JP2001048682A - Production of glassy carbon material coated with silicon carbide film - Google Patents

Production of glassy carbon material coated with silicon carbide film

Info

Publication number
JP2001048682A
JP2001048682A JP11224901A JP22490199A JP2001048682A JP 2001048682 A JP2001048682 A JP 2001048682A JP 11224901 A JP11224901 A JP 11224901A JP 22490199 A JP22490199 A JP 22490199A JP 2001048682 A JP2001048682 A JP 2001048682A
Authority
JP
Japan
Prior art keywords
sic
film forming
temperature
forming process
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11224901A
Other languages
Japanese (ja)
Inventor
Takaomi Sugihara
孝臣 杉原
Toshiharu Uei
敏治 上井
Shoichi Yoshikawa
祥一 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP11224901A priority Critical patent/JP2001048682A/en
Publication of JP2001048682A publication Critical patent/JP2001048682A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a glassy carbon material coated with an SiC-film which is suitably used as a heat-resistant member such as a member of a semiconductor production device used under the atmosphere of high temp. and high purity. SOLUTION: In a method for providing an SiC-film on the surface of a substrate made of a glassy carbon material by thermally decomposing a source gas in a gaseous phase by a CVD method, the temp. at the gaseous phase thermal decomposition for coating the SiC-film by depositing SiC on the surface of the substrate is controlled in such a manner that the temp. is gradually raised from the initial film forming process to the final film forming process and is then kept at the temp. of the gaseous phase thermal decomposition in the final film forming process for a prescribed time. Concretely, the gaseous phase thermal decomposition temp. is set and controlled to be in the range of 1,000 to 1,200 deg.C in the initial film forming process and the temp. is further set and controlled to be in the range of 1,200 too 1,700 deg.C in the final film forming process, and the temp. difference between the initial film forming process and the final film forming process is controlled to 100 to 700 deg.C, and the temp. raising rate is controlled to 20 deg.C/min.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造装置の
部材をはじめ高温、高純度雰囲気下で使用される耐熱部
材として好適に用いられるSiC膜被着ガラス状炭素材
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a glassy carbon material coated with a SiC film, which is suitably used as a heat-resistant member used in a high-temperature, high-purity atmosphere, including members of a semiconductor manufacturing apparatus.

【0002】[0002]

【従来の技術】炭素質材料に耐酸化性を付与するために
CVD法により炭素質材料の表面に均質緻密なSiC被
膜を形成被着することは従来から行われており、例えば
黒鉛材の表面にCVD法によりSiC被膜を形成した耐
熱材料が広い用途分野で有用されている。また、SiC
被膜の形成は炭素基材中の不純物の揮散を防止すること
ができるため、高純度が要求される半導体製造用装置の
部材としても有用とされている。
2. Description of the Related Art Conventionally, a uniform and dense SiC film is formed on a surface of a carbonaceous material by CVD in order to impart oxidation resistance to the carbonaceous material. A heat-resistant material having a SiC film formed thereon by a CVD method is useful in a wide range of application fields. In addition, SiC
Since the formation of the coating can prevent the volatilization of impurities in the carbon base material, it is useful as a member of a semiconductor manufacturing apparatus requiring high purity.

【0003】しかしながら、急速加熱、急速冷却による
昇温および降温を繰り返し行う半導体製造用装置の部材
として用いることは、黒鉛基材とSiC被膜との熱膨張
係数の相違が大きいために熱膨張係数の差によるクラッ
クが生じ易く、クラックが起点となってSiC被膜が剥
離する難点がある。
[0003] However, when used as a member of a semiconductor manufacturing apparatus that repeatedly repeats heating and cooling by rapid heating and rapid cooling, the difference in the coefficient of thermal expansion between the graphite base material and the SiC film is large. Cracks are likely to occur due to the difference, and there is a problem that the SiC coating peels off from the cracks.

【0004】また、半導体製造用装置の部材の1つであ
る熱電対用の保護管には黒鉛やSiC焼結体を基材とし
て、基材上に高純度のSiCを被覆したものが用いられ
ているが、昇温および降温の熱サイクルを繰り返し受け
ると、SiC層にクラックが入ったり剥離して、基材面
が露出し基材中の不純物が拡散するために系内を汚染す
る問題点がある。
A protective tube for a thermocouple, which is one of the members of a semiconductor manufacturing apparatus, is made of a graphite or SiC sintered body having a base material coated with high-purity SiC. However, when repeatedly subjected to thermal cycles of heating and cooling, cracks and peels occur in the SiC layer, exposing the base material surface and diffusing impurities in the base material, thereby contaminating the inside of the system. There is.

