JPH09235163A - Heat-treatment jig and production thereof - Google Patents

Heat-treatment jig and production thereof

Info

Publication number
JPH09235163A
JPH09235163A JP8356183A JP35618396A JPH09235163A JP H09235163 A JPH09235163 A JP H09235163A JP 8356183 A JP8356183 A JP 8356183A JP 35618396 A JP35618396 A JP 35618396A JP H09235163 A JPH09235163 A JP H09235163A
Authority
JP
Japan
Prior art keywords
silicon carbide
sic
silicon
base material
jig
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8356183A
Other languages
Japanese (ja)
Other versions
JP3739507B2 (en
Inventor
Yoshio Funato
喜雄 船戸
Koji Furukawa
耕二 古川
Hisao Yamamoto
久男 山本
Nobuo Kageyama
信夫 蔭山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Tokai Carbon Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP35618396A priority Critical patent/JP3739507B2/en
Publication of JPH09235163A publication Critical patent/JPH09235163A/en
Application granted granted Critical
Publication of JP3739507B2 publication Critical patent/JP3739507B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat-treatment jig having an excellent heat-cycle and thermal-shock resisting characteristics to be suitable for the use as a member for heat treatment in semiconductor production, and provide a method for producing the jig. SOLUTION: This jig comprises a SiC-coated silicon carbide substrate produced by forming a SiC film on a silicon-impregnated silicon carbide by CVD (chemical vapor deposition) so that no bubbles of 2μm or larger diameter are present in the substrate surface layer within 200μm from the surface of silicon carbide substrate in contact with the SiC film when observed with a 400-magnification scanning electron microscope. The method for producing the heat- treatment jig comprises introducing a raw-material compound that forms a SiC film, and forming the SiC film in a non-oxidizing atmosphere at temperature of 1000-1290 deg.C under pressure of 500-760Torr when forming the SiC film on the silicon-impregnated silicon carbide substrate by CVD.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造用部材
として好適な高純度で耐熱サイクル特性、耐熱衝撃特性
などに優れる熱処理用治具およびその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a jig for heat treatment, which is suitable as a member for manufacturing semiconductors and has excellent heat cycle characteristics and thermal shock resistance, and a manufacturing method thereof.

【0002】半導体製造用の拡散炉に用いられるライナ
ーチューブ、プロセスチューブ、ウエハーボート等の熱
処理用治具には、急熱、急冷に対する耐熱サイクル特
性、耐熱衝撃特性や機械的強度に加えて高純度のシリコ
ンウエハーを汚染しない非汚染性が要求される。従来、
これらの熱処理用治具として高純度の石英ガラスが使用
されてきたが、熱処理工程の高温化が進むにつれ石英ガ
ラスでは高温強度が不十分となってきたため、これに代
わる材料として米国特許第3951587号(特公昭54
−10825 号公報)にはシリコンを含浸した炭化珪素材が
開示されている。しかしながら、この材料は高純度の石
英ガラスに比べて不純物レベルが高い欠点がある。
For heat treatment jigs such as liner tubes, process tubes, and wafer boats used in diffusion furnaces for semiconductor manufacturing, high-purity in addition to heat cycle characteristics against rapid heat and quenching, thermal shock resistance characteristics and mechanical strength. The non-contamination property that does not contaminate the silicon wafer is required. Conventionally,
High-purity quartz glass has been used as a jig for these heat treatments. However, as the temperature of the heat treatment process has increased, quartz glass has become insufficient in high-temperature strength, and as a substitute material, US Pat. (Japanese Patent Sho 54
No. 10825) discloses a silicon carbide material impregnated with silicon. However, this material has a defect that the impurity level is high as compared with high-purity quartz glass.

【0003】[0003]

【従来の技術】この欠点を解消する手段として、特開昭
54−90966号公報、特開昭54−90967号公
報、特開昭63−35452号公報、特開平1−282
152号公報などに記載されているようにシリコン含浸
した炭化珪素基材の表面をCVD法(化学的気相析出
法)によりSiC被膜を形成して不純物の揮散を防止す
る方法が有効である。通常、CVD法によるSiC被膜
の形成は、SiとCを含むCH3 SiCl3 、CH3
iHCl2 などの有機珪素化合物を熱分解させる方法、
あるいはSiCl4 などの珪素化合物とCH4 などの炭
素化合物との加熱反応によりSiCを析出させる方法で
形成されるが、加熱時に炭化珪素基材中に含浸したシリ
コンの一部が揮散して基材表面に気孔を生じ易く、その
結果炭化珪素基材とSiC被膜との密着性が悪くなって
接着強度の低下を招き、熱衝撃、加熱サイクルによりS
iC被膜の剥離が起こりやすい欠点がある。また、Si
C被膜の緻密性が損なわれてピンホールが発生した場合
には薬品洗浄時に、含浸したシリコンの一部が浸食され
て溶出するために気孔が発生する。このため、生成した
気孔中に不純物が溜まって、不純物の発生源となり易く
なる。更に、SiC被膜の結晶成長方向を揃えて被膜の
緻密性を付与する提案(特開昭63−210276号公報)もあ
るが、シリコンの融点を越える温度でSiC被膜の形成
を行うので炭化珪素基材に多数の気孔が生成して、基材
の強度が低下する難点がある。
2. Description of the Related Art As means for solving this drawback, JP-A-54-90966, JP-A-54-90967, JP-A-63-35452, and JP-A-1-282 are known.
No. 152, for example, a method of forming a SiC film on the surface of a silicon carbide substrate impregnated with silicon by a CVD method (chemical vapor deposition method) to prevent evaporation of impurities is effective. Usually, the formation of the SiC film by the CVD method is performed by CH 3 SiCl 3 , CH 3 S containing Si and C.
a method of thermally decomposing an organosilicon compound such as iHCl 2 ;
Alternatively, it is formed by a method of precipitating SiC by a heating reaction of a silicon compound such as SiCl 4 and a carbon compound such as CH 4, but a part of the silicon impregnated in the silicon carbide base material is volatilized during heating and the base material is evaporated. Porosity is likely to occur on the surface, resulting in poor adhesion between the silicon carbide base material and the SiC coating, resulting in a decrease in adhesive strength.
There is a drawback that peeling of the iC coating is likely to occur. In addition, Si
If the denseness of the C coating is impaired and pinholes are generated, a part of the impregnated silicon is eroded and eluted during chemical cleaning, resulting in pores. Therefore, impurities are likely to accumulate in the generated pores and become a source of generation of impurities. Further, there is a proposal (Japanese Unexamined Patent Publication No. 63-210276) in which the crystal growth direction of the SiC film is aligned to give the film denseness, but since the SiC film is formed at a temperature exceeding the melting point of silicon, a silicon carbide group is used. There is a problem that a large number of pores are generated in the material and the strength of the base material is reduced.

