JP2002003285A - SiC-COATED GRAPHITE MATERIAL AND ITS MANUFACTURING METHOD - Google Patents

SiC-COATED GRAPHITE MATERIAL AND ITS MANUFACTURING METHOD

Info

Publication number
JP2002003285A
JP2002003285A JP2000184264A JP2000184264A JP2002003285A JP 2002003285 A JP2002003285 A JP 2002003285A JP 2000184264 A JP2000184264 A JP 2000184264A JP 2000184264 A JP2000184264 A JP 2000184264A JP 2002003285 A JP2002003285 A JP 2002003285A
Authority
JP
Japan
Prior art keywords
sic
graphite
graphite substrate
coated
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000184264A
Other languages
Japanese (ja)
Other versions
JP4071919B2 (en
Inventor
Takaomi Sugihara
孝臣 杉原
Kenichi Kanai
健一 金井
Toshiharu Uei
敏治 上井
Yasuhiro Takizawa
泰広 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2000184264A priority Critical patent/JP4071919B2/en
Publication of JP2002003285A publication Critical patent/JP2002003285A/en
Application granted granted Critical
Publication of JP4071919B2 publication Critical patent/JP4071919B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications

Abstract

PROBLEM TO BE SOLVED: To provide a silicon carbide-coated graphite material that has excellent thermal shock resistance and corrosion resistance, and, for example, is suitable for a material for a heat treatment in semiconductor production due to a SiC film separated in a gas phase by CVD method which is firmly coated on the surface of a graphite substrate; and its manufacturing method. SOLUTION: A Sin-coated graphite material comprises the graphite substrate, the surface of which is coated with SiC film by CVD method. In this case, the graphite substrate characteristically has an average pore size of 0.4-3 μm and a maximum pore size of 10-100 μm, the share of SiC in the surface layer of the graphite substrate at the depth of 150 μm from the surface of the graphite substrate is in a range of 15-50%, and an average crystal particle size of the SiC-membrane is in a range of 1-3 μm. Such a crystal is preferable as its intensity in diffractive peak by X-ray diffraction of the surface of SiC (III) of the surface of the SiC-membrane is 80% or more to the intensity of all the crystal surfaces (hkl). The manufacturing method comprises setting up the graphite substrate having an average pore size of 0.4-3 μm and a maximum pore size of 10-100 μm μm in a CVD reaction vessel and coating the substrate with SiC-membrane by CVD method at 1180-1300 deg.C at a concentration of 3-15 vol.% of a material gas.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体製造におけ
る熱処理用部材をはじめ、耐熱性が要求される各種部材
として好適に用いることのできる、SiC被覆黒鉛部材
およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a SiC-coated graphite member which can be suitably used as various members requiring heat resistance, including a member for heat treatment in semiconductor manufacturing, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】半導体を製造する際の熱処理用部材であ
る、例えばサセプター、ライナーチューブ、プロセスチ
ューブ、ウエハーボート、単結晶引上げ用装置部材など
には高純度でシリコンウエハーを汚染しない非汚染性に
加えて、急熱、急冷に対する耐熱衝撃性に優れ、化学的
に安定で耐蝕性の高いことなどが要求される。
2. Description of the Related Art Heat-treating members used in the manufacture of semiconductors, such as susceptors, liner tubes, process tubes, wafer boats, and equipment for pulling single crystals, have high purity and do not contaminate silicon wafers. In addition, it is required to have excellent thermal shock resistance against rapid heating and rapid cooling, and to be chemically stable and have high corrosion resistance.

【0003】これらの熱処理用部材には、従来から黒鉛
基材面にCVD法(化学的気相析出法)によりSiC被
膜を被着した黒鉛材が有用されている。CVD法による
SiC被膜の形成は、例えば水素ガスをキャリアガスと
して、1分子中にSi原子とC原子を含むCH3 SiC
3 、(CH3)3 SiCl、CH3 SiHCl2 などの
有機珪素化合物を気相で還元熱分解させる方法、あるい
はSiCl4 等の珪素化合物とCH4 などの炭素化合物
とを気相反応させる方法、によりSiCを気相析出させ
る方法で行われる。
[0003] For these heat-treating members, a graphite material having a SiC coating applied to a graphite substrate surface by a CVD method (chemical vapor deposition method) has conventionally been used. The formation of the SiC film by the CVD method uses, for example, hydrogen gas as a carrier gas and CH 3 SiC containing Si atoms and C atoms in one molecule.
A method in which an organosilicon compound such as l 3 , (CH 3 ) 3 SiCl, CH 3 SiHCl 2 is reduced and thermally decomposed in a gas phase, or a method in which a silicon compound such as SiCl 4 is reacted with a carbon compound such as CH 4 in a gas phase. , And a method of depositing SiC in a gas phase.

【0004】しかしながら、CVD法により形成された
SiC被膜は、黒鉛基材面とSiC被膜との界面におい
て、例えば急熱や急冷による熱衝撃が加えられると、黒
鉛基材とSiC被膜との熱膨張係数や弾性率などの物性
値の相違によりSiC被膜にクラックが発生したり、S
iC被膜が剥離するなどの欠点がある。
[0004] However, the SiC film formed by the CVD method has a thermal expansion property between the graphite substrate and the SiC film when a thermal shock is applied at the interface between the graphite substrate surface and the SiC film, for example, by rapid heating or quenching. Cracks occur in the SiC coating due to differences in physical properties such as modulus and elastic modulus,
There are drawbacks such as peeling of the iC coating.

【0005】そこで、黒鉛基材面とSiC被膜との界面
に中間層を形成してこれらの問題を排除する試みが提案
されており、例えば、特開平1−145400号公報に
は2100〜2200℃の高温不活性雰囲気下で黒鉛基
板表面にSiOガスを供給し、当該炭素とSiOガスの
接触反応により、黒鉛表面に中間層としてのSiCを形
成し、然る後にCVD法等によりSiC被膜を当該中間
層SiCの上に蒸着したことを特徴とするシリコンウエ
ハ加熱用治具が開示されている。これはコンバージョン
法(CVR法)により形成したSiCの中間層により境
界面の接合が強固となりSiC被膜の剥離を抑制するも
のであるが、SiC中間層の形成時にSiOガスが侵入
し易い黒鉛基板の気孔部分に集中して侵入するため均一
層を形成することが難しく、またSiC中間層を形成す
るCVR工程が必要で製造工程が複雑となり、コスト的
にも不利となる。
Therefore, an attempt has been made to eliminate these problems by forming an intermediate layer at the interface between the graphite substrate surface and the SiC film. SiO gas is supplied to the surface of the graphite substrate under a high-temperature inert atmosphere to form SiC as an intermediate layer on the graphite surface by a contact reaction between the carbon gas and the SiO gas, and then the SiC film is applied by a CVD method or the like. A jig for heating a silicon wafer characterized by being deposited on an intermediate layer SiC is disclosed. This is because the bonding of the boundary surface is strengthened by the intermediate layer of SiC formed by the conversion method (CVR method) and the peeling of the SiC film is suppressed. It is difficult to form a uniform layer due to concentrated penetration into the pores, and a CVR process for forming the SiC intermediate layer is required, which complicates the manufacturing process and is disadvantageous in cost.