【0005】[0005]

【発明が解決しようとする課題】一方、ガラス状炭素材
は黒鉛に比べて熱膨張係数がSiCに近いものが得られ
るので熱サイクルによるクラックが生じ難い利点があ
る。しかしながら、ガラス状炭素材は表面が平滑で緻密
であるためにSiC被膜との密着性が弱いという難点が
ある。
On the other hand, a glassy carbon material has a coefficient of thermal expansion closer to that of SiC as compared with graphite, and thus has the advantage that cracks due to thermal cycles are less likely to occur. However, since the glassy carbon material has a smooth and dense surface, the glassy carbon material has a problem that adhesion to the SiC film is weak.

【0006】そこで、本発明者らはガラス状炭素材を基
材として、CVD法により基材面にSiC被膜を被着す
る方法について鋭意研究を行った結果、原料ガスを気相
熱分解する反応温度を設定制御することにより密着性が
強く、強固にSiC被膜を形成被着することができるこ
とを見出した。
Accordingly, the present inventors have conducted intensive studies on a method of depositing a SiC film on a substrate surface by a CVD method using a glassy carbon material as a substrate. It has been found that by setting and controlling the temperature, the adhesion is strong and the SiC film can be formed and adhered firmly.

【0007】本発明は、この知見に基づいて開発に至っ
たもので、その目的とするところは半導体製造用装置の
部材、例えば熱電対保護管をはじめライナーチューブ、
プロセスチューブ、ウエハーボートなどの半導体製造に
用いられる各種熱処理用の耐熱部材として有用されるS
iC膜被着ガラス状炭素材の製造方法を提供することに
ある。
The present invention has been developed based on this finding, and its object is to provide a member of a semiconductor manufacturing apparatus, for example, a thermocouple protective tube, a liner tube,
S useful as a heat-resistant member for various heat treatments used in semiconductor manufacturing such as process tubes and wafer boats
An object of the present invention is to provide a method for producing a glassy carbon material having an iC film.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの本発明によるSiC膜被着ガラス状炭素材の製造方
法は、ガラス状炭素材を基材としてCVD法により原料
ガスを気相熱分解して基材面にSiC膜を被着する方法
において、基材面にSiCを析出しSiC膜を被着する
気相熱分解温度を、初期成膜過程から最終成膜過程にか
けて徐々に昇温し、最終成膜過程の気相熱分解温度に所
定時間保持することを構成上の特徴とする。
According to the present invention, there is provided a method for producing a glassy carbon material having a SiC film coated thereon, the method comprising: In the method of decomposing and depositing a SiC film on a substrate surface, the vapor phase thermal decomposition temperature for depositing SiC on the substrate surface and depositing the SiC film is gradually increased from the initial film forming process to the final film forming process. It is characterized in that it is heated and maintained at a vapor phase pyrolysis temperature in a final film forming process for a predetermined time.

【0009】具体的には、初期成膜過程の気相熱分解温
度を1000〜1200℃に、最終成膜過程の気相熱分
解温度を1200〜1700℃に、且つ、初期成膜過程
より100〜700℃高温に設定制御する。また、初期
成膜過程から最終成膜過程への昇温速度は20℃/分以
下に設定制御される。
More specifically, the gas phase pyrolysis temperature in the initial film formation process is set to 1000 to 1200 ° C., the gas phase pyrolysis temperature in the final film formation process is set to 1200 to 1700 ° C. The temperature is controlled to a high temperature of 700 ° C. The rate of temperature rise from the initial film forming process to the final film forming process is set and controlled to 20 ° C./min or less.