【0004】この問題点を解消する技術として、シリコ
ンを含浸した炭化珪素質セラミックスを減圧下で850
℃〜1000℃に加熱し、SiCを生成する反応ガスを
導入してSiCの被膜形成を開始し、そのまま冷却する
ことなく昇温して1200〜1400℃の温度で被膜を
形成するシリコン含浸炭化珪素質セラミックスへの炭化
珪素被膜の形成方法が、本出願人の一人により提案され
ている(特開平4−65374 号公報)。この方法によれ
ば、シリコンの蒸発速度が小さい1000℃以下の温度
でSiC被膜の形成を開始することにより、1000℃
以上に昇温しても形成された被膜によりシリコンの蒸発
が抑制される効果がもたらされる。
As a technique for solving this problem, silicon carbide-based ceramics impregnated with silicon is reduced to 850 under reduced pressure.
A silicon-impregnated silicon carbide that is heated to ℃ to 1000 ℃, introduces a reaction gas that produces SiC to start the film formation of SiC and raises the temperature without cooling to form a film at a temperature of 1200 to 1400 ℃. A method of forming a silicon carbide coating on a fine ceramic has been proposed by one of the present applicants (Japanese Patent Laid-Open No. 4-65374). According to this method, by starting the formation of the SiC coating at a temperature of 1000 ° C. or less at which the evaporation rate of silicon is low, 1000 ° C.
Even if the temperature is increased above, the effect of suppressing evaporation of silicon is brought about by the formed film.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、シリコ
ン含浸を施した炭化珪素基材にCVD法によりSiC被
膜を形成した材料にあっては、SiC被覆層界面の組織
状態によって耐熱サイクル特性や耐熱衝撃特性が微妙に
変化し、過酷な熱履歴を受ける半導体部材として使用す
る際にSiC被膜に亀裂が生じたり、SiC皮膜が剥離
したりする問題点があった。
However, in a material in which a SiC film is formed on a silicon carbide base material impregnated with silicon by the CVD method, the heat cycle characteristics and the heat shock characteristics depend on the texture of the interface of the SiC coating layer. Change subtly, and when used as a semiconductor member that is subjected to severe heat history, there is a problem that a crack occurs in the SiC coating or the SiC coating peels off.

【0006】本発明者らは、上記の原因を解明するため
に鋭意研究を重ねたところ、被覆したSiC被膜に接す
る炭化珪素基材の特定の表層部分に存在する気孔ならび
にSiC被膜の性状が耐熱サイクル特性や耐熱衝撃特性
に影響を与えることを確認した。
The inventors of the present invention have conducted extensive studies in order to elucidate the above-mentioned cause. As a result, the pores existing in a specific surface layer portion of the silicon carbide base material in contact with the coated SiC film and the properties of the SiC film are heat-resistant. It was confirmed that it affects the cycle characteristics and thermal shock resistance characteristics.

【0007】本発明は上記の知見に基づいて開発された
もので、その目的は、半導体の製造に用いる際に優れた
耐熱サイクル特性および耐熱衝撃特性を発揮する熱処理
用治具およびその製造方法を提供することにある。
The present invention has been developed on the basis of the above findings, and its object is to provide a heat treatment jig and a manufacturing method thereof that exhibit excellent heat cycle characteristics and thermal shock resistance characteristics when used in the manufacture of semiconductors. To provide.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による熱処理用治具は、シリコンを含浸した
炭化珪素基材にCVD法によりSiCの被膜を形成した
SiC被覆炭化珪素材であって、炭化珪素基材がSiC
被膜に接する界面より200μm 以内の基材表層部に、
該表層部を走査型電子顕微鏡により400倍の倍率で観
察測定した場合に直径2μm 以上の気孔が存在しないこ
とを構成上の特徴とする。
A jig for heat treatment according to the present invention for achieving the above object is a SiC-coated silicon carbide material in which a SiC film is formed by a CVD method on a silicon carbide base material impregnated with silicon. The silicon carbide base material is SiC
In the surface layer of the base material within 200 μm from the interface in contact with the coating,
When the surface layer portion is observed and measured with a scanning electron microscope at a magnification of 400 times, it is characterized in that there are no pores having a diameter of 2 μm or more.