【0006】また、特開平3−257089号公報には
黒鉛基材に気相成長法による炭化けい素膜を形成してな
る炭化けい素コーティング黒鉛製品において、黒鉛基材
の表面に、炭化けい素が点在する表層部のSiC−C層
と、けい素及び炭化けい素の微結晶が混在するSi−S
iC層と、炭化けい素膜との3層のみが、この順に積層
されていることを特徴とする炭化けい素コーティング黒
鉛製品、及び、予め黒鉛基材にけい素膜を気相成長法に
より形成し、これを30Torr以下の雰囲気圧にてけい素の
融点以上の温度で熱処理した後、これに炭化けい素膜を
気相成長法により形成する製造方法が提案されている。
これは黒鉛基材面にSiを成膜し、熱処理してSi−S
iC層を形成させ、SiC被膜と黒鉛基材間の応力緩和
層として機能させるものであるが、Siが内在するため
にSiの融点以上の温度域ではSiが溶融してSi−S
iC層の強度低下を招き、SiC層が剥離し易くなり、
また融点以下の温度であってもSiが黒鉛側に拡散する
ことにより強度が低下し、更にSiとCとの反応による
クラック発生や変形の原因となるなどの問題点がある。
Japanese Patent Application Laid-Open No. Hei 3-257089 discloses a silicon carbide-coated graphite product comprising a graphite substrate on which a silicon carbide film is formed by a vapor phase growth method, wherein the surface of the graphite substrate is coated with silicon carbide. Si-S in which the SiC-C layer of the surface layer portion in which silicon is scattered and the microcrystals of silicon and silicon carbide are mixed.
a silicon carbide coated graphite product characterized in that only three layers of an iC layer and a silicon carbide film are laminated in this order, and a silicon film previously formed on a graphite substrate by a vapor phase growth method However, a method has been proposed in which a silicon carbide film is heat-treated at an atmosphere pressure of 30 Torr or less at a temperature equal to or higher than the melting point of silicon, and then a silicon carbide film is formed thereon by a vapor deposition method.
In this method, a Si film is formed on a graphite substrate surface and then heat-treated to form Si-S
An iC layer is formed to function as a stress relaxation layer between the SiC film and the graphite substrate. However, Si is melted in a temperature range higher than the melting point of Si due to the presence of Si, and Si-S
The strength of the iC layer is reduced, and the SiC layer is easily peeled off.
Further, even at a temperature lower than the melting point, there is a problem that the strength is reduced due to the diffusion of Si to the graphite side, and furthermore, the reaction between Si and C causes cracks or deformation.

【0007】更に、特開平6−305861号公報では
化学蒸着法により炭化けい素で被覆した黒鉛部材におい
て、少なくとも使用時にクラックを生じ易い部分の炭化
けい素で被覆する前の基材の表面粗さRmax が100μ
m 以上であることを特徴とする炭化けい素被覆黒鉛部材
が提案されている。これはクラック発生の原因となる炭
化けい素被膜表面の残留応力を基材表面の面粗さを粗く
することにより低減させるものであるが、炭化けい素被
覆面の面粗度も大きくなるために、例えばサセプターに
用いた場合にはウエハ保持部分ではサセプターとウエハ
が点接触となってスリップし易く、またパーティクルの
発生原因となるなどの問題点がある。
Further, Japanese Patent Application Laid-Open No. Hei 6-305861 discloses that in a graphite member coated with silicon carbide by a chemical vapor deposition method, the surface roughness of the base material before coating with silicon carbide at least in a portion where cracks are likely to occur during use. Rmax is 100μ
m or more have been proposed. This is to reduce the residual stress on the silicon carbide coating surface that causes cracks by increasing the surface roughness of the base material surface, but the surface roughness of the silicon carbide coating surface also increases. For example, when the susceptor is used as a susceptor, there are problems in that the susceptor and the wafer are in point contact with each other at the wafer holding portion, so that the susceptor easily slips and causes particles.

【0008】[0008]

【発明が解決しようとする課題】そこで、本出願人はこ
れらの問題点を解消するために鋭意研究を行い、黒鉛基
材面にSiC被膜を強固に形成することにより耐熱衝撃
性の向上を図るためには、黒鉛基材の気孔性状ならびに
被着したSiC被膜の粒子性状が大きく影響することを
見出し、先に、黒鉛基材面にCVD法によりSiC被膜
を被着した黒鉛部材であって、黒鉛基材が平均気孔径
0.4〜3μm 、最大気孔径10μm 以上の気孔性状を
備え、該黒鉛基材に被着したSiC被膜の平均粒径が3
μm 以下、かつ最小粒径が1μm 以下の粒子性状を有す
ることを特徴とする炭化珪素被覆黒鉛部材を開発、提案
(特願平11−114412号)した。
Accordingly, the present applicant has made intensive studies to solve these problems, and aims to improve the thermal shock resistance by forming a SiC film firmly on the graphite substrate surface. For this purpose, it has been found that the porosity of the graphite base and the particle properties of the SiC coating applied thereto have a large effect, and a graphite member having a SiC coating applied to the surface of the graphite base by a CVD method. The graphite substrate has pore properties of an average pore diameter of 0.4 to 3 μm and a maximum pore diameter of 10 μm or more, and the average particle diameter of the SiC coating applied to the graphite substrate is 3 μm.
A silicon carbide-coated graphite member characterized by having a particle size of 1 μm or less and a minimum particle size of 1 μm or less has been developed and proposed (Japanese Patent Application No. 11-114412).

【0009】本発明者らは、この特願平11−1144
12号の技術を基に更に研究を進めた結果、黒鉛基材表
層部に含浸、析出したSiCの量比、すなわち黒鉛基材
表層部に存在するSiCの量比がSiC被膜の被覆強度
や耐熱衝撃性に大きく影響することを知見した。本発明
は、この知見に基づいて開発されたものであって、その
目的はCVD法によるSiC被膜が黒鉛基材面に強固に
被着されており、急速加熱や急速冷却などの熱衝撃に対
し優れた耐熱衝撃性を有し、また耐蝕性にも優れ、例え
ば半導体製造における熱処理用部材などとして好適に用
いられるSiC被覆黒鉛部材およびその製造方法を提供
することにある。
[0009] The inventors of the present invention have disclosed a technique disclosed in Japanese Patent Application No. 11-1144.
As a result of further research based on the technology of No. 12, the ratio of the amount of SiC impregnated and deposited on the surface of the graphite substrate, that is, the ratio of the amount of SiC present in the surface of the graphite substrate, is determined by the coating strength and heat resistance of the SiC coating. It has been found that it has a significant effect on impact properties. The present invention has been developed on the basis of this finding, and its purpose is that a SiC film formed by a CVD method is firmly adhered to a graphite substrate surface, and is resistant to thermal shock such as rapid heating and rapid cooling. An object of the present invention is to provide a SiC-coated graphite member having excellent thermal shock resistance and excellent corrosion resistance, which is suitably used as, for example, a member for heat treatment in semiconductor manufacturing, and a method for manufacturing the same.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めの本発明によるSiC被覆黒鉛部材は、黒鉛基材面に
CVD法により析出したSiC被膜を被覆した黒鉛部材
であって、黒鉛基材が平均気孔径0.4〜3μm 、最大
気孔径10〜100μm の気孔性状を備え、黒鉛基材面
から深さ150μm の黒鉛基材表層部におけるSiCの
占有率が15〜50%であって、SiC被膜の平均結晶
粒径が1〜3μm 、であることを構成上の特徴とする。
A SiC-coated graphite member according to the present invention for achieving the above object is a graphite member having a surface of a graphite substrate coated with a SiC film deposited by a CVD method, comprising: Has an average pore diameter of 0.4 to 3 μm and a maximum pore diameter of 10 to 100 μm, and the occupation ratio of SiC in the graphite substrate surface layer portion having a depth of 150 μm from the graphite substrate surface is 15 to 50%, The constitution is characterized in that the average crystal grain size of the SiC film is 1 to 3 μm.

【0011】更に、黒鉛基材面を被覆するSiC被膜
は、SiC被膜面のX線回折によるSiC(111) 面の回
折ピークの強度が、全結晶面(hkl) の強度の80%以上
であることを特徴とする。
Further, in the SiC coating covering the graphite substrate surface, the intensity of the diffraction peak of the SiC (111) surface by X-ray diffraction of the SiC coating surface is 80% or more of the intensity of the whole crystal surface (hkl). It is characterized by the following.

【0012】また、その製造方法は、平均気孔径が0.
4〜3μm 、最大気孔径が10〜100μm の気孔性状
を備える黒鉛基材をCVD反応装置内にセットし、気相
反応温度を1180〜1300℃、原料ガス濃度を3〜
15 Vol%に制御して、CVD反応により黒鉛基材面に
SiC被膜を被覆することを特徴とする。
[0012] In the production method, the average pore diameter is 0.1.
A graphite substrate having pore properties of 4 to 3 μm and a maximum pore diameter of 10 to 100 μm is set in a CVD reactor, the gas phase reaction temperature is 1180 to 1300 ° C., and the raw material gas concentration is 3 to
The method is characterized in that the graphite substrate surface is coated with a SiC film by a CVD reaction at a control of 15 Vol%.

【0013】[0013]

【発明の実施の形態】本発明において用いる黒鉛基材に
は特に制限はないが、例えば半導体を製造する際の熱処
理用部材などとして使用するためには可及的に高純度で
あることが要求され、また熱的に異方性の少ない等方性
黒鉛材(CIP材)が好ましく用いられる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The graphite substrate used in the present invention is not particularly limited. For example, it is required that the graphite substrate be as high as possible in order to be used as a heat treatment member in the production of semiconductors. In addition, an isotropic graphite material (CIP material) having low thermal anisotropy is preferably used.

【0014】本発明のSiC被覆黒鉛部材は、黒鉛基材
の平均気孔径が0.4〜3μm 、最大気孔径が10〜1
00μm と特定した気孔性状を備えていることを必要と
する。黒鉛基材の気孔性状は、CVD法により析出した
SiC粒子が充填されSiC被膜を形成する際に、Si
C被膜を黒鉛基材面に強固に被着させるために重要な機
能を発揮する。すなわち、気孔径が小さい場合には析出
したSiC粒子を気孔内部の深部にまで侵入させて充填
することができないため、SiC被膜を強固に被着させ
ることが困難である。そのため、本発明は黒鉛基材の平
均気孔径を0.4μm 以上に設定する。
In the SiC-coated graphite member of the present invention, the graphite substrate has an average pore diameter of 0.4 to 3 μm and a maximum pore diameter of 10 to 1 μm.
It is necessary to have a pore property specified as 00 μm. The porosity of the graphite base material is determined by filling the SiC particles deposited by the CVD method to form a SiC coating.
It exerts an important function for firmly attaching the C coating to the graphite substrate surface. That is, when the pore diameter is small, the precipitated SiC particles cannot penetrate deep into the pores and be filled, and it is difficult to firmly adhere the SiC coating. Therefore, in the present invention, the average pore diameter of the graphite substrate is set to 0.4 μm or more.

【0015】一方、黒鉛基材の平均気孔径が大きくなる
とCVD法で析出したSiC粒子を侵入させ、充填する
には有利であるが、基材強度の低下を招くこととなり、
更に半導体用途に使用する場合には汚染防止のための脱
ガス性やパーティクルの発生などの面で好ましくない。
そのために黒鉛基材の平均気孔径は3μm 以下に設定さ
れる。なお、気孔性状は水銀圧入法により測定した値が
用いられる。
On the other hand, when the average pore diameter of the graphite base material is large, it is advantageous to infiltrate and fill the SiC particles precipitated by the CVD method, but the base material strength is reduced.
Further, when it is used for semiconductors, it is not preferable in terms of degassing for preventing contamination and generation of particles.
Therefore, the average pore diameter of the graphite substrate is set to 3 μm or less. In addition, the value measured by the mercury intrusion method is used for the pore properties.

【0016】また、黒鉛基材の気孔径は大きいほどSi
C粒子の充填には有利であり、SiC被膜を強固に被着
することができるので、本発明で用いる黒鉛基材には最
大気孔径が10μm 以上のものが用いられる。しかしな
がら、黒鉛基材の気孔径が大きくなると気相析出したS
iC粒子が気孔内部に充填されるより気孔内壁に沿って
膜状に生成し、強固に被着することが困難となる。その
ために、最大気孔径は100μm 以下であることが好ま
しい。
The larger the pore size of the graphite substrate, the higher the Si
The graphite substrate used in the present invention has a maximum pore diameter of 10 μm or more because it is advantageous for filling the C particles and can firmly adhere the SiC coating. However, when the pore diameter of the graphite base material is increased, S
The iC particles are formed in the form of a film along the inner wall of the pores rather than being filled in the pores, and it is difficult to firmly adhere the iC particles. For this purpose, the maximum pore size is preferably 100 μm or less.

【0017】本発明のSiC被覆黒鉛部材は、これらの
気孔性状を備えた黒鉛基材にCVD法により析出したS
iC被膜を被覆したもので、黒鉛基材表層部におけるS
iCの占有率を特定範囲に設定した点を特徴とする。S
iC被膜は黒鉛基材表面の気孔中にCVD法により気相
析出したSiC粒子が充填され、被膜形成されていくも
のであるから、気孔内に析出充填されたSiCの割合が
SiC被膜の被覆強度や耐熱衝撃性に大きく影響する。
The SiC-coated graphite member of the present invention can be obtained by depositing S on a graphite substrate having these porous properties by a CVD method.
An iC coating is applied on the surface of the graphite substrate
It is characterized in that the iC occupancy is set in a specific range. S
Since the iC coating is formed by filling the pores on the graphite substrate surface with SiC particles vapor-deposited by the CVD method, the ratio of the SiC deposited and filled in the pores is the coating strength of the SiC coating. And thermal shock resistance.

【0018】そこで、本発明のSiC被覆黒鉛部材は、
基材表層部の気孔内に析出充填されて基材表層部に存在
するSiC量を特定したもので、黒鉛基材表層部として
は黒鉛基材表面から深さ150μm の基材部をいい、こ
の範囲内の黒鉛基材表層部におけるSiCの占有率を1
5〜50%の範囲に設定した点に特徴がある。
Therefore, the SiC-coated graphite member of the present invention is:
The amount of SiC which is deposited and filled in the pores of the base material surface layer and is present in the base material surface layer portion is specified.The graphite base material surface portion refers to a base material portion having a depth of 150 μm from the graphite base material surface. The occupation ratio of SiC in the graphite base material layer within the range is 1
It is characterized in that it is set in the range of 5 to 50%.

【0019】気孔内部に充填されるSiCは、気孔内に
より深く、より多く、析出充填させることがSiC被覆
強度の増大を図るうえで有利であり、SiC占有率が1
5%を下回るとSiC被膜の被覆強度や耐熱衝撃性が低
く、充分でない。一方、50%を越える占有率にするに
は黒鉛基材の気孔率そのものを大きくする必要があり、
基材の強度低下を招くこととなる。更に、CVD法によ
り50%を越える占有率とすることは通常困難なためで
もある。また、基材の気孔内に析出し、充填されたSi
Cはいわゆるアンカー効果によりSiC被膜の被着強度
が向上するが、本発明においては黒鉛基材表面から深さ
150μm までの基材部のSiC量を特定するものであ
る。なお、SiCの占有率はSiC被覆黒鉛材を切断
し、切断面をSEMの反射電子像により観察してSiC
の占める面積を計測して、その面積比率から求めた値で
ある。
The amount of SiC filled in the pores is deeper and deeper in the pores, and it is advantageous to precipitate and fill the pores in order to increase the SiC coating strength.
If it is less than 5%, the coating strength and thermal shock resistance of the SiC coating are low and not sufficient. On the other hand, it is necessary to increase the porosity itself of the graphite base material in order to obtain an occupation ratio exceeding 50%.
This will lead to a decrease in the strength of the substrate. Further, it is usually difficult to increase the occupation ratio to more than 50% by the CVD method. In addition, Si deposited and filled in the pores of the substrate
C enhances the adhesion strength of the SiC coating due to the so-called anchor effect. In the present invention, C specifies the amount of SiC in the substrate from the surface of the graphite substrate to a depth of 150 μm. The occupancy of SiC was determined by cutting the SiC-coated graphite material, observing the cut surface with a backscattered electron image of a SEM, and measuring the SiC occupancy.
Is the value obtained by measuring the area occupied by the area and by calculating the area ratio.

【0020】本発明のSiC被覆黒鉛部材は、上記の気
孔性状を備えた黒鉛基材面にCVD法により気相析出さ
せて被着したSiC被膜の平均結晶粒径が1〜3μm の
粒子性状を有していることも特徴とする。気相反応によ
り析出したSiC粒子が黒鉛基材の気孔内に侵入して気
孔を効率よく充填し、SiC被膜を形成するためには、
黒鉛基材の気孔性状とも関連して気相析出したSiCの
粒子性状が影響する。そこで、本発明のSiC被覆黒鉛
部材は、平均気孔径が0.4〜3μm 、最大気孔径が1
0〜100μm の気孔性状を備えた黒鉛基材にSiC被
膜を形成するSiC粒子の平均結晶粒径を1〜3μm に
設定することによって、黒鉛基材面の気孔中に効果的に
SiCを析出、充填させたものである。
In the SiC-coated graphite member of the present invention, the SiC coating formed by vapor deposition on the surface of the graphite substrate having the above-mentioned porosity by CVD method and having an average crystal grain size of 1 to 3 μm is used. It is also characterized by having. In order for SiC particles precipitated by a gas phase reaction to enter pores of a graphite base material to efficiently fill pores and form a SiC coating,
The particle property of SiC deposited in the gas phase also affects the pore property of the graphite base material. Therefore, the SiC-coated graphite member of the present invention has an average pore diameter of 0.4 to 3 μm and a maximum pore diameter of 1 μm.
By setting the average crystal grain size of SiC particles forming a SiC film on a graphite substrate having a pore property of 0 to 100 μm to 1 to 3 μm, SiC is effectively deposited in pores on the surface of the graphite substrate, It is filled.

【0021】更に、SiC被膜の結晶性はSiC(111)
面への配向性が強く、X線回折によるSiC(111) 面の
回折ピークの強度が全結晶面SiC(hkl) の強度の80
%以上に高配向していることが好ましく、SiC(111)
面に高配向したSiC被膜によって優れた耐蝕性が付与
される。
Further, the crystallinity of the SiC film is SiC (111).
The orientation to the plane is strong, and the intensity of the diffraction peak of the SiC (111) plane by X-ray diffraction is 80 times that of the entire crystal plane SiC (hkl).
% Or more of SiC (111)
Excellent corrosion resistance is imparted by the SiC film having a highly oriented surface.

【0022】このSiC被覆黒鉛部材は、平均気孔径が
0.4〜3μm 、最大気孔径が10〜100μm の気孔
性状を備える黒鉛基材をCVD反応装置内にセットし、
気相反応温度を1180〜1300℃、原料ガス濃度を
3〜15 Vol%に制御して、黒鉛基材面にSiC被膜を
被覆することにより製造される。
In this SiC-coated graphite member, a graphite substrate having a porous property having an average pore diameter of 0.4 to 3 μm and a maximum pore diameter of 10 to 100 μm is set in a CVD reactor,
It is manufactured by coating a graphite substrate surface with a SiC film while controlling the gas phase reaction temperature at 1180 to 1300 ° C and the raw material gas concentration at 3 to 15 Vol%.

【0023】すなわち、本発明のSiC被覆黒鉛部材の
製造方法は、上記の気孔性状を備える黒鉛基材をCVD
反応装置にセットして、CVD反応条件として気相反応
温度を1180〜1300℃、原料ガス濃度を3〜15
Vol%に制御して、CVD反応によりSiCを気相析出
させることを特徴とする。
That is, in the method for producing a SiC-coated graphite member of the present invention, the graphite substrate having the above-mentioned porosity is formed by CVD.
The reactor was set in the reactor, and the CVD reaction conditions were a gas phase reaction temperature of 1180 to 1300 ° C. and a source gas concentration of 3 to 15
It is characterized in that SiC is vapor-phase deposited by a CVD reaction while controlling to Vol%.

【0024】CVD反応は、例えば、黒鉛基材をCVD
反応装置にセットして系内の空気を排気したのち、所定
の温度に加熱し、次いで水素ガスを送入して常圧水素ガ
ス雰囲気に置換し、水素ガスをキャリアガスとしてトリ
クロロメチルシラン、トリクロロフェニルシラン、ジク
ロロメチルシラン、ジクロロジメチルシラン、クロロト
リメチルシランなどの有機珪素化合物を原料ガスとして
送入して気相還元反応させることにより、黒鉛基材面上
にSiC粒子を気相析出させてSiC被膜が形成、被着
される。
In the CVD reaction, for example, a graphite substrate is
After the air in the system was evacuated by setting it in the reactor, it was heated to a predetermined temperature, and then hydrogen gas was fed in to replace the atmosphere with normal pressure hydrogen gas, and trichloromethylsilane and trichloromethylsilane were used as hydrogen gas as carrier gas. An organic silicon compound such as chlorophenylsilane, dichloromethylsilane, dichlorodimethylsilane, or chlorotrimethylsilane is supplied as a raw material gas to cause a gas-phase reduction reaction, whereby SiC particles are vapor-phase deposited on a graphite base material surface to form a SiC particle. A coating is formed and applied.

【0025】このCVD反応において、SiCを気相析
出させる反応温度が高い場合は、原料ガス分子の運動エ
ネルギーが高く、黒鉛基材表面から気孔内部に深く侵入
させることができるが、気相還元反応によるSiCの析
出速度が速くなるため、気孔内の浅部においてSiCが
析出し易くなる。したがって、黒鉛基材の気孔の入口部
から中間部において析出したSiCにより気孔が閉塞さ
れ、気孔深部へのSiCの充填が阻害される。
In this CVD reaction, when the reaction temperature for vapor-phase deposition of SiC is high, the kinetic energy of the raw material gas molecules is high, and the gas can penetrate deeply into the pores from the graphite substrate surface. As a result, the deposition rate of SiC is increased, so that SiC is easily deposited at a shallow portion in the pores. Therefore, the pores are closed by the SiC precipitated from the pore entrance portion to the intermediate portion of the graphite base material, and filling of the deep pores with SiC is inhibited.

【0026】一方、反応温度が低くなると原料ガス分子
の運動エネルギーが小さくなって、気孔内深く侵入させ
ることが難しくなり、気相還元反応によるSiCの析出
速度も遅くなるので、黒鉛基材表層部の気孔内を効率よ
くSiCにより充填させることが困難になる。そのた
め、CVD反応によりSiCを気相析出させる反応温度
を1180〜1300℃の温度範囲に設定する。
On the other hand, when the reaction temperature is lowered, the kinetic energy of the raw material gas molecules is reduced, making it difficult to penetrate deep into the pores, and the deposition rate of SiC by the gas phase reduction reaction is also reduced. It is difficult to efficiently fill the pores with SiC. Therefore, the reaction temperature at which SiC is vapor-phase deposited by the CVD reaction is set in a temperature range of 1180 to 1300 ° C.

【0027】また、原料ガス濃度が高くなるとSiCの
析出速度が速くなるので、気孔表面部において析出する
SiCが多くなり、気孔内部に効率的にSiCを充填す
ることができなくなる。逆に、原料ガス濃度が低くなる
と原料ガスが気孔内深部に到達し難くなるため気孔内部
を効率よく充填することができなくなる。更に、気相還
元反応も遅くなるので非効率となる。そのため、原料ガ
ス濃度を3〜15 Vol%の範囲に設定する。
Further, when the concentration of the raw material gas is increased, the deposition rate of SiC is increased, so that the amount of SiC deposited on the pore surface increases, and it becomes impossible to fill the pores with SiC efficiently. Conversely, when the raw material gas concentration becomes low, it becomes difficult for the raw material gas to reach the deep part inside the pores, so that the inside of the pores cannot be efficiently filled. Further, the gas-phase reduction reaction is slowed down, resulting in inefficiency. Therefore, the source gas concentration is set in the range of 3 to 15% by volume.

【0028】このように、CVD反応条件を設定、制御
することにより黒鉛基材面から深さ150μm の黒鉛基
材表層部におけるSiCの占有率を15〜50%に、S
iC被膜の平均結晶粒径を1〜3μm に、更にSiC被
膜面のSiC(111) 面のX線回折ピーク強度が全結晶面
(hkl) の強度の80%以上の、SiC被膜を被着したS
iC被覆黒鉛部材を製造することができる。
As described above, by setting and controlling the CVD reaction conditions, the occupation ratio of SiC in the surface layer portion of the graphite substrate having a depth of 150 μm from the graphite substrate surface is increased to 15 to 50%, and S
The average crystal grain size of the iC film is set to 1 to 3 μm, and the X-ray diffraction peak intensity of the SiC (111) surface of the SiC film surface is changed to the whole crystal surface.
Sc coated with SiC coating of 80% or more of the strength of (hkl)
An iC-coated graphite member can be manufactured.

【0029】[0029]

【実施例】以下、本発明の実施例を比較例と対比しなが
ら具体的に説明する。
EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples.

【0030】実施例1〜7、比較例1〜7 気孔性状の異なる高純度等方性黒鉛材を、直径200m
m、厚さ5mmに加工して黒鉛基材とした。これらの黒鉛
基材をCVD装置の反応管内にセットし、系内の空気を
排気したのち所定温度に加熱し、常圧(0.1MPa)
下に水素ガスを送入して水素ガス雰囲気に置換した。次
いで、原料ガスとしてメチルトリクロロシラン、キャリ
アガスに水素ガスを用いて、メチルトリクロロシラン/
水素ガスの混合ガス中のメチルトリクロロシラン濃度お
よび反応温度を変えてSiC被膜を黒鉛基材面に被覆し
た。このSiC被覆黒鉛部材の製造条件を対比して、表
1に示した。
Examples 1 to 7 and Comparative Examples 1 to 7 High-purity isotropic graphite materials having different porosity were prepared using
m, and processed to a thickness of 5 mm to obtain a graphite base material. These graphite substrates were set in a reaction tube of a CVD apparatus, and air was exhausted from the system, and then heated to a predetermined temperature, and normal pressure (0.1 MPa)
Hydrogen gas was fed in below, and the atmosphere was replaced with a hydrogen gas atmosphere. Then, using methyltrichlorosilane as a source gas and hydrogen gas as a carrier gas, methyltrichlorosilane /
The graphite substrate surface was coated with a SiC film by changing the concentration of methyltrichlorosilane in the mixed gas of hydrogen gas and the reaction temperature. Table 1 compares the production conditions of the SiC-coated graphite member.

【0031】このようにして製造したSiC被覆黒鉛部
材について、下記の方法により黒鉛基材表層部のSiC
占有率およびSiC被膜の物理的性状を測定した。ま
た、下記の方法で熱衝撃試験および腐食試験を行って、
耐熱衝撃性および耐蝕性を評価した。得られた結果を表
2に示した。 黒鉛基材表層部のSiC占有率、SiC被膜膜厚 SiC被覆黒鉛部材を切断して、その断面をSEMによ
り反射電子像を観察し、黒鉛基材表面から深さ150μ
m までの基材部表層部におけるSiCの占める面積を計
測して、その比率からSiC占有率を求めた。また、断
面のSEM観察からSiC被膜の膜厚を測定した。 SiC被膜の平均結晶粒径 SiC被膜表面をSEM観察して、平均結晶粒径を測定
した。 SiC(111) 面の回折ピーク強度比 SiC被膜表面のX線回折から、SiC(111) 面および
全結晶面(hkl) の回折ピークを求め、SiC(111) 面の
回折ピーク強度比を算出した。 熱衝撃試験 ランプ加熱により、SiC被覆黒鉛部材を局所的に20
0℃から1200℃に加熱したのち冷却する熱サイクル
試験を繰り返し行って、SiC被膜にクラックや剥離が
発生した時の試験回数を求めた。但し、実施例では50
回繰り返し熱サイクル試験を行った後のSiC被膜の状
況を示した。なお、加熱時は200℃から1200℃に
30秒で急速加熱し、冷却時は1200℃から200℃
に1分間掛けて降温した。 腐食試験 塩化水素ガス100%の雰囲気中に、1200℃の温度
で15時間保持し、その時の重量減少率を測定した。
With respect to the SiC-coated graphite member manufactured as described above, the SiC on the surface layer of the graphite base material was obtained by the following method.
The occupancy and the physical properties of the SiC coating were measured. In addition, a thermal shock test and a corrosion test were performed by the following method,
The thermal shock resistance and corrosion resistance were evaluated. Table 2 shows the obtained results. SiC occupancy of surface layer of graphite substrate, film thickness of SiC coating A SiC-coated graphite member is cut, and its cross section is observed with a backscattered electron image by SEM.
The area occupied by SiC in the surface layer portion of the base material portion up to m was measured, and the SiC occupancy was determined from the ratio. Further, the thickness of the SiC film was measured from SEM observation of the cross section. Average crystal grain size of SiC coating The surface of the SiC coating was observed by SEM to measure the average crystal grain size. Diffraction peak intensity ratio of SiC (111) plane From X-ray diffraction of the SiC coating surface, diffraction peaks of SiC (111) plane and all crystal planes (hkl) were obtained, and the diffraction peak intensity ratio of SiC (111) plane was calculated. . Thermal shock test By heating the lamp, the SiC-coated graphite
A heat cycle test of heating from 0 ° C. to 1200 ° C. and then cooling was repeated, and the number of tests when cracks or peeling occurred in the SiC film was obtained. However, in the embodiment, 50
The situation of the SiC coating after performing the thermal cycle test repeatedly was shown. In addition, during heating, rapid heating is performed from 200 ° C. to 1200 ° C. in 30 seconds, and when cooling, 1200 ° C. to 200 ° C.
For 1 minute. Corrosion test The sample was kept at 1200 ° C. for 15 hours in an atmosphere of 100% hydrogen chloride gas, and the weight loss rate was measured.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 表注; *1 熱サイクル試験を50回繰り返し行った後のSiC被膜にクラックや剥離 の発生の有無。 *2 SiC被膜にクラックや剥離が発生した時の熱サイクル試験回数。[Table 2] Table notes; * 1 Whether or not cracks or peeling occurred in the SiC film after repeating the thermal cycle test 50 times. * 2 The number of thermal cycle tests when cracks or peeling occur in the SiC coating.

【0034】実施例1〜7は耐熱衝撃性・耐食性に優れ
た膜が得られた。また黒鉛基材に含浸されたSiCは膜
を形成していた。比較例1は反応温度が低いため、Si
C占有率が低く、耐熱衝撃性・耐食性に劣り、比較例
2、3、4は反応温度が高いため、SiC膜の粒径が大
きくSiC占有率が低く、比較例5は原料濃度が低いた
め、SiC膜の粒径が大きく、耐熱衝撃性・耐食性に劣
り、各々黒鉛基材に含浸されたSiCは粒形状であっ
た。比較例6は原料濃度が高いため、SiC占有率が低
く、耐熱衝撃性・耐食性に劣る。比較例7は黒鉛基材の
気孔径が大きいため、SiC占有率は高いが基材強度が
低く、耐熱衝撃性に劣ることが判った。
In Examples 1 to 7, films having excellent thermal shock resistance and corrosion resistance were obtained. Further, SiC impregnated in the graphite substrate formed a film. Comparative Example 1 has a low reaction temperature,
C occupancy is low, thermal shock resistance and corrosion resistance are inferior, and Comparative Examples 2, 3, and 4 have high reaction temperatures, so the SiC film has a large particle size and low SiC occupancy, and Comparative Example 5 has a low raw material concentration. In addition, the SiC film had a large particle size, was inferior in thermal shock resistance and corrosion resistance, and each of the SiC impregnated in the graphite substrate had a granular shape. In Comparative Example 6, since the raw material concentration was high, the SiC occupancy was low, and the thermal shock resistance and corrosion resistance were poor. In Comparative Example 7, it was found that the graphite base material had a large pore diameter, so the SiC occupancy was high, but the base material strength was low and the thermal shock resistance was poor.

【0035】[0035]

【発明の効果】以上のとおり、本発明のSiC被覆黒鉛
部材によれば、気孔性状を特定した黒鉛基材の表面から
深さ150μm の基材表層部に含浸、充填したSiC量
を示すSiC占有率を15〜50%の範囲に設定するこ
とにより、アンカー効果によるSiC被膜の被覆強度の
増大を図るとともに、更に、SiC被膜の(111) 結晶面
の配向性を高めることにより、耐熱衝撃性および耐蝕性
に優れたSiC被覆黒鉛部材を提供することができる。
また、その製造方法によればCVD反応において、気相
反応温度および原料ガス濃度を設定、制御することによ
り本発明のSiC被覆黒鉛部材の製造が可能となる。し
たがって、例えば、サセプター、ライナーチューブ、プ
ロセスチューブ、ウエハーボート、単結晶引上げ用装置
部材などの半導体製造における各種熱処理用部材をはじ
め、耐熱性が要求される各種耐熱部材および製造方法と
して、極めて有用である。
As described above, according to the SiC-coated graphite member of the present invention, the SiC occupancy indicating the amount of SiC impregnated and filled into the surface layer portion of the base material having a depth of 150 μm from the surface of the graphite base material whose porosity has been specified. By setting the ratio within the range of 15 to 50%, the coating strength of the SiC coating is increased by the anchor effect, and the orientation of the (111) crystal plane of the SiC coating is further increased to improve the thermal shock resistance and An SiC-coated graphite member having excellent corrosion resistance can be provided.
Further, according to the manufacturing method, the SiC-coated graphite member of the present invention can be manufactured by setting and controlling the gas phase reaction temperature and the raw material gas concentration in the CVD reaction. Therefore, for example, susceptors, liner tubes, process tubes, wafer boats, including various heat treatment members in semiconductor manufacturing such as single crystal pulling equipment members, various heat-resistant members that require heat resistance, and extremely useful as a manufacturing method. is there.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上井 敏治 東京都港区北青山一丁目2番3号 東海カ ーボン株式会社内 (72)発明者 滝沢 泰広 東京都港区北青山一丁目2番3号 東海カ ーボン株式会社内 Fターム(参考) 4G032 AA04 BA01 4K030 AA03 AA09 AA17 BA37 BB04 CA01 FA10 JA06 JA10 LA11 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshiharu Uei 1-3-2 Kitaaoyama, Minato-ku, Tokyo Inside Tokai Carbon Co., Ltd. (72) Inventor Yasuhiro Takizawa 1-2-3 Kitaaoyama, Minato-ku, Tokyo Tokai F term in Carbon Co., Ltd. (reference) 4G032 AA04 BA01 4K030 AA03 AA09 AA17 BA37 BB04 CA01 FA10 JA06 JA10 LA11

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 黒鉛基材面にCVD法により析出したS
iC被膜を被覆した黒鉛部材であって、黒鉛基材が平均
気孔径0.4〜3μm 、最大気孔径10〜100μm の
気孔性状を備え、黒鉛基材面から深さ150μm の黒鉛
基材表層部におけるSiCの占有率が15〜50%であ
って、SiC被膜の平均結晶粒径が1〜3μm 、である
ことを特徴とするSiC被覆黒鉛部材。
1. S deposited on a graphite substrate surface by a CVD method.
A graphite member coated with an iC coating, wherein the graphite substrate has a pore property of an average pore diameter of 0.4 to 3 μm and a maximum pore diameter of 10 to 100 μm, and has a depth of 150 μm from the graphite substrate surface. Wherein the occupation ratio of SiC is 15 to 50%, and the average crystal grain size of the SiC coating is 1 to 3 μm.
【請求項2】 SiC被膜面のX線回折によるSiC(1
11) 面の回折ピークの強度が、全結晶面(hkl) の強度の
80%以上である請求項1記載のSiC被覆黒鉛部材。
2. The SiC (1) obtained by X-ray diffraction of the SiC coating surface.
11. The SiC-coated graphite member according to claim 1, wherein the intensity of the plane diffraction peak is 80% or more of the intensity of all crystal planes (hkl).
【請求項3】 平均気孔径が0.4〜3μm 、最大気孔
径が10〜100μm の気孔性状を備える黒鉛基材をC
VD反応装置内にセットし、気相反応温度を1180〜
1300℃、原料ガス濃度を3〜15 Vol%に制御し
て、CVD反応により黒鉛基材面にSiC被膜を被覆す
るSiC被覆黒鉛部材の製造方法。
3. A graphite base material having an average pore diameter of 0.4 to 3 μm and a maximum pore diameter of 10 to 100 μm and having a pore property of C
It was set in a VD reactor, and the gas phase reaction temperature was set to 1180
A method for producing a SiC-coated graphite member in which a graphite substrate is coated with a SiC coating by a CVD reaction at a temperature of 1300 ° C. and a raw material gas concentration of 3 to 15 Vol%.
JP2000184264A 2000-06-20 2000-06-20 SiC-coated graphite member and method for producing the same Expired - Lifetime JP4071919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000184264A JP4071919B2 (en) 2000-06-20 2000-06-20 SiC-coated graphite member and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000184264A JP4071919B2 (en) 2000-06-20 2000-06-20 SiC-coated graphite member and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002003285A true JP2002003285A (en) 2002-01-09
JP4071919B2 JP4071919B2 (en) 2008-04-02

Family

ID=18684729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000184264A Expired - Lifetime JP4071919B2 (en) 2000-06-20 2000-06-20 SiC-coated graphite member and method for producing the same

Country Status (1)

Country Link
JP (1) JP4071919B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121642A1 (en) * 2015-01-29 2016-08-04 イビデン株式会社 Sic-coated carbon composite material
JP2016204202A (en) * 2015-04-22 2016-12-08 イビデン株式会社 Firing fixture, and method for producing firing fixture
WO2019133559A1 (en) 2017-12-27 2019-07-04 Heraeus Gmsi Llc Process for manufacturing a silicon carbide coated body
WO2019133560A1 (en) 2017-12-27 2019-07-04 Heraeus Gmsi Llc Process for manufacturing a silicon carbide coated body
WO2019133561A1 (en) 2017-12-27 2019-07-04 Heraeus Gmsi Llc Process for manufacturing a silicon carbide coated body
WO2019133558A1 (en) 2017-12-27 2019-07-04 Heraeus Gmsi Llc Process for manufacturing a silicon carbide coated body
WO2019133557A1 (en) 2017-12-27 2019-07-04 Heraeus Gmsi Llc Process for manufacturing a silicon carbide coated body
WO2019133556A1 (en) 2017-12-27 2019-07-04 Heraeus Gmsi Llc Process for manufacturing a silicon carbide coated body
CN112279679A (en) * 2019-07-23 2021-01-29 揖斐电株式会社 Carbon composite member
JP2022522223A (en) * 2019-04-18 2022-04-14 トカイ カーボン コリア カンパニー,リミティド SiC material and its manufacturing method
CN117328036A (en) * 2023-12-01 2024-01-02 成都超纯应用材料有限责任公司 Graphite silicon carbide composite material and deposition process of graphite surface silicon carbide

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225949A (en) 2010-04-21 2011-11-10 Ibiden Co Ltd Carbon component and method of manufacturing the same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121642A1 (en) * 2015-01-29 2016-08-04 イビデン株式会社 Sic-coated carbon composite material
JPWO2016121642A1 (en) * 2015-01-29 2017-08-31 イビデン株式会社 SiC coated carbon composite
US10294163B2 (en) 2015-01-29 2019-05-21 Ibiden Co., Ltd. SiC-coated carbon composite material
JP2016204202A (en) * 2015-04-22 2016-12-08 イビデン株式会社 Firing fixture, and method for producing firing fixture
JP2022127635A (en) * 2017-12-27 2022-08-31 アプライド マテリアルズ インコーポレイテッド Process for manufacturing silicon carbide coating body
JP2021508662A (en) * 2017-12-27 2021-03-11 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Process for manufacturing silicon carbide coating
WO2019133561A1 (en) 2017-12-27 2019-07-04 Heraeus Gmsi Llc Process for manufacturing a silicon carbide coated body
WO2019133558A1 (en) 2017-12-27 2019-07-04 Heraeus Gmsi Llc Process for manufacturing a silicon carbide coated body
WO2019133557A1 (en) 2017-12-27 2019-07-04 Heraeus Gmsi Llc Process for manufacturing a silicon carbide coated body
WO2019133556A1 (en) 2017-12-27 2019-07-04 Heraeus Gmsi Llc Process for manufacturing a silicon carbide coated body
CN111788168A (en) * 2017-12-27 2020-10-16 应用材料公司 Process for manufacturing a silicon carbide coated body
CN111801441A (en) * 2017-12-27 2020-10-20 应用材料公司 Process for manufacturing a silicon carbide coated body
CN115353415A (en) * 2017-12-27 2022-11-18 应用材料公司 Process for manufacturing a silicon carbide coated body
WO2019133560A1 (en) 2017-12-27 2019-07-04 Heraeus Gmsi Llc Process for manufacturing a silicon carbide coated body
JP2021508661A (en) * 2017-12-27 2021-03-11 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Process for manufacturing silicon carbide coating
JP2021508660A (en) * 2017-12-27 2021-03-11 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Process for manufacturing silicon carbide coating
WO2019133559A1 (en) 2017-12-27 2019-07-04 Heraeus Gmsi Llc Process for manufacturing a silicon carbide coated body
JP7078726B2 (en) 2017-12-27 2022-05-31 アプライド マテリアルズ インコーポレイテッド Process for manufacturing silicon carbide coated material
JP2022522223A (en) * 2019-04-18 2022-04-14 トカイ カーボン コリア カンパニー,リミティド SiC material and its manufacturing method
US11658060B2 (en) 2019-04-18 2023-05-23 Tokai Carbon Korea Co., Ltd SiC material and method for manufacturing same
JP7430199B2 (en) 2019-04-18 2024-02-09 トカイ カーボン コリア カンパニー,リミティド SiC material and its manufacturing method
CN112279679A (en) * 2019-07-23 2021-01-29 揖斐电株式会社 Carbon composite member
CN117328036A (en) * 2023-12-01 2024-01-02 成都超纯应用材料有限责任公司 Graphite silicon carbide composite material and deposition process of graphite surface silicon carbide
CN117328036B (en) * 2023-12-01 2024-04-05 成都超纯应用材料有限责任公司 Graphite silicon carbide composite material and deposition process of graphite surface silicon carbide

Also Published As

Publication number Publication date
JP4071919B2 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
JP5275567B2 (en) Tantalum carbide-coated carbon material and method for producing the same
EP2520691B1 (en) Tantalum carbide-coated carbon material and manufacturing method for same
CN104412362B (en) Silicon carbide epitaxy chip and preparation method thereof
JP2002003285A (en) SiC-COATED GRAPHITE MATERIAL AND ITS MANUFACTURING METHOD
KR20200103783A (en) Process for manufacturing a silicon carbide coated body
JP2000302577A (en) Graphite member coated with silicon carbide
KR100427118B1 (en) Heat treatment jig and its manufacturing method
TWI526585B (en) Graphite crucible for single crystal pulling device and method for manufacturing the same
KR102567519B1 (en) Process for manufacturing silicon carbide coated bodies
KR102480454B1 (en) Process for manufacturing silicon carbide coated bodies
JP2000302576A (en) Graphite material coated with silicon carbide
EP0759416B1 (en) Vessel of pyrolytic boron nitride
KR102571078B1 (en) Process for manufacturing silicon carbide coated bodies
JP4736076B2 (en) SiC film-covered glassy carbon material and method for producing the same
JP2000073171A (en) Production of chemical vapor deposition multilayer silicon carbide film
JP3773341B2 (en) SiC coated carbon material
KR20200103081A (en) Process for manufacturing a silicon carbide coated body
TW200925108A (en) Carbon material and method for producing the same
KR102476826B1 (en) Process for manufacturing silicon carbide coated bodies
JPS6374995A (en) Graphite material for epitaxy
JP4556090B2 (en) Member for silicon carbide semiconductor manufacturing apparatus and method for manufacturing the same
JPH03243776A (en) Graphite member for cvd
JPH1135391A (en) Silicon carbide-coated susceptor
JP4386663B2 (en) Carbon composite material
JPH0583517B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4071919

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term