【0010】[0010]

【発明の実施の形態】基材となるガラス状炭素材は、フ
ェノール系、フラン系、ポリイミド系などの熱硬化性樹
脂を成形硬化したのち、非酸化性雰囲気中で800℃以
上の温度に加熱し、焼成炭化処理して得られる巨視的に
無孔組織の三次元網目構造を呈し、ガラス質の緻密な組
織構造からなる炭素材である。黒鉛などの通常の炭素材
に比べて、化学的安定性、ガス不透過性、表面平滑性、
耐摩耗性などに優れている特徴がある。
BEST MODE FOR CARRYING OUT THE INVENTION A glassy carbon material as a base material is obtained by molding and hardening a thermosetting resin such as a phenol-based, furan-based, or polyimide-based resin, and then heating to a temperature of 800 ° C. or more in a non-oxidizing atmosphere. The carbonaceous material is a carbon material having a three-dimensional network structure of a macroscopically non-porous structure obtained by calcining and carbonizing and having a vitreous dense structure. Compared with ordinary carbon materials such as graphite, chemical stability, gas impermeability, surface smoothness,
There is a feature that is excellent in abrasion resistance and the like.

【0011】CVD法によるSiC膜の被着は、ガラス
状炭素基材をCVD装置の反応チャンバー内にセットし
て加熱し、原料ガスを気相熱分解して基材面にSiCを
析出させることにより、SiC膜を被着する方法により
行われる。原料ガスとしては1分子中にSi原子とC原
子を含む、例えばトリクロロメチルシラン(CH3SiCl3)、
ジクロロメチルシラン(CH3SiHCl2) 、トリクロロフェニ
ルシラン(C6H5SiCl3)などのハロゲン化有機珪素化合物
が用いられ、水素ガスとともに反応チャンバー内に送入
して気相還元して熱分解させる、あるいは、四塩化炭素
(SiCl4) などの珪素化合物とメタン(CH4) のような炭素
化合物を水素やアルゴンガスのキャリアーガスとともに
反応チャンバー内に送入して気相反応させることにより
SiCを析出し、基材面に被着するものである。
The deposition of the SiC film by the CVD method involves setting a glassy carbon substrate in a reaction chamber of a CVD apparatus, heating the raw material gas, and thermally decomposing the source gas in a gas phase to deposit SiC on the surface of the substrate. Is performed by a method of depositing a SiC film. The source gas contains Si and C atoms in one molecule, for example, trichloromethylsilane (CH 3 SiCl 3 ),
A halogenated organosilicon compound such as dichloromethylsilane (CH 3 SiHCl 2 ) or trichlorophenylsilane (C 6 H 5 SiCl 3 ) is used. Or carbon tetrachloride
SiC is deposited by sending a silicon compound such as (SiCl 4 ) and a carbon compound such as methane (CH 4 ) into a reaction chamber together with a carrier gas such as hydrogen or argon gas to cause a gas phase reaction, thereby depositing SiC. Is to be adhered to.

【0012】本発明は、このSiCを気相析出させてS
iC膜を被着する際の熱分解温度を初期成膜過程から最
終成膜過程にかけて徐々に昇温していき、最終成膜過程
の気相熱分解温度に所定時間保持する点を特徴とし、具
体的には気相熱分解温度を、初期成膜過程においては1
000〜1200℃に、また最終成膜過程においては1
200〜1700℃に設定制御するものである。なお、
初期成膜過程とはガラス状炭素基材をCVD装置の反応
チャンバーにセットして所定温度に加熱したのち、原料
ガスを送入して気相熱分解反応を起生させる段階をい
い、最終成膜過程とは初期成膜過程から徐々に熱分解温
度を上げていき、設定温度に到達したのち所定の時間保
持して気相熱分解反応を終結させる過程を指す。また、
最終成膜過程の気相熱分解温度は、初期成膜過程より1
00〜700℃高く設定することが必要である。
According to the present invention, this SiC is vapor-phase deposited to form S
characterized in that the thermal decomposition temperature at the time of depositing the iC film is gradually increased from the initial film formation process to the final film formation process, and is maintained at the gas phase thermal decomposition temperature in the final film formation process for a predetermined time, Specifically, the gas phase thermal decomposition temperature is set to 1 in the initial film forming process.
000-1200 ° C, and 1 in the final film formation process.
It is set and controlled at 200 to 1700 ° C. In addition,
The initial film formation step is a step in which a glassy carbon substrate is set in a reaction chamber of a CVD apparatus, heated to a predetermined temperature, and then a raw material gas is fed to cause a gas phase pyrolysis reaction. The film process refers to a process in which the pyrolysis temperature is gradually increased from the initial film formation process, and is maintained for a predetermined time after reaching the set temperature to terminate the gas phase pyrolysis reaction. Also,
The gas phase pyrolysis temperature in the final film formation process is 1
It is necessary to set the temperature higher by 00 to 700 ° C.

【0013】初期成膜過程における温度が1000℃未
満ではSiC膜の剥離の起点となる遊離Siが膜内に残
存し、また1200℃を超えると析出被着したSiC膜
の基材面との密着性が低くなり、ともにSiC膜を基材
面に強固に被着することができなくなる。一方、最終成
膜過程における温度が1200℃を下回るとSiC膜の
耐蝕性が充分でなく、また1700℃を上回る場合には
SiC膜の膜厚が斑となってバラツキが大きくなる。す
なわち、本発明は初期成膜過程および最終成膜過程の気
相熱分解温度を特定の温度範囲に設定制御することによ
り、ガラス状炭素材の基材面にSiC被膜を強固に被着
させるものである。なお、最終成膜過程において所定の
気相熱分解温度に保持する時間は所望するSiC膜の膜
厚に応じて適宜に設定される。
If the temperature in the initial film forming process is lower than 1000 ° C., free Si which is a starting point of peeling of the SiC film remains in the film, and if the temperature exceeds 1200 ° C., adhesion of the deposited SiC film to the substrate surface. And the SiC film cannot be firmly adhered to the substrate surface. On the other hand, if the temperature in the final film forming step is lower than 1200 ° C., the corrosion resistance of the SiC film is not sufficient, and if it is higher than 1700 ° C., the thickness of the SiC film becomes uneven and the dispersion becomes large. That is, the present invention sets and controls the gas phase pyrolysis temperature in the initial film formation process and the final film formation process to a specific temperature range, thereby firmly depositing the SiC film on the substrate surface of the glassy carbon material. It is. It should be noted that the time for maintaining the predetermined gas phase pyrolysis temperature in the final film forming process is appropriately set according to the desired thickness of the SiC film.

【0014】更に、初期成膜過程から最終成膜過程への
昇温速度は20℃/分以下に設定される。昇温速度が大
きいと気相析出したSiC膜の緻密性が低くなり、基材
面との密着性も低下する。すなわち、昇温速度が20℃
/分を超えると被着したSiC膜の耐熱衝撃性が低くな
るために熱サイクルによるクラックが発生し易く、また
SiC膜の耐蝕性も低下することとなるので、昇温速度
は20℃/分以下に設定制御する。
Further, the rate of temperature rise from the initial film forming process to the final film forming process is set to 20 ° C./min or less. If the heating rate is high, the denseness of the vapor-deposited SiC film decreases, and the adhesion to the substrate surface also decreases. That is, the heating rate is 20 ° C.
When the heating rate exceeds 20 / min, the thermal shock resistance of the deposited SiC film is reduced, so that cracks are likely to occur due to thermal cycling, and the corrosion resistance of the SiC film is also reduced. The settings are controlled as follows.

【0015】[0015]

【実施例】以下、本発明の実施例を比較例と対比して具
体的に説明する。
EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples.

【0016】実施例1 減圧蒸留により生成したフェノールおよびホルマリンか
ら調製したフェノール樹脂初期縮合物を型に流し込み、
10Torrの減圧下で3時間脱気処理したのち、80℃の
電気オーブンに入れ一昼夜放置して内径10mmφ、外径
15mmφ、長さ1500mmの有底円筒管に成形した。次
いで、成形型から取り出し、10℃/時の昇温速度で1
80℃まで昇温し、24時間保持して硬化した。この硬
化樹脂成形体を内径15mmφの半割の高純度黒鉛管で挟
み付けた状態で電気炉に入れ、周囲を総灰分100 ppm
未満の黒鉛粉で被包して2℃/時の昇温速度で1000
℃に加熱して焼成炭化処理した。更に、雰囲気置換可能
な真空炉に移し、炉内に塩素/ヘリウム(モル比:5/9
5)の精製ガスを5リットル/分の割合で供給しながら
2000℃まで昇温して高純度化処理を施し、内径10
mmφ、外径15mmφ、長さ1500mmの有底円筒管形状
の高純度ガラス状炭素材を作製した。
Example 1 A phenol resin precondensate prepared from phenol and formalin produced by distillation under reduced pressure was poured into a mold.
After degassing under a reduced pressure of 10 Torr for 3 hours, it was placed in an electric oven at 80 ° C. and left standing for 24 hours to form a cylindrical tube with an inner diameter of 10 mmφ, an outer diameter of 15 mmφ and a length of 1500 mm. Next, the mold was taken out of the mold and heated at a rate of 10 ° C./hour for 1 hour.
The temperature was raised to 80 ° C., and held for 24 hours to cure. This cured resin molded product was put in an electric furnace while being sandwiched by a high-purity graphite tube with an inner diameter of 15 mmφ and the surroundings were 100 ppm in total ash.
Less than 1000 graphite powder at a rate of 2 ° C./hour.
℃, and calcined and carbonized. Furthermore, it is transferred to a vacuum furnace in which atmosphere can be replaced, and chlorine / helium (molar ratio: 5/9
5) While supplying the purified gas at a rate of 5 L / min, the temperature was raised to 2000 ° C. to perform a high-purity treatment, and
A high-purity glassy carbon material having a cylindrical shape with a bottom having a diameter of 15 mm, an outer diameter of 15 mm and a length of 1500 mm was produced.

【0017】このガラス状炭素材をCVD反応装置の反
応チャンバー(容積:570 l )にセットし、系内を水素
ガスで置換したのち加熱した。1100℃の温度に到達
後、原料ガスにトリクロロメチルシラン、キャリアガス
に水素を用いて、その混合ガス(トリクロロメチルシラ
ンの濃度:CH3SiCl3/H2=7.5Vol%)を240リットル
/分の流量で送入して10分間経過したのち、10℃/
分の昇温速度で1500℃に昇温加熱し、その温度で4
0分間保持してSiC膜を被着した。
The glassy carbon material was set in a reaction chamber (volume: 570 l) of a CVD reactor, and the system was heated after purging the system with hydrogen gas. After reaching a temperature of 1100 ° C., a mixed gas (concentration of trichloromethylsilane: CH 3 SiCl 3 / H 2 = 7.5 Vol%) using trichloromethylsilane as a raw material gas and hydrogen as a carrier gas is 240 liter / min. 10 minutes after passing at a flow rate of 10 ° C /
At a heating rate of 1500 min.
Holding for 0 minutes, the SiC film was applied.

【0018】実施例2〜9、比較例1〜5 実施例1と同一の方法で作製した高純度ガラス状炭素材
について、初期成膜過程および最終成膜過程の気相熱分
解温度、昇温速度、ならびに保持時間を変えて異なる膜
厚のSiC膜を被着した。
Examples 2 to 9 and Comparative Examples 1 to 5 High-purity glassy carbonaceous materials produced in the same manner as in Example 1 were subjected to the vapor phase pyrolysis temperature and the temperature increase during the initial film formation process and the final film formation process. By changing the speed and the holding time, SiC films having different thicknesses were deposited.

【0019】このようにして製造したSiC膜被着ガラ
ス状炭素材について、下記の方法により耐熱衝撃試験お
よび耐蝕試験を行い、得られた結果をSiC膜の被着条
件と対比して表1に示した。 耐熱衝撃試験;大気雰囲気に保持した電気炉を用いて
加熱し、500℃から1200℃に昇温および降温する
操作を20回繰り返して行い、この熱サイクルテストに
よるSiC被膜のクラック発生状況および外観検査を行
った。 耐蝕試験;温度1200℃の塩化水素ガス雰囲気中(H
Cl;100%)に15時間曝した時の重量を測定して、重量減
少率を算出した。
A thermal shock test and a corrosion resistance test were performed on the glassy carbon material coated with the SiC film thus manufactured by the following method. The results obtained are shown in Table 1 in comparison with the conditions for depositing the SiC film. Indicated. Thermal shock test: Heating using an electric furnace held in an air atmosphere, and raising and lowering the temperature from 500 ° C. to 1200 ° C. were repeated 20 times, and the crack generation state and appearance inspection of the SiC film by this thermal cycle test were performed. Was done. Corrosion resistance test: In a hydrogen chloride gas atmosphere at a temperature of 1200 ° C (H
(Cl; 100%) was measured for 15 hours, and the weight loss rate was calculated.

【0020】[0020]

【表1】 [Table 1]

【0021】表1の結果から、本発明の製造要件を充足
する実施例1〜9はSiC膜がガラス状炭素基材面に強
固に被着しているので、熱衝撃試験でもクラックの発生
が認められず、良好な外観を呈し、また耐蝕性試験の結
果でも重量減少率が少ないことが判る。一方、気相熱分
解温度条件が本発明の要件を外れる比較例1〜5では耐
熱衝撃性や耐蝕性で劣り、初期成膜過程の温度が低い比
較例1および最終成膜過程の温度が低い比較例2では耐
蝕性が著しく低下し、昇温速度が大きい比較例3は熱衝
撃試験によるクラックの発生が増加しており、また、最
終成膜過程の熱分解温度が高い比較例4ではSiC膜の
膜厚が斑になりバラツキが大きいことが認められた。
From the results shown in Table 1, it can be seen that in Examples 1 to 9 satisfying the manufacturing requirements of the present invention, since the SiC film is firmly adhered to the glassy carbon substrate surface, cracks are generated even in the thermal shock test. No appearance was observed, the appearance was good, and the corrosion resistance test showed that the weight loss rate was small. On the other hand, in Comparative Examples 1 to 5 in which the gas phase pyrolysis temperature conditions deviate from the requirements of the present invention, the thermal shock resistance and the corrosion resistance are inferior, and the temperature in the initial film formation process is low, and the temperature in the final film formation process is low. In Comparative Example 2, the corrosion resistance was significantly reduced, and in Comparative Example 3 in which the rate of temperature rise was large, the occurrence of cracks in the thermal shock test was increased. In Comparative Example 4, in which the thermal decomposition temperature in the final film formation process was high, SiC was used. It was recognized that the thickness of the film was uneven, and the dispersion was large.

【0022】[0022]

【発明の効果】以上のとおり、本発明のSiC膜被着ガ
ラス状炭素材の製造方法によれば、CVD反応によりS
iC膜を被着する際の気相熱分解温度を、その初期にお
いては1000〜1200℃に、またその終期において
は1200〜1700℃の温度範囲に設定し、且つ初期
と終期の温度差を100〜700℃の温度範囲に設定し
て、初期から終期にかけて20℃/分以下の昇温速度で
徐々に昇温することにより、ガラス状炭素基材面に耐蝕
性に優れたSiC膜を強固に被着することが可能とな
り、熱サイクルによる剥離も低減化する。また、SiC
膜が斑状に被着することなく、膜厚のバラツキも抑制さ
れる。したがって、例えば熱電対保護管をはじめライナ
ーチューブ、プロセスチューブ、ウエハーボートなどの
半導体製造に用いられる各種熱処理用の部材などの製造
方法として極めて有用である。
As described above, according to the method for producing a glassy carbon material with a SiC film deposited thereon according to the present invention, S
The vapor phase pyrolysis temperature at the time of depositing the iC film is set to a temperature range of 1000 to 1200 ° C. in the initial stage, 1200 to 1700 ° C. in the final stage, and the temperature difference between the initial stage and the final stage is set to 100 ° C. By setting the temperature in a temperature range of ~ 700 ° C and gradually increasing the temperature at a rate of 20 ° C / min or less from the initial stage to the final stage, a SiC film having excellent corrosion resistance is firmly formed on the glassy carbon substrate surface. Adhesion is possible, and peeling due to thermal cycling is also reduced. In addition, SiC
Variations in film thickness are suppressed without the film being deposited in a patchy manner. Therefore, it is extremely useful as a method for manufacturing members for various heat treatments used for manufacturing semiconductors such as thermocouple protection tubes, liner tubes, process tubes, and wafer boats.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ガラス状炭素材を基材としてCVD法に
より原料ガスを気相熱分解して基材面にSiC膜を被着
する方法において、基材面にSiCを析出しSiC膜を
被着する気相熱分解温度を、初期成膜過程から最終成膜
過程にかけて徐々に昇温し、最終成膜過程の気相熱分解
温度に所定時間保持することを特徴とするSiC膜被着
ガラス状炭素材の製造方法。
In a method of depositing a SiC film on a substrate surface by vapor-phase pyrolyzing a raw material gas by a CVD method using a glassy carbon material as a substrate, depositing SiC on the substrate surface and coating the SiC film on the substrate surface. Characterized in that the temperature of the vapor phase pyrolysis to be deposited is gradually increased from the initial film formation process to the final film formation process, and is maintained at the gas phase pyrolysis temperature in the final film formation process for a predetermined time. Method for producing carbonaceous material.
【請求項2】 初期成膜過程の気相熱分解温度が100
0〜1200℃であり、最終成膜過程の気相熱分解温度
が1200〜1700℃であって、且つ初期成膜過程よ
り100〜700℃高温に設定することを特徴とする請
求項1記載のSiC膜被着ガラス状炭素材の製造方法。
2. The gas phase thermal decomposition temperature in the initial film formation process is 100.
2. The method according to claim 1, wherein the temperature is from 0 to 1200 ° C., the gas phase thermal decomposition temperature in the final film forming process is from 1200 to 1700 ° C., and the temperature is set to 100 to 700 ° C. higher than the initial film forming process. A method for producing a glassy carbon material coated with a SiC film.
【請求項3】 初期成膜過程から最終成膜過程への昇温
速度が20℃/分以下である請求項1または2記載のS
iC膜被着ガラス状炭素材の製造方法。
3. The method according to claim 1, wherein the rate of temperature rise from the initial film forming step to the final film forming step is 20 ° C./min or less.
A method for producing a glassy carbon material coated with an iC film.
JP11224901A 1999-08-09 1999-08-09 Production of glassy carbon material coated with silicon carbide film Pending JP2001048682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11224901A JP2001048682A (en) 1999-08-09 1999-08-09 Production of glassy carbon material coated with silicon carbide film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11224901A JP2001048682A (en) 1999-08-09 1999-08-09 Production of glassy carbon material coated with silicon carbide film

Publications (1)

Publication Number Publication Date
JP2001048682A true JP2001048682A (en) 2001-02-20

Family

ID=16820940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11224901A Pending JP2001048682A (en) 1999-08-09 1999-08-09 Production of glassy carbon material coated with silicon carbide film

Country Status (1)

Country Link
JP (1) JP2001048682A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101139910B1 (en) 2009-09-09 2012-04-30 주식회사 티씨케이 Silicon carbide complex and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101139910B1 (en) 2009-09-09 2012-04-30 주식회사 티씨케이 Silicon carbide complex and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2854201B2 (en) Vitreous carbon-coated graphite part used for silicon crystal production and method for producing the same
KR100427118B1 (en) Heat treatment jig and its manufacturing method
EP0529593B1 (en) A glass carbon coated graphite chuck for use in producing polycrystalline silicon
JP4736076B2 (en) SiC film-covered glassy carbon material and method for producing the same
JP2002003285A (en) SiC-COATED GRAPHITE MATERIAL AND ITS MANUFACTURING METHOD
JP3218092B2 (en) Method for producing oxidation resistant C / C composite
JPH1017382A (en) Production of silicon carbide formed body
JP2000302576A (en) Graphite material coated with silicon carbide
JP2001048682A (en) Production of glassy carbon material coated with silicon carbide film
JP2006131451A (en) Crucible for drawing-up single crystal and its manufacturing method
JP2000185981A (en) Porous molded article of silicon carbide and its production
JP4309509B2 (en) Method for producing crucible for single crystal growth comprising pyrolytic graphite
JPH10209061A (en) Constitution member for semiconductor diffusion furnace
JPH03243776A (en) Graphite member for cvd
JPH0692761A (en) Sic-cvd coated and si impregnated sic product and its manufacture
KR101732573B1 (en) Fiber-type ceramic heating element and method for manufacturing the same
JP3739507B2 (en) Manufacturing method of heat treatment jig
JP3548605B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites
JPS63166789A (en) Graphite crucible used in pulling up device for silicon single crystal and production thereof
JPH1135391A (en) Silicon carbide-coated susceptor
JPH0583517B2 (en)
JP4105776B2 (en) Method for forming silicon carbide coating
JP4218853B2 (en) Carbonaceous crucible for pulling single crystal and method for producing the same
JPH0826714A (en) Production of silicon carbide formed body
JPH05124864A (en) Production of high purity silicon carbide body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090716