JP3773341B2 - SiC coated carbon material - Google Patents

SiC coated carbon material Download PDF

Info

Publication number
JP3773341B2
JP3773341B2 JP31606197A JP31606197A JP3773341B2 JP 3773341 B2 JP3773341 B2 JP 3773341B2 JP 31606197 A JP31606197 A JP 31606197A JP 31606197 A JP31606197 A JP 31606197A JP 3773341 B2 JP3773341 B2 JP 3773341B2
Authority
JP
Japan
Prior art keywords
sic
film
coating
sic film
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31606197A
Other languages
Japanese (ja)
Other versions
JPH11130565A (en
Inventor
稔 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP31606197A priority Critical patent/JP3773341B2/en
Publication of JPH11130565A publication Critical patent/JPH11130565A/en
Application granted granted Critical
Publication of JP3773341B2 publication Critical patent/JP3773341B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00405Materials with a gradually increasing or decreasing concentration of ingredients or property from one layer to another

Description

【0001】
【発明の属する技術分野】
本発明は、半導体製造における熱処理部材として好適に用いられる、耐熱衝撃性および耐蝕性に優れたSiC被覆炭素材料に関する。
【0002】
【従来の技術】
半導体製造用の処理部材、例えばサセプター、ライナーチューブ、プロセスチューブ、ウエハーボート等には高純度でシリコンウエハーを汚染しない非汚染性に加えて、急熱、急冷に対する耐熱衝撃性に優れ、化学的に安定で耐蝕性が高いことが要求される。
【0003】
これらの半導体製造用の処理部材として、従来から炭素基材等の表面にCVD法(化学的気相析出法)によりSiC被膜を被着した処理部材が有用されている。CVD法によるSiC被膜の形成は、例えば1分子中にSi原子とC原子を含むCH3 SiCl3 、(CH3)3 SiCl、CH3 SiHCl2 等の有機珪素化合物を熱分解させる方法、あるいはSiCl4 等の珪素化合物とCH4 等の炭素化合物とを加熱反応させてSiCを析出させる方法で行われる。
【0004】
このCVD法によるSiC被膜を被着した半導体用処理部材として、例えば、特開平5−6862号公報には、所定形状を有する基材(1) と、この基材(1) に対して積層して形成された微結晶質SiC層(3) 及び粗大結晶質SiC層(2) を有し、微結晶質SiC層(3) と粗大結晶質SiC層(2) の間に、結晶構造の連続性の乏しい中間層(4) を有していることを特徴とする半導体用処理部材が開示されている。
【0005】
また、特開平7−335728号公報には、基材と、CVD法により基材の表面に形成されたSiC膜とを備えた半導体製造用のSiC被覆熱処理治具において、基材の表面に対してほぼ平行な複数の層の形にSiC膜を構成し、それらのうち少なくとも