【0009】通常、セラミックス基材面にCVD法によ
りSiC被覆を施した場合の層間強度は層界面部位の緻
密性と密着性に大きく支配されるが、シリコンを含浸し
た炭化珪素を基材とした被覆構造では、特にSiC被膜
に接する炭化珪素基材における深さ200μm 以内の表
層部の組織緻密度が層間強度に著しい影響を与え、前記
200μm 以内に直径2μm 以上の気孔が存在すると熱
履歴を受けた際に層間組織に亀裂や剥離を発生させ易
い。したがって、本発明で特定した炭化珪素基材がSi
C被膜に接する界面より200μm 以内の基材表層部
に、直径2μm 以上の気孔が存在しない組織構造とする
ことにより、過酷な熱履歴に十分耐える耐熱サイクル特
性ならびに耐熱衝撃特性が付与される。なお、前記の気
孔直径は走査型電子顕微鏡により400倍の倍率で観察
測定される。
Normally, the interlayer strength when a SiC substrate is coated with SiC by the CVD method is largely controlled by the denseness and adhesion of the layer interface portion, but silicon carbide impregnated with silicon is used as the substrate. In the coating structure, the texture density of the surface layer within a depth of 200 μm in the silicon carbide base material in contact with the SiC coating has a significant effect on the interlaminar strength, and the presence of pores with a diameter of 2 μm or more within 200 μm causes a thermal history. When this happens, cracks and peeling easily occur in the interlayer structure. Therefore, the silicon carbide substrate specified in the present invention is Si
By forming a microstructure having no pores with a diameter of 2 μm or more in the surface layer of the base material within 200 μm from the interface in contact with the C coating, heat cycle characteristics and thermal shock resistance that sufficiently endure severe thermal history are imparted. The pore diameter is observed and measured with a scanning electron microscope at a magnification of 400 times.

【0010】上記の要件に加えて、形成したSiC被膜
のX線回折における(111)面に対する(200)面
の回折強度値の比、I(200)/I(111)を0.
005以下として、SiC被膜結晶の(111)面への
配向性を強くさせることにより材料の耐熱衝撃特性をよ
り一層向上させることが可能となる。この場合のX線回
折による回折強度値は、CuのKαで測定した値であ
り、X線回折強度は、印加電圧40KV、印加電流20m
A、フィルターCu/Ni、発散スリット1 °の条件で
測定される。
In addition to the above requirements, the ratio of the diffraction intensity value of the (200) plane to the (111) plane in the X-ray diffraction of the formed SiC film, I (200) / I (111), is set to 0.
When it is 005 or less, the thermal shock resistance of the material can be further improved by strengthening the orientation of the SiC film crystal to the (111) plane. The diffraction intensity value by X-ray diffraction in this case is a value measured by Kα of Cu, and the X-ray diffraction intensity is an applied voltage of 40 KV and an applied current of 20 m.
Measured under the conditions of A, filter Cu / Ni, and divergence slit 1 °.

【0011】また、本発明による熱処理用治具の製造方
法は、シリコンを含浸した炭化珪素基材の表面にCVD
法によりSiC被膜を形成するに当たり、SiC被膜を
形成する原料化合物を導入し、非酸化性雰囲気中、10
00〜1290℃の温度、500〜760Torrの圧力で
SiC被膜を形成することを構成上の特徴とする。
Further, according to the method for manufacturing a heat treatment jig of the present invention, the surface of a silicon carbide substrate impregnated with silicon is subjected to CVD.
In forming the SiC coating by the method, a raw material compound for forming the SiC coating is introduced, and the raw material compound is placed in a non-oxidizing atmosphere for 10 minutes.
The structural feature is that the SiC film is formed at a temperature of 00 to 1290 ° C. and a pressure of 500 to 760 Torr.

【0012】[0012]

【発明の実施の形態】本発明の基材となるシリコンを含
浸した炭化珪素基材は、炭化珪素の成形体を高温で熱処
理して焼結した再結晶質の炭化珪素に溶融シリコンを含
浸したもの、あるいは炭化珪素と炭素からなる成形体に
溶融シリコンを含浸させたのち高温で熱処理した反応焼
結炭化珪素により構成される。このシリコンの含有量と
しては10〜30重量%程度のものが使用される。
BEST MODE FOR CARRYING OUT THE INVENTION The silicon carbide base material impregnated with silicon, which is the base material of the present invention, is obtained by impregnating recrystallized silicon carbide obtained by heat-treating a molded body of silicon carbide at high temperature with molten silicon. Or a molded body of silicon carbide and carbon impregnated with molten silicon and then heat-treated at high temperature to form a reaction sintered silicon carbide. The silicon content is about 10 to 30% by weight.

【0013】該シリコン含浸炭化珪素基材の表面にCV
D法でSiC被膜を形成する方法としては、1Torr以下
に減圧脱気後5〜50℃/minの昇温速度で600〜85
0℃の温度まで加熱する第一工程、ついで50〜760
Torrの圧力となるまで非酸化性ガスを導入したのち、更
に5〜50℃/minの昇温速度で1000〜1290℃の
温度に加熱する第二工程、引き続き500〜760Torr
の圧力にし、原料化合物をキャリアーガスとともに導入
し、1000〜1290℃の温度で、原料化合物を熱分
解または化学反応させ、SiC被膜を形成する第三工程
を適用することが好ましい。原料化合物としては、例え
ば1分子中にSi原子とC原子を含むCH3 SiC
3 、CH3 SiHCl2 などの有機珪素化合物あるい
はSiCl4のような珪素化合物とCH4 などの炭素化
合物とを併用するものが例示される。キャリアーガスと
しては、水素ガス、アルゴンガスなどの非酸化性ガスが
例示される。また、導入に当たっては、キャリアーガス
と原料化合物とをモル比(キャリアーガス/原料化合
物)4〜100とするのが好ましい。なお、このモル比
の計算に当たっては、原料化合物として珪素化合物と炭
素化合物とを併用する場合は、炭化珪素に換算したモル
数を原料化合物のモル数とする。
CV is formed on the surface of the silicon-impregnated silicon carbide substrate.
As a method of forming the SiC coating by the D method, 600 to 85 at a temperature rising rate of 5 to 50 ° C./min after deaeration under reduced pressure of 1 Torr or less.
First step of heating to a temperature of 0 ° C., then 50-760
After introducing a non-oxidizing gas to a pressure of Torr, the second step of further heating to a temperature of 1000 to 1290 ° C. at a temperature rising rate of 5 to 50 ° C./min, and subsequently 500 to 760 Torr
It is preferable to apply the third step in which the raw material compound is introduced together with the carrier gas and the raw material compound is thermally decomposed or chemically reacted at a temperature of 1000 to 1290 ° C. to form a SiC film. Examples of the raw material compound include CH 3 SiC containing Si atom and C atom in one molecule.
l 3, CH 3 which are used in combination with carbon compounds such as organosilicon compounds, such as SiHCl 2, or silicon compounds such as SiCl 4 and CH 4 is exemplified. Examples of the carrier gas include non-oxidizing gases such as hydrogen gas and argon gas. Further, upon introduction, it is preferable that the carrier gas and the raw material compound have a molar ratio (carrier gas / raw material compound) of 4 to 100. In the calculation of this molar ratio, when a silicon compound and a carbon compound are used together as raw material compounds, the number of moles converted to silicon carbide is the number of moles of the raw material compound.

【0014】第一工程および第二工程での昇温速度の設
定は5〜50℃/min であり、昇温速度が50℃/minを
超える場合には基材に熱応力が発生して亀裂を生じるこ
とがあり、また5℃/min未満では昇温が緩徐であるため
生産性に劣り、いずれも好ましくない。より好ましい昇
温速度は10〜30℃/minである。第一工程において、
脱気後の圧力が1Torrを越えると、残留酸素、水分によ
り炭化珪素基材の表面が酸化されて耐蝕性が低下すると
共にSiC被膜の密着性が低下するので好ましくない。
また、加熱温度が600℃未満では吸着酸素等の除去が
不十分となり炭化珪素基材の表面が酸化され易くなるの
で好ましくない。一方、加熱温度が850℃を越える
と、シリコンが減圧下で蒸発し炭化珪素基材に気孔が発
生し易くなりSiC被膜の密着性が低下するので好まし
くない。更に、第二工程において、760Torrを越える
と水素ガスが漏洩し易くなり、水素ガスが無駄になる。
また圧力容器の強化が必要になり設備が複雑になるので
好ましくない。
The temperature rising rate in the first step and the second step is set to 5 to 50 ° C./min. When the temperature rising rate exceeds 50 ° C./min, thermal stress is generated in the base material and cracks occur. And less than 5 ° C./min, the temperature rise is slow and the productivity is poor. A more preferable temperature rising rate is 10 to 30 ° C./min. In the first step,
If the pressure after degassing exceeds 1 Torr, the surface of the silicon carbide base material is oxidized by residual oxygen and moisture, and the corrosion resistance is reduced and the adhesion of the SiC coating is reduced, which is not preferable.
Further, if the heating temperature is lower than 600 ° C., the removal of adsorbed oxygen and the like becomes insufficient and the surface of the silicon carbide base material is easily oxidized, which is not preferable. On the other hand, if the heating temperature exceeds 850 ° C., silicon is evaporated under reduced pressure and pores are easily generated in the silicon carbide base material, and the adhesion of the SiC coating is deteriorated, which is not preferable. Furthermore, in the second step, when the pressure exceeds 760 Torr, the hydrogen gas is likely to leak and the hydrogen gas is wasted.
Further, the pressure vessel needs to be strengthened and the equipment becomes complicated, which is not preferable.

【0015】第二工程および第三工程においては、炭化
珪素基材中に含浸した表面部のシリコンが熱揮散しない
ようにシリコンの蒸気圧以下の昇温条件およびCVD反
応系の温度、圧力等の条件を制御することにより本発明
のSiC被覆炭化珪素からなる熱処理治具を得ることが
できる。すなわち、第二工程での圧力が50Torr未満の
場合、また第三工程において1290℃を超えたり、5
00Torr未満の温度、圧力条件では炭化珪素基材中に含
浸した表層部のシリコンが熱揮散するために基材表層部
に気孔が形成される。また、第三工程における加熱温度
が1000℃未満では、シリコンの熱揮散は抑制される
もののSiC被膜の成長速度が低下するため実用的でな
い。第三工程で、760Torrを越える圧力では原料化合
物のガスが炭化珪素基材の表面に化学蒸着する前に炭化
珪素の粉末を生成するためにSiC被膜の生成速度が抑
制される。
In the second step and the third step, the temperature rising conditions below the vapor pressure of silicon and the temperature and pressure of the CVD reaction system are controlled so that the silicon on the surface impregnated in the silicon carbide base material does not volatilize by heat. By controlling the conditions, the heat treatment jig made of the SiC-coated silicon carbide of the present invention can be obtained. That is, when the pressure in the second step is less than 50 Torr, and in the third step exceeds 1290 ° C,
Under a temperature and pressure condition of less than 00 Torr, pores are formed in the surface layer portion of the base material because the silicon in the surface layer portion impregnated in the silicon carbide base material is thermally evaporated. Further, if the heating temperature in the third step is less than 1000 ° C., the heat vaporization of silicon is suppressed but the growth rate of the SiC coating is reduced, which is not practical. In the third step, at a pressure exceeding 760 Torr, the gas of the raw material compound produces silicon carbide powder before the chemical vapor deposition on the surface of the silicon carbide base material, so that the production rate of the SiC film is suppressed.

【0016】前述した基材の気孔生成を抑制する方法に
加えて、CVD法により形成される耐熱衝撃特性の高い
SiC被膜の結晶性状、すなわち基材上に(111)面
の結晶面が高度に配向して成長したSiC被膜は、温度
1100〜1290℃、圧力500〜760Torrの条件
下で、水素あるいはアルゴンなどのキャリアーガスと原
料化合物とのモル比を4〜100、好ましくは5〜20
に制御することにより達成される。温度が1100℃未
満ではSiC被膜の耐熱衝撃特性の低下が現れる。更
に、キャリアーガス/原料化合物のモル比が4未満では
炭化珪素基材の表面で結晶核となり易いため形成される
SiC被膜が粗粒化して緻密性が低下し、100を超え
るとSiC被膜表面内での多結晶化が起こり易くなるた
めSiC被膜結晶の(111)面への配向性が低下する
ためである。
In addition to the above-described method for suppressing the generation of pores in the base material, the crystal properties of the SiC coating formed by the CVD method and having high thermal shock resistance, that is, the crystal plane of the (111) plane on the base material is highly enhanced. The SiC film grown by orientation has a molar ratio of a carrier gas such as hydrogen or argon to a raw material compound of 4 to 100, preferably 5 to 20 under conditions of a temperature of 1100 to 1290 ° C. and a pressure of 500 to 760 Torr.
It is achieved by controlling to. When the temperature is lower than 1100 ° C, the thermal shock resistance of the SiC coating deteriorates. Further, when the carrier gas / raw material compound molar ratio is less than 4, the SiC film formed tends to become crystal nuclei on the surface of the silicon carbide base material, resulting in coarsening of the formed SiC film, resulting in a decrease in denseness. This is because the polycrystallization in (3) is likely to occur and the orientation of the SiC film crystal on the (111) plane is lowered.

【0017】シリコンを含浸した炭化珪素基材にCVD
法によりSiC被覆を形成した材料は、熱処理治具のよ
うな苛酷な熱サイクルを受ける部材として用いた際、層
間に亀裂や剥離を生じて欠陥が発生するが、これはCV
D法による被覆時に含浸したシリコンが揮散して基材表
層部、特にSiC被膜に接する炭化珪素基材における深
さ200μm 以内の表層部に直径2μm 以上の気孔が存
在することが主因となる。本発明の熱処理用治具は、被
覆したSiC被膜に接する200μm 以内の炭化珪素基
材表層部に直径2μm 以上の気孔が存在しないから、S
iC被膜は炭化珪素基材と強固に密着し、熱処理用治具
とした場合に急熱、急冷の熱サイクルに対して優れた耐
久性能を発揮する。
CVD on a silicon carbide substrate impregnated with silicon
When used as a member such as a heat treatment jig that undergoes a severe thermal cycle, the material coated with SiC by the method causes cracks and peeling between layers, resulting in defects.
The main cause is that silicon impregnated during coating by the method D is volatilized and pores having a diameter of 2 μm or more are present in the surface layer portion of the base material, particularly the surface layer portion within a depth of 200 μm in the silicon carbide base material in contact with the SiC coating. Since the jig for heat treatment of the present invention does not have pores having a diameter of 2 μm or more in the surface layer portion of the silicon carbide base material within 200 μm in contact with the coated SiC film, S
The iC coating firmly adheres to the silicon carbide base material, and when used as a heat treatment jig, exhibits excellent durability performance against heat cycles of rapid heating and rapid cooling.

【0018】更に、SiC被膜のX線回折の回折強度値
の比、I(200)/I(111)を0.005以下以
下に設定して、SiC被膜の結晶構造の(111)面へ
の配向性を強くすることにより、(111)面が最密充
填の結晶面であることで炭化珪素基材を構成する炭化珪
素およびシリコンとSiC被膜との化学結合力が増加す
るので、SiC被膜の耐熱衝撃特性を一層向上させるこ
とができる。
Further, the ratio of the diffraction intensity values of the X-ray diffraction of the SiC coating, I (200) / I (111), is set to 0.005 or less so that the (111) plane of the crystal structure of the SiC coating is adjusted. By strengthening the orientation, since the (111) plane is a close-packed crystal plane, the chemical bonding force between the silicon carbide and silicon forming the silicon carbide base material and the SiC coating increases, so that the SiC coating The thermal shock resistance can be further improved.

【0019】[0019]

【実施例】以下、本発明の実施例を比較例と対比しなが
ら詳細に説明する。
Hereinafter, examples of the present invention will be described in detail in comparison with comparative examples.

【0020】実施例1〜6、比較例1〜2 50×50×10mmの再結晶炭化珪素にシリコンを20
重量%含浸して炭化珪素基材とした。この基材を環状炉
に入れて2×10-3Torrの真空下で基材に含まれるガス
を脱気した後、20℃/分の昇温速度で800℃に昇温
後,水素ガスを導入して圧力を150Torrに30分間保
持した。次いで20℃/分の昇温速度で加熱して表1記
載の温度まで昇温させて30分間保持したのち、SiC
の被膜形成用の原料化合物としてCH3 SiCl3 を用
い、水素ガスに対するモル比(H2 /CH3 SiC
3 )を変えて供給した。この際、供給量を変えて炉内
圧力を所定の圧力に調整した。このようにしてSiCの
被膜形成時の炉内温度、炉内圧力および原料ガスのモル
比を変えて炭化珪素基材にSiCを被覆した。
Examples 1 to 6 and Comparative Examples 1 to 20 Silicon was added to 50 × 50 × 10 mm recrystallized silicon carbide.
A silicon carbide base material was obtained by impregnating it with a weight percentage. The base material was placed in an annular furnace, the gas contained in the base material was degassed under a vacuum of 2 × 10 −3 Torr, and the temperature was raised to 800 ° C. at a heating rate of 20 ° C./min. It was introduced and the pressure was kept at 150 Torr for 30 minutes. Next, after heating at a temperature rising rate of 20 ° C./min to raise the temperature to that shown in Table 1 and holding for 30 minutes, SiC
Using CH 3 SiCl 3 as a starting compound for film formation, the molar ratio of hydrogen gas (H 2 / CH 3 SiC
l 3 ) was changed and supplied. At this time, the supply amount was changed to adjust the furnace pressure to a predetermined pressure. In this way, the silicon carbide base material was coated with SiC by changing the temperature in the furnace, the pressure in the furnace and the molar ratio of the raw material gas when the SiC film was formed.

【0021】実施例7〜9、比較例3〜4 50×50×10mmの反応焼結炭化珪素基材(残留Si
1.7重量%)を実施例1と同一条件で脱気した後、33
℃/分の昇温速度で700℃まで昇温し、アルゴンガス
を導入して圧力を300Torrに20分間保持した。次い
で10℃/分の昇温速度で表2記載の温度まで加熱した
のち、SiCの被膜形成用の原料ガスとして、SiCl
4 とCH4 を用い、アルゴンガスに対するモル比(2A
r/SiCl4 +CH4 )を変えて供給し、実施例1〜
6と同様にして炉内温度および炉内圧力を調整して炭化
珪素基材にSiCを被覆した。
Examples 7 to 9 and Comparative Examples 3 to 4 50 × 50 × 10 mm reaction-bonded silicon carbide substrate (residual Si
1.7% by weight) was degassed under the same conditions as in Example 1, and then 33
The temperature was raised to 700 ° C. at a heating rate of ° C./min, argon gas was introduced, and the pressure was kept at 300 Torr for 20 minutes. Then, after heating to a temperature shown in Table 2 at a temperature rising rate of 10 ° C./min, SiCl was used as a raw material gas for forming a film of SiC.
4 and CH 4 , using a molar ratio to argon gas (2A
r / SiCl 4 + CH 4 ) is changed and supplied.
In the same manner as in 6, the furnace temperature and the furnace pressure were adjusted to coat the silicon carbide base material with SiC.

【0022】比較例5 実施例1〜6と同一の炭化珪素基材を実施例1〜6と同
一条件で脱気した後、20℃/分の昇温速度で950℃
に昇温後、水素ガスを導入して圧力を150Torrに30
分間保持し、次いで20℃/分の昇温速度で1300℃
に昇温したのち、炉内圧力を200Torrに保持しながら
原料ガス(H2 /CH3 SiCl3 のモル比4.0)を
供給して、炭化珪素基材にSiC被膜を被覆した。
Comparative Example 5 The same silicon carbide substrate as in Examples 1 to 6 was degassed under the same conditions as in Examples 1 to 6 and then heated to 950 ° C. at a temperature rising rate of 20 ° C./min.
After the temperature is raised to 1, the pressure is increased to 150 Torr by introducing hydrogen gas to 30 Torr.
Hold for 1 minute, then 1300 ℃ at a heating rate of 20 ℃ / minute
After raising the temperature to 1, the raw material gas (H 2 / CH 3 SiCl 3 molar ratio of 4.0) was supplied while maintaining the furnace pressure at 200 Torr to coat the SiC film on the silicon carbide base material.

【0023】比較例6 実施例7と同一の反応焼結炭化珪素基材を実施例1と同
一条件で脱気した後、10℃/分の昇温速度で1100
℃まで昇温し、アルゴンガスを導入して圧力を15Torr
に調整して20分間保持した。次いで20℃/分の昇温
速度で1200℃まで加熱した後、SiCの被膜形成用
の原料ガスとしてSiCl4 とCH4 を用い、圧力を4
0Torrに保ちながらアルゴンガスに対するモル比(2A
r/SiCl4 +CH4 )を2.5として供給した。
Comparative Example 6 The same reaction-bonded silicon carbide substrate as in Example 7 was degassed under the same conditions as in Example 1, and then 1100 at a temperature rising rate of 10 ° C./min.
The temperature is raised to ℃ and the pressure is increased to 15 Torr by introducing argon gas.
It was adjusted to and held for 20 minutes. Then, after heating to 1200 ° C. at a temperature rising rate of 20 ° C./min, SiCl 4 and CH 4 are used as a raw material gas for forming the SiC film, and the pressure is set to 4
The molar ratio to argon gas (2A
r / SiCl 4 + CH 4 ) was supplied as 2.5.

【0024】次いで、上記実施例および比較例で得られ
たSiC被覆炭化珪素材を切断して、その断面を走査型
電子顕微鏡で400倍の倍率により200μm 以内の表
層部における直径2μm 以上の気孔の存在を観察測定し
た。また、X線回折の回折強度を測定して、回折強度の
比I(200)/I(111)を求めた。なお、X線回
折は印加電圧40KV、印加電流20mA、フィルターCu/N
i、発散スリット1 °の条件で測定した。
Then, the SiC-coated silicon carbide materials obtained in the above-mentioned Examples and Comparative Examples were cut, and the cross section thereof was examined by a scanning electron microscope at a magnification of 400 times to find pores having a diameter of 2 μm or more in the surface layer portion within 200 μm. Presence was observed and measured. Further, the diffraction intensity of X-ray diffraction was measured to obtain the diffraction intensity ratio I (200) / I (111). For X-ray diffraction, applied voltage 40KV, applied current 20mA, filter Cu / N
i, the divergence slit was measured at 1 °.

【0025】このようにして得られたSiC被覆炭化珪
素材について、SiC被膜形成時の炉内温度、炉内圧力
および原料ガスのモル比と、SiC被膜に接する200
μm以内の基材表層部に直径2μm 以上の気孔存在の有
無、X線回折強度ならびに回折強度の比を表1、表2に
示した。
With respect to the SiC-coated silicon carbide material thus obtained, the temperature inside the furnace, the pressure inside the furnace and the molar ratio of the raw material gas at the time of forming the SiC film, and the SiC film in contact with the SiC film 200
Tables 1 and 2 show the presence / absence of pores having a diameter of 2 μm or more in the surface layer of the substrate within μm, the X-ray diffraction intensity and the ratio of the diffraction intensity.

【0026】[0026]

【表1】 (表注)*1 A;H2/CH3SiCl3 のモル比 *2 基材表層部200μm 以内の直径2μm 以上の気孔の存在。 *3 I(200)/I(111) の回折強度の比。[Table 1] (Table Note) * 1 A; H 2 / CH 3 SiCl 3 molar ratio * 2 Presence of pores with a diameter of 2 μm or more within 200 μm of the surface layer of the base material. * 3 I (200) / I (111) diffraction intensity ratio.

【0027】[0027]

【表2】 (表注)*1 B; 2Ar/(SiCl4+CH4)のモル比 *2 基材表層部200μm 以内の直径2μm 以上の気孔の存在。 *3 I(200)/I(111) の回折強度の比。[Table 2] (Table Note) * 1 B; 2Ar / (SiCl 4 + CH 4 ) molar ratio * 2 Presence of pores with a diameter of 2 μm or more within 200 μm of the surface layer of the base material. * 3 I (200) / I (111) diffraction intensity ratio.

【0028】次いで、これらのSiC被覆炭化珪素材に
ついて下記の方法により耐熱サイクル特性および耐熱衝
撃特性を試験し、その結果を表3および表4に示した。
耐熱サイクル特性は、赤外線加熱炉により常温から13
00℃に15分間で昇温して15分間保持後、加熱炉か
ら取り出して放冷して常温に戻すサイクルを20回繰り
返し、SiC被膜面のクラック発生および剥離状況を観
察した。また、耐熱衝撃特性は、電気炉中で500℃お
よび1000℃の温度に30分間保持後、20℃の水中
に入れて急冷した場合のSiC被膜面のクラック発生や
剥離状況を観察した。
Next, these SiC-coated silicon carbide materials were tested for thermal cycle characteristics and thermal shock resistance by the following methods, and the results are shown in Tables 3 and 4.
The heat resistance cycle characteristic is 13
After raising the temperature to 00 ° C. for 15 minutes and holding for 15 minutes, the cycle of taking out from the heating furnace, allowing to cool and returning to normal temperature was repeated 20 times, and the occurrence of cracks and the peeling state of the SiC coating surface were observed. Regarding the thermal shock resistance, the generation of cracks and the peeling state of the SiC coating surface were observed when the material was held in an electric furnace at a temperature of 500 ° C and 1000 ° C for 30 minutes, then put in water at 20 ° C and rapidly cooled.

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【表4】 [Table 4]

【0031】表1〜4の結果から本発明のSiC被覆炭
化珪素材は、炭化珪素基材がSiC被膜に接する200
μm 以内の基材表層部に直径2μm 以上の気孔が存在し
ないことにより、高温に加熱、冷却を繰り返す熱処理を
施してもクラックの発生や剥離することなく、また50
0℃の温度から20℃の温度に急冷する熱衝撃に対して
も耐久性が大きいことが分かる。更に、SiC被膜のX
線回折の回折強度値の比I(200)/I(111)を
0.005以下とすることにより、1000℃の温度か
ら20℃の温度に急冷する熱衝撃に対する耐久性が向上
する。しかし気孔の存在が認められた比較例はいずれも
SiC被膜にクラックが発生し、更に被膜の一部に剥離
が認められた。
From the results of Tables 1 to 4, in the SiC-coated silicon carbide material of the present invention, the silicon carbide base material is in contact with the SiC coating 200.
Since there are no pores with a diameter of 2 μm or more in the surface layer of the base material within μm, cracks and peeling do not occur even when subjected to heat treatment in which heating and cooling are repeated at high temperatures.
It can be seen that the durability is high even against thermal shock of quenching from a temperature of 0 ° C to a temperature of 20 ° C. In addition, X of the SiC film
By setting the ratio I (200) / I (111) of the diffraction intensity values of the line diffraction to 0.005 or less, the durability against the thermal shock of quenching from the temperature of 1000 ° C. to the temperature of 20 ° C. is improved. However, in each of the comparative examples in which the presence of pores was recognized, cracks were generated in the SiC coating, and further peeling was recognized in part of the coating.

【0032】[0032]

【発明の効果】以上のとおり、本発明のSiC被覆炭化
珪素材は耐熱サイクル特性、耐熱衝撃特性が優れている
ので、高温から低温に、急激に加熱あるいは冷却される
温度条件下に使用される半導体製造用の熱処理用治具と
して極めて有用である。
As described above, since the SiC-coated silicon carbide material of the present invention has excellent heat cycle characteristics and thermal shock resistance, it is used under a temperature condition where it is rapidly heated or cooled from a high temperature to a low temperature. It is extremely useful as a heat treatment jig for semiconductor manufacturing.

フロントページの続き (72)発明者 山本 久男 兵庫県高砂市梅井5丁目6番1号 旭硝子 株式会社高砂工場内 (72)発明者 蔭山 信夫 兵庫県高砂市梅井5丁目6番1号 旭硝子 株式会社高砂工場内Front page continuation (72) Inventor Hisao Yamamoto 5-6-1, Umei, Takasago-shi, Hyogo Asahi Glass Co., Ltd. Takasago Plant (72) Innovator Nobuo Kageyama 5-6-1 Umei, Takasago, Hyogo Takasago Asahi Glass Co., Ltd. in the factory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 シリコンを含浸した炭化珪素基材にCV
D法によりSiCの被膜を形成したSiC被覆炭化珪素
材であって、炭化珪素基材が、SiC被膜に接する界面
より200μm 以内の基材表層部に、該表層部を走査型
電子顕微鏡により400倍の倍率で観察測定した場合に
直径2μm 以上の気孔が存在しないことを特徴とする熱
処理用治具。
1. A CV on a silicon carbide substrate impregnated with silicon.
A SiC-coated silicon carbide material having a SiC coating formed by the D method, wherein the silicon carbide base material is at a surface layer portion of the base material within 200 μm from the interface in contact with the SiC coating, and the surface layer portion is magnified 400 times by a scanning electron microscope. A jig for heat treatment, characterized in that it has no pores with a diameter of 2 μm or more when observed and measured at a magnification of.
【請求項2】 SiC被膜のX線回折における(11
1)面に対する(200)面の回折強度値の比、I(2
00)/I(111)が0.005以下である請求項1
記載の熱処理用治具。
2. The (11) in X-ray diffraction of a SiC coating
The ratio of the diffraction intensity value of the (200) plane to the 1) plane, I (2
00) / I (111) is 0.005 or less.
The heat treatment jig described.
【請求項3】 シリコンを含浸した炭化珪素基材の表面
にCVD法によりSiC被膜を形成するに当たり、Si
C被膜を形成する原料化合物を導入し、非酸化性雰囲気
中、1000〜1290℃の温度、500〜760Torr
の圧力でSiC被膜を形成する熱処理用治具の製造方
法。
3. When forming a SiC film on a surface of a silicon carbide base material impregnated with silicon by a CVD method, Si is used.
Introducing a raw material compound for forming a C coating, in a non-oxidizing atmosphere, at a temperature of 1000 to 1290 ° C., 500 to 760 Torr
Of manufacturing a jig for heat treatment for forming a SiC film under the pressure of.
【請求項4】 温度が1100〜1290℃である請求
項3記載の熱処理用治具の製造方法。
4. The method for manufacturing a heat treatment jig according to claim 3, wherein the temperature is 1100 to 1290 ° C.
【請求項5】 原料化合物は、キャリアーガスとともに
導入され、そのモル比(キャリアーガス/原料化合物)
は4〜100である請求項4記載の熱処理用治具の製造
方法。
5. The raw material compound is introduced together with a carrier gas, and its molar ratio (carrier gas / raw material compound).
Is 4-100, The manufacturing method of the jig for heat processing of Claim 4.
【請求項6】 キャリアーガスと原料化合物とのモル比
が5〜20である請求項5記載の熱処理用治具の製造方
法。
6. The method for manufacturing a jig for heat treatment according to claim 5, wherein the molar ratio of the carrier gas and the raw material compound is 5 to 20.
【請求項7】 シリコンを含浸した炭化珪素基材を1To
rr以下に脱気後5〜50℃/min の昇温速度で600〜
850℃の温度に加熱する第一工程、50〜760Torr
になるまで非酸化性ガスを導入した後5〜50℃/min
の昇温速度で1000〜1290℃に加熱する第二工
程、キャリアーガスと炭化珪素を形成する原料化合物と
を導入し1000〜1290℃、500〜760Torrで
炭化珪素基材表面にSiC被膜を形成する第三工程、と
からなることを特徴とする熱処理用治具の製造方法。
7. A silicon carbide base material impregnated with silicon is 1 To
After degassing to rr or less, 600 ~ at a heating rate of 5 ~ 50 ° C / min
First step of heating to a temperature of 850 ° C., 50 to 760 Torr
5 ~ 50 ℃ / min after introducing non-oxidizing gas until
Second step of heating to 1000 to 1290 ° C. at a heating rate of 1, a carrier gas and a raw material compound that forms silicon carbide are introduced to form a SiC coating on the surface of the silicon carbide base material at 1000 to 1290 ° C. and 500 to 760 Torr. A method for manufacturing a heat treatment jig, comprising: a third step.
JP35618396A 1995-12-26 1996-12-24 Manufacturing method of heat treatment jig Expired - Fee Related JP3739507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35618396A JP3739507B2 (en) 1995-12-26 1996-12-24 Manufacturing method of heat treatment jig

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-352098 1995-12-26
JP35209895 1995-12-26
JP35618396A JP3739507B2 (en) 1995-12-26 1996-12-24 Manufacturing method of heat treatment jig

Publications (2)

Publication Number Publication Date
JPH09235163A true JPH09235163A (en) 1997-09-09
JP3739507B2 JP3739507B2 (en) 2006-01-25

Family

ID=26579560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35618396A Expired - Fee Related JP3739507B2 (en) 1995-12-26 1996-12-24 Manufacturing method of heat treatment jig

Country Status (1)

Country Link
JP (1) JP3739507B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097092A (en) * 2000-09-20 2002-04-02 Tokai Carbon Co Ltd Glassy carbon material coated with silicon carbide film and method for producing the same
JP2009509338A (en) * 2005-09-16 2009-03-05 クリー インコーポレイテッド Method for forming SiCMOSFET having large inversion layer mobility

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097092A (en) * 2000-09-20 2002-04-02 Tokai Carbon Co Ltd Glassy carbon material coated with silicon carbide film and method for producing the same
JP2009509338A (en) * 2005-09-16 2009-03-05 クリー インコーポレイテッド Method for forming SiCMOSFET having large inversion layer mobility
US8536066B2 (en) 2005-09-16 2013-09-17 Cree, Inc. Methods of forming SiC MOSFETs with high inversion layer mobility

Also Published As

Publication number Publication date
JP3739507B2 (en) 2006-01-25

Similar Documents

Publication Publication Date Title
EP2520691B1 (en) Tantalum carbide-coated carbon material and manufacturing method for same
JP5275567B2 (en) Tantalum carbide-coated carbon material and method for producing the same
KR100427118B1 (en) Heat treatment jig and its manufacturing method
EP3514130A1 (en) Process for manufacturing a silicon carbide coated body
JP2008308701A (en) Tantalum carbide-covered carbon material and process for producing the same
EP3514128A1 (en) Process for manufacturing a silicon carbide coated body
EP0529593A1 (en) A glass carbon coated graphite chuck for use in producing polycrystalline silicon
RU2684128C1 (en) Article with silicon carbide coating and method for manufacturing of article with silicon carbide coating
JP2000302577A (en) Graphite member coated with silicon carbide
EP3514257A1 (en) Process for manufacturing a silicon carbide coated body
US6521291B2 (en) Process for the production of improved boron coatings
JPH09235163A (en) Heat-treatment jig and production thereof
EP3514127A1 (en) Process for manufacturing a silicon carbide coated body
EP3514259A1 (en) Process for manufacturing a silicon carbide coated body
JP4736076B2 (en) SiC film-covered glassy carbon material and method for producing the same
JP2721678B2 (en) β-silicon carbide molded body and method for producing the same
JP2000073171A (en) Production of chemical vapor deposition multilayer silicon carbide film
JPH01249679A (en) Graphite-silicon carbide composite body and production thereof
EP3514129A1 (en) Process for manufacturing a silicon carbide coated body
JP2002037684A (en) Regenerating method of silicon carbide-coated graphite element and silicon carbide-coated graphite element by the method
JPH03146470A (en) Silicon carbide-based material
JPH0692761A (en) Sic-cvd coated and si impregnated sic product and its manufacture
JPS6159244B2 (en)
JP2001048682A (en) Production of glassy carbon material coated with silicon carbide film
JPH05330955A (en) Silicon carbide-metallic silicon composite material and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees