒鉛基材2からの剥離は回避することができる。従って、従来品のようにピンホール及びクラックの促進に起因した剥離という現象も生じないため、この点も一層の相乗効果を生み、上記ピンホール及びクラックが無い、TaC被膜と黒鉛基材の密着性が良い状態となっている。 Moreover, in the case of the graphite base material 2 according to the present invention, since the impurities themselves are extremely small from the beginning and have a specific pore structure, there is very little gas to diffuse. Therefore, the TaC coating 3 coated on the graphite substrate 2 has good adhesion to the graphite substrate 2 and less gas is released from the graphite substrate 2 at a high temperature. And pinholes and cracks are less likely to occur. Furthermore, the difference in thermal expansion coefficient between the TaC film 3 and the graphite substrate 2 is relatively suppressed within ± 2.0 × 10 −6 / K, and the graphite of the TaC film 3 itself due to the difference in thermal expansion coefficient. Peeling from the substrate 2 can be avoided. Therefore, the phenomenon of peeling due to the promotion of pinholes and cracks does not occur as in the conventional product, so this point also produces a further synergistic effect, and there is no pinholes and cracks, and the adhesion between the TaC coating and the graphite substrate It is in a good state.

結局、本発明の複合材料1の場合は、ピンホール及びクラックが生じるまではTaCの本来有する好ましい特長がそのまま生かされることになる。即ち、高耐熱性及び高温還元性ガスに対する化学的安定性(例えば、アンモニアガスの場合1500℃でも安定し、水素ガスの場合2000℃でも安定した性質)を有効に発揮して、複合材料1の寿命を従来品よりも大きく延ばすことができる。   After all, in the case of the composite material 1 of the present invention, the preferable characteristics inherent in TaC are utilized as they are until pinholes and cracks are generated. That is, the composite material 1 effectively exhibits chemical stability against high heat resistance and high temperature reducing gas (for example, a property stable at 1500 ° C. for ammonia gas and stable at 2000 ° C. for hydrogen gas). The service life can be extended more than the conventional product.

また、TaC被膜3は、その厚みが5〜100μm、望ましくは10〜90μmとなるように形成しておくことが望ましい。TaC被膜3を黒鉛基材2の表面に支承なく形成するためには、少なくとも5μmは必要となる一方、100μmを超えると、TaC被膜3と黒鉛基材2との剥離が生じやすくなるからである。TaC被膜3の厚みをこのように最適な範囲に設定することにより、還元性ガス反応抑制効果を十分に発揮させつつも、必要以上の被膜形成に要するコストの無駄を省き、製品コストの上昇を防止することができる。   Further, the TaC film 3 is desirably formed to have a thickness of 5 to 100 μm, preferably 10 to 90 μm. This is because, in order to form the TaC coating 3 on the surface of the graphite substrate 2 without any support, at least 5 μm is required, but when it exceeds 100 μm, the TaC coating 3 and the graphite substrate 2 are liable to be peeled off. . By setting the thickness of the TaC coating 3 in the optimal range in this manner, while reducing the reactive gas reaction sufficiently, the unnecessary cost for forming the coating is eliminated and the product cost is increased. Can be prevented.

次に、本発明の製造方法の一例を図2及び図3を参照しつつ説明する。まず、黒鉛基材2を洗浄部4へ導入して、有機溶剤で表面を清浄にする。清浄化した黒鉛基材2をAIP工程に導き該工程内で黒鉛基材2の表面にTaCを被覆する。AIP工程は通常図3に示すようなAIP装置を使用して図2の一点鎖線枠内に示すような手順(真空引き→加熱→下地処理→コーティング→冷却)で行う。即ち、清浄化した黒鉛基材2をチャンバ5内の回転テーブル6に1個又は複数個載置した後、チャンバ5内を10-5Torr程度まで真空引きし、次いでチャンバ5内を400〜600℃程度に加熱する。 Next, an example of the manufacturing method of this invention is demonstrated, referring FIG.2 and FIG.3. First, the graphite substrate 2 is introduced into the cleaning unit 4 and the surface is cleaned with an organic solvent. The cleaned graphite substrate 2 is guided to the AIP process, and the surface of the graphite substrate 2 is coated with TaC in the process. The AIP process is usually carried out by using an AIP apparatus as shown in FIG. 3 according to the procedure (evacuation → heating → base treatment → coating → cooling) as shown in a one-dot chain line in FIG. That is, after placing one or more cleaned graphite substrates 2 on the rotary table 6 in the chamber 5, the inside of the chamber 5 is evacuated to about 10-5 Torr, and then the inside of the chamber 5 is 400-600. Heat to about ℃.

次に、供給口7からArガスをチャンバ5内に導入し、−600Vのバイアス電源8を負荷させながらArスパッタリングによるドライエッチングを行う。いわゆる下地処理である。この後、コーティング操作に入り、ターゲット材(金属Ta)10に通電するアーク電源11及びバイアス電源8をそれぞれ所定の電流及び電圧に設定すると共に、供給口7からCH4 ガス等の反応ガスを所定の流量で供給し、ターゲット材10から飛び出したTa微粒子を反応ガス粒子と共に黒鉛基材2の表面にTaC微粒子として付着させる。このコーティング操作を所定時間保持することにより、黒鉛基材2の表面にTaC微粒子が緻密かつ均質に積層した結晶組織のTaC被膜を5〜100μmの範囲で必要な厚みだけ自在に形成することができる。 Next, Ar gas is introduced into the chamber 5 from the supply port 7, and dry etching by Ar sputtering is performed while a bias power supply 8 of −600 V is loaded. This is a so-called ground treatment. Thereafter, the coating operation is started, and the arc power supply 11 and the bias power supply 8 for energizing the target material (metal Ta) 10 are set to a predetermined current and voltage, respectively, and a reaction gas such as CH 4 gas is supplied from the supply port 7 to a predetermined The Ta fine particles jumping out from the target material 10 are attached to the surface of the graphite substrate 2 as TaC fine particles together with the reaction gas particles. By holding this coating operation for a predetermined time, a TaC film having a crystal structure in which TaC fine particles are densely and uniformly laminated on the surface of the graphite substrate 2 can be freely formed in a required thickness within a range of 5 to 100 μm. .

コーティング操作が終了すれば、チャンバ5内を所定温度まで冷却した後、製品としてのTaC被膜黒鉛材料をチャンバ5から取り出す。   When the coating operation is completed, the inside of the chamber 5 is cooled to a predetermined temperature, and then the TaC-coated graphite material as a product is taken out from the chamber 5.

(実施例1)
図4に示す円筒型スリット型(φ100mm×t5mm)の形状寸法からなる黒鉛製ヒーターであって、表1に示す特性値を有する高純度等方性黒鉛の実施例1(基材No.1〜4)及び参考例1(基材No.1、2)に対してAIP処理を行い、黒鉛製ヒーターの表面にTaC被膜を形成した。TaC被膜の組成比(Ta/C)=1とし、膜厚の変更は蒸着時間を調整することにより行った。AIP条件は、次の通りである。
(1)ターゲット材:金属Ta
(2)反応ガス :CH
(3)熱処理温度 :400〜600℃
(4)ベース圧力 :1×10−5Torr
(5)蒸着圧力 :20mTorr
(6)蒸着電流 :200A
(7)蒸着電圧 :43V
(8)バイアス電圧:−20V
(9)蒸着時間 :25分(5μm)〜500分(100μm)
得られたTaC被膜の嵩密度は14.30g/cm以上であった。
Example 1
Example 1 (base No. 1 to No. 1) of a high purity isotropic graphite having a characteristic value shown in Table 1, which is a graphite heater having a cylindrical slit type (φ100 mm × t5 mm) shape shown in FIG. 4) and Reference Example 1 (Substrate Nos. 1 and 2) were subjected to AIP treatment to form a TaC film on the surface of the graphite heater. The composition ratio (Ta / C) of the TaC film was set to 1, and the film thickness was changed by adjusting the deposition time. The AIP conditions are as follows.
(1) Target material: Metal Ta
(2) Reaction gas: CH 4
(3) Heat treatment temperature: 400-600 ° C
(4) Base pressure: 1 × 10 −5 Torr
(5) Deposition pressure: 20 mTorr
(6) Vapor deposition current: 200A
(7) Vapor deposition voltage: 43V
(8) Bias voltage: -20V
(9) Deposition time: 25 minutes (5 μm) to 500 minutes (100 μm)
The bulk density of the obtained TaC coating was 14.30 g / cm 3 or more.

上記のAIP処理によって得られた製品としてのアンモニア雰囲気炉用ヒーターをそれぞれ使用して、1200℃のアンモニア雰囲気下にある半導体薄膜成膜炉での成膜実験を順次、繰り返して行った。断線した時点をもってヒーターの寿命とした。その結果を、表1に併せて示す。   Using each of the heaters for an ammonia atmosphere furnace as a product obtained by the AIP treatment, film formation experiments in a semiconductor thin film film formation furnace under an ammonia atmosphere at 1200 ° C. were sequentially and repeatedly performed. The time when the wire was disconnected was regarded as the life of the heater. The results are also shown in Table 1.

(比較例1)
実施例1(基材No.1〜4)及び参考例1(基材No.1、2)と同一の形状寸法及び特性からなるそれぞれの黒鉛製ヒーターに対してCVD処理を行い、ヒーターの表面にSiC被膜を20μmの厚みで形成した。得られた従来型製品としてのアンモニア雰囲気炉用ヒーターを使用して、実施例1と同様にして同一条件下にある半導体薄膜の成膜炉でのGaN成膜実験を繰り返し行い、断線した時点をもってヒーターの寿命とした。結果は、表1に併せて示す。表1からも明らかなように、従来型ヒーターの場合はすべて50回の繰り返し使用で(延べ時間にして150時間の使用で)断線したのに対し、本発明に係るヒーターの場合は、500回繰り返し使用しても(延べ時間にして1500時間使用しても)、断線は起こらなかった。
(Comparative Example 1)
Each of the graphite heaters having the same shape and characteristics as those of Example 1 (Base Nos. 1 to 4) and Reference Example 1 (Base Nos. 1 and 2) is subjected to a CVD treatment to obtain a heater surface. A SiC film was formed to a thickness of 20 μm. Using the ammonia atmosphere furnace heater as the conventional product thus obtained, the GaN film formation experiment was repeated in the semiconductor thin film film formation furnace under the same conditions as in Example 1, and when the wire was disconnected. The life of the heater was assumed. The results are also shown in Table 1. As is clear from Table 1, all of the conventional heaters were disconnected 50 times (with a total time of 150 hours), whereas the heater according to the present invention was 500 times. Even after repeated use (1500 hours in total), disconnection did not occur.

なお、熱処理(成膜実験)後における実施例(基材No.1)及び(基材No.2)のそれぞれのTaC被膜について、走査型電子顕微鏡で観察した結果が図6(a)、(b)に示すSEM写真である。このSEM写真からも、黒鉛基材の特性が本発明の要件を満たす実施例(基材No.1)場合は、クラックの発生が認められず(図6(a))、要件を外れる参考例(基材No.2)は、クラックが進行している様子が分かる(図6(b))。   In addition, the result observed with the scanning electron microscope about each TaC film of the Example (base material No. 1) and (base material No. 2) after heat processing (film-forming experiment) is shown in FIG. It is a SEM photograph shown in b). Also from this SEM photograph, in the case where the characteristics of the graphite base material satisfy the requirements of the present invention (base material No. 1), the occurrence of cracks was not recognized (FIG. 6 (a)), and the reference example deviating from the requirements (Substrate No. 2) shows that the cracks are progressing (FIG. 6B).

次に、実施例(基材No.1)と同一の黒鉛基材に対してAIP処理を行い、黒鉛製ヒーターの表面に表2に示すように膜厚を5〜100μmまで種々変えてTaC被膜を形成した。それぞれのヒーターを使用して、実施例1と同様に1200℃のアンモニア雰囲気下にある半導体薄膜成膜炉での成膜実験を順次、繰り返して行った。断線した時点をもってヒーターの寿命とした。その結果を、表2に併せて示す。   Next, an AIP treatment was performed on the same graphite base material as in the example (base material No. 1), and the TaC coating was formed on the surface of the graphite heater by varying the film thickness from 5 to 100 μm as shown in Table 2. Formed. Using each heater, film forming experiments in a semiconductor thin film forming furnace under an ammonia atmosphere at 1200 ° C. were sequentially performed in the same manner as in Example 1. The time when the wire was disconnected was regarded as the life of the heater. The results are also shown in Table 2.

(比較例2)
実施例1(基材No.1)と同一の形状寸法及び特性からなる黒鉛製ヒーターに対してCVD処理を行い、ヒーターの表面にSiC被膜を100μmの厚みで形成した。得られた従来型製品としてのアンモニア雰囲気炉用ヒーターを使用して、実施例1(基材No.1)と同様にして同一条件下にある半導体薄膜成膜炉でのGaN成膜実験を繰り返し行い、断線した時点をもってヒーターの寿命とした。結果は、表2に併せて示す。表2からも明らかなように、従来型ヒーターの場合は50回の繰り返し使用で(延べ時間にして150時間の使用で)断線したのに対し、本発明に係るヒーターの場合は、すべて500回繰り返し使用しても(延べ時間にして1500時間使用しても)、断線は起こらなかった。
(Comparative Example 2)
A CVD process was performed on the graphite heater having the same shape and characteristics as those of Example 1 (base No. 1), and an SiC film having a thickness of 100 μm was formed on the surface of the heater. Using the ammonia atmosphere furnace heater as the conventional product thus obtained, the GaN film formation experiment was repeated in the semiconductor thin film film formation furnace under the same conditions as in Example 1 (Substrate No. 1). The heater life was determined at the time when the wire was disconnected. The results are also shown in Table 2. As is clear from Table 2, the conventional heater was disconnected 50 times (using 150 hours in total), whereas the heaters according to the present invention were all 500 times. Even after repeated use (1500 hours in total), disconnection did not occur.

なお、本発明は、特許請求の範囲を逸脱しない範囲で設計変更できるものであり、上記実施形態や実施例に限定されるものではない。   The present invention can be changed in design without departing from the scope of the claims, and is not limited to the above-described embodiments and examples.

本発明に係る還元性雰囲気炉用炭素複合材料を示す断面模式図である。It is a cross-sectional schematic diagram which shows the carbon composite material for reducing atmosphere furnaces concerning this invention. 本発明の製造方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of this invention. AIP処理を実施するためのAIP装置を示す原理説明図である。It is principle explanatory drawing which shows the AIP apparatus for implementing AIP processing. 半導体薄膜の成膜炉用ヒーターの概略斜視図である。It is a schematic perspective view of the heater for film-forming furnaces of a semiconductor thin film. CVD法で成膜したTaC被膜の結晶組織を示す要部断面模式図であり、(a)は結晶組織が繊維柱状のもの、(b)は柱状のものを示す図である。It is a principal part cross-section figure which shows the crystal structure of the TaC film formed by CVD method, (a) is a figure where a crystal structure is a fiber column shape, (b) is a figure which shows a column shape. 熱処理(GaN成膜実験)後における実施例1(基材No.1)及び参考例1(基材No.1)のそれぞれのTaC被膜についてのSEM写真であり、(a)は実施例1(基材No.1)のもの、(b)は参考例1(基材No.1)のものである。It is a SEM photograph about each TaC film of Example 1 (base material No. 1) and reference example 1 (base material No. 1) after heat processing (GaN film-forming experiment), and (a) is Example 1 ( Base No. 1) and (b) are those of Reference Example 1 (Base No. 1).

符号の説明Explanation of symbols

1 本発明複合材料
2 黒鉛基材
3 TaC被膜
4 洗浄部
5 チャンバ
6 回転テーブル
7 供給口
8 バイアス電源
9 排気口
10 ターゲット材(金属Ta)
11 アーク電源
12 陽極
DESCRIPTION OF SYMBOLS 1 This invention composite material 2 Graphite base material 3 TaC film 4 Washing part 5 Chamber 6 Rotary table 7 Supply port 8 Bias power supply 9 Exhaust port 10 Target material (metal Ta)
11 Arc power supply 12 Anode

Claims (6)

タンタル微粒子を、炭素を含む反応性ガス粒子と共に、黒鉛基材の表面に付着させることによって、前記表面に炭化タンタル微粒子を緻密に積層してなる結晶組織の炭化タンタルの被膜が形成され、かつ該黒鉛基材の特性値として熱膨張係数が、前記炭化タンタル被膜の熱膨張係数±2.0×10−6/Kの範囲内であり、前記黒鉛基材が、0.01〜5μmの平均気孔半径の等方性黒鉛基材であることを特徴とする還元性雰囲気炉用炭素複合材料。 By attaching the tantalum fine particles together with the reactive gas particles containing carbon to the surface of the graphite substrate, a tantalum carbide film having a crystalline structure formed by densely laminating tantalum carbide fine particles on the surface is formed, and As a characteristic value of the graphite base material, a thermal expansion coefficient is in a range of ± 2.0 × 10 −6 / K of the tantalum carbide coating, and the graphite base material has an average pore size of 0.01 to 5 μm. A carbon composite material for a reducing atmosphere furnace, characterized by being an isotropic graphite substrate having a radius. タンタル微粒子を、炭素を含む反応性ガス粒子と共に、黒鉛基材の表面に付着させることによって、前記表面に炭化タンタル微粒子を緻密に積層してなる結晶組織の炭化タンタルの被膜が形成され、かつ該黒鉛基材の特性値として熱膨張係数が、前記炭化タンタル被膜の熱膨張係数±2.0×10−6/Kの範囲内であり、前記黒鉛基材が、1000℃基準のガス放出圧力が10−4Pa/g以下の等方性黒鉛基材であることを特徴とする還元性雰囲気炉用炭素複合材料。 By attaching the tantalum fine particles together with the reactive gas particles containing carbon to the surface of the graphite substrate, a tantalum carbide film having a crystalline structure formed by densely laminating tantalum carbide fine particles on the surface is formed, and As a characteristic value of the graphite base material, a thermal expansion coefficient is in a range of ± 2.0 × 10 −6 / K of the tantalum carbide coating, and the graphite base material has a gas discharge pressure on the basis of 1000 ° C. A carbon composite material for a reducing atmosphere furnace, which is an isotropic graphite base material of 10 −4 Pa / g or less. タンタル微粒子を、炭素を含む反応性ガス粒子と共に、黒鉛基材の表面に付着させることによって、前記表面に炭化タンタル微粒子を緻密に積層してなる結晶組織の炭化タンタルの被膜が形成され、かつ該黒鉛基材の特性値として熱膨張係数が、前記炭化タンタル被膜の熱膨張係数±2.0×10−6/Kの範囲内であり、前記黒鉛基材が、Al<0.3ppm、Fe<1.0ppm、Mg<0.1ppm、Si<0.1ppmで、灰分が10ppm以下の量の不純物を含有している等方性黒鉛基材であることを特徴とする還元性雰囲気炉用炭素複合材料。 By attaching the tantalum fine particles together with the reactive gas particles containing carbon to the surface of the graphite substrate, a tantalum carbide film having a crystalline structure formed by densely laminating tantalum carbide fine particles on the surface is formed, and As a characteristic value of the graphite base material, a thermal expansion coefficient is in a range of ± 2.0 × 10 −6 / K of the tantalum carbide coating, and the graphite base material has Al <0.3 ppm, Fe < A carbon composite for a reducing atmosphere furnace characterized by being an isotropic graphite base material containing impurities of 1.0 ppm, Mg <0.1 ppm, Si <0.1 ppm and an ash content of 10 ppm or less material. ターゲット材としての金属タンタル及び炭素を含む反応ガスを使用して、400〜600℃の雰囲気下でアークイオンプレーティング(AIP)式反応性蒸着法により前記金属タンタルの微粒子を前記反応ガスの粒子と共に黒鉛基材の表面に付着させて、前記表面に炭化タンタル微粒子を緻密に積層してなる炭化タンタルの被膜を形成する工程を有しており、前記黒鉛基材の特性値としての熱膨張係数が、前記炭化タンタル被膜の熱膨張係数±1.5×10−6/Kの範囲内であり、前記黒鉛基材が、0.01〜5μmの平均気孔半径の等方性黒鉛基材であることを特徴とする還元性雰囲気炉用炭素複合材料の製造方法。 Using a reactive gas containing metallic tantalum and carbon as a target material, the fine particles of metallic tantalum together with the reactive gas particles by an arc ion plating (AIP) reactive deposition method in an atmosphere of 400 to 600 ° C. A step of forming a tantalum carbide film formed by densely laminating tantalum carbide fine particles on the surface of the graphite substrate, and having a coefficient of thermal expansion as a characteristic value of the graphite substrate. The thermal expansion coefficient of the tantalum carbide coating is within a range of ± 1.5 × 10 −6 / K, and the graphite base material is an isotropic graphite base material having an average pore radius of 0.01 to 5 μm. A method for producing a carbon composite material for a reducing atmosphere furnace characterized by: ターゲット材としての金属タンタル及び炭素を含む反応ガスを使用して、400〜600℃の雰囲気下でアークイオンプレーティング(AIP)式反応性蒸着法により前記金属タンタルの微粒子を前記反応ガスの粒子と共に黒鉛基材の表面に付着させて、前記表面に炭化タンタル微粒子を緻密に積層してなる炭化タンタルの被膜を形成する工程を有しており、前記黒鉛基材の特性値としての熱膨張係数が、前記炭化タンタル被膜の熱膨張係数±1.5×10−6/Kの範囲内であり、前記黒鉛基材が、1000℃基準のガス放出圧力が10−4Pa/g以下の等方性黒鉛基材であることを特徴とする還元性雰囲気炉用炭素複合材料の製造方法。 Using a reactive gas containing metallic tantalum and carbon as a target material, the fine particles of metallic tantalum together with the reactive gas particles by an arc ion plating (AIP) reactive deposition method in an atmosphere of 400 to 600 ° C. A step of forming a tantalum carbide film formed by densely laminating tantalum carbide fine particles on the surface of the graphite substrate, and having a coefficient of thermal expansion as a characteristic value of the graphite substrate. the tantalum carbide coating is in the range of thermal expansion coefficient ± 1.5 × 10 -6 / K, the graphite base material is isotropic gas discharge pressure of 1000 ° C. criteria below 10 -4 Pa / g A method for producing a carbon composite material for a reducing atmosphere furnace, which is a graphite substrate. ターゲット材としての金属タンタル及び炭素を含む反応ガスを使用して、400〜600℃の雰囲気下でアークイオンプレーティング(AIP)式反応性蒸着法により前記金属タンタルの微粒子を前記反応ガスの粒子と共に黒鉛基材の表面に付着させて、前記表面に炭化タンタル微粒子を緻密に積層してなる炭化タンタルの被膜を形成する工程を有しており、前記黒鉛基材の特性値としての熱膨張係数が、前記炭化タンタル被膜の熱膨張係数±1.5×10−6/Kの範囲内であり、前記黒鉛基材が、Al<0.3ppm、Fe<1.0ppm、Mg<0.1ppm、Si<0.1ppmで、灰分が10ppm以下の量の不純物を含有している等方性黒鉛基材であることを特徴とする還元性雰囲気炉用炭素複合材料の製造方法。 Using a reactive gas containing metallic tantalum and carbon as a target material, the fine particles of metallic tantalum together with the reactive gas particles by an arc ion plating (AIP) reactive deposition method in an atmosphere of 400 to 600 ° C. A step of forming a tantalum carbide film formed by densely laminating tantalum carbide fine particles on the surface of the graphite substrate, and having a coefficient of thermal expansion as a characteristic value of the graphite substrate. The thermal expansion coefficient of the tantalum carbide coating is within a range of ± 1.5 × 10 −6 / K, and the graphite base material is Al <0.3 ppm, Fe <1.0 ppm, Mg <0.1 ppm, Si <The manufacturing method of the carbon composite material for reducing atmosphere furnaces characterized by being an isotropic graphite base material which contains impurities of the amount of 0.1 ppm and ash content of 10 ppm or less.
JP2007195644A 2007-07-27 2007-07-27 Carbon composite material for reducing atmosphere furnace and method for producing the same Expired - Fee Related JP4641536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007195644A JP4641536B2 (en) 2007-07-27 2007-07-27 Carbon composite material for reducing atmosphere furnace and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007195644A JP4641536B2 (en) 2007-07-27 2007-07-27 Carbon composite material for reducing atmosphere furnace and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP06738597A Division JP4498477B2 (en) 1997-03-04 1997-03-04 Carbon composite material for reducing atmosphere furnace and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007308370A JP2007308370A (en) 2007-11-29
JP4641536B2 true JP4641536B2 (en) 2011-03-02

Family

ID=38841576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007195644A Expired - Fee Related JP4641536B2 (en) 2007-07-27 2007-07-27 Carbon composite material for reducing atmosphere furnace and method for producing the same

Country Status (1)

Country Link
JP (1) JP4641536B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110582476A (en) * 2017-04-28 2019-12-17 韩国东海炭素株式会社 Carbon material having coating layer comprising TaC and method for producing same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102136197B1 (en) * 2018-12-17 2020-07-22 주식회사 티씨케이 Carbonated tantalum coating material
KR102600114B1 (en) * 2020-12-01 2023-11-10 주식회사 티씨케이 Tantalum carbide coated material and manufacturing method thereof
CN113549895A (en) * 2021-07-12 2021-10-26 北京钽途新材料科技有限公司 Method for preparing tantalum carbide coating on surface of graphite substrate and graphite device
CN113735627B (en) * 2021-09-06 2022-11-01 杭州幄肯新材料科技有限公司 Graphite thermal field material with tantalum carbide coating coated on surface and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617914A (en) * 1979-07-24 1981-02-20 Inoue Japax Res Inc Surface treated graphite material
JPH01249679A (en) * 1988-03-29 1989-10-04 Toyo Tanso Kk Graphite-silicon carbide composite body and production thereof
JPH03243776A (en) * 1990-02-22 1991-10-30 Toyo Tanso Kk Graphite member for cvd
JPH04325681A (en) * 1991-04-26 1992-11-16 Ngk Insulators Ltd Method and device for producing ceramic sintered body
JPH06300130A (en) * 1993-04-08 1994-10-28 Teikoku Piston Ring Co Ltd Hard coating material, sliding member coated with it, and its manufacture
JP2007327143A (en) * 2007-07-27 2007-12-20 Toyo Tanso Kk Method for producing carbon composite material for reducing atmospheric furnace
JP2007332024A (en) * 2007-07-27 2007-12-27 Toyo Tanso Kk Carbon composite material for reducing atmosphere furnace
JP4498476B2 (en) * 1997-02-25 2010-07-07 東洋炭素株式会社 Carbon composite material for reducing atmosphere furnace and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617914A (en) * 1979-07-24 1981-02-20 Inoue Japax Res Inc Surface treated graphite material
JPH01249679A (en) * 1988-03-29 1989-10-04 Toyo Tanso Kk Graphite-silicon carbide composite body and production thereof
JPH03243776A (en) * 1990-02-22 1991-10-30 Toyo Tanso Kk Graphite member for cvd
JPH04325681A (en) * 1991-04-26 1992-11-16 Ngk Insulators Ltd Method and device for producing ceramic sintered body
JPH06300130A (en) * 1993-04-08 1994-10-28 Teikoku Piston Ring Co Ltd Hard coating material, sliding member coated with it, and its manufacture
JP4498476B2 (en) * 1997-02-25 2010-07-07 東洋炭素株式会社 Carbon composite material for reducing atmosphere furnace and method for producing the same
JP2007327143A (en) * 2007-07-27 2007-12-20 Toyo Tanso Kk Method for producing carbon composite material for reducing atmospheric furnace
JP2007332024A (en) * 2007-07-27 2007-12-27 Toyo Tanso Kk Carbon composite material for reducing atmosphere furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110582476A (en) * 2017-04-28 2019-12-17 韩国东海炭素株式会社 Carbon material having coating layer comprising TaC and method for producing same
CN110582476B (en) * 2017-04-28 2022-05-24 韩国东海炭素株式会社 Carbon material having coating layer comprising TaC and method for producing same

Also Published As

Publication number Publication date
JP2007308370A (en) 2007-11-29

Similar Documents

Publication Publication Date Title
JP5250321B2 (en) Method for producing seed crystal for silicon carbide single crystal growth and method for producing silicon carbide single crystal
JP5762735B2 (en) Tantalum carbide coated carbon material
JP5275567B2 (en) Tantalum carbide-coated carbon material and method for producing the same
JP4641536B2 (en) Carbon composite material for reducing atmosphere furnace and method for producing the same
JP4641535B2 (en) Carbon composite material for reducing atmosphere furnace and method for producing the same
JP4498477B2 (en) Carbon composite material for reducing atmosphere furnace and method for producing the same
JP2004084057A (en) Carbon composite material
JP4498476B2 (en) Carbon composite material for reducing atmosphere furnace and method for producing the same
JP4641533B2 (en) Carbon composite material for reducing atmosphere furnace and method for producing the same
JP4690367B2 (en) Carbon composite material for reducing atmosphere furnace
JP3680281B2 (en) Tantalum carbide, tantalum carbide manufacturing method, tantalum carbide wiring, tantalum carbide electrode
JP4641534B2 (en) Method for producing carbon composite material for reducing atmosphere furnace
JP2006045059A (en) Aluminum nitride sintered compact, corrosion resistant member, metal buried article, and semiconductor holding device
KR20000028899A (en) Corrosion-resistant members against a chlorine-based gas
JP6210445B2 (en) Method for producing carbon nanotube
JP4056774B2 (en) Heating element and manufacturing method thereof
JP2007254167A (en) Method for production of carbon nanotube
JP4386663B2 (en) Carbon composite material
JP6797068B2 (en) Method for manufacturing titanium carbide-containing thin film by atomic layer deposition method
JP2011093772A (en) Graphite member provided with plasma resistance characteristic
JP5269819B2 (en) Metal buried goods
JP2010100463A (en) Method for producing substrate for growing carbon nanotube and method for producing carbon nanotube
JP2013126942A (en) Method for producing carbon nanotube
JP2013181243A (en) Aluminum nitride coating film and coated member coated with the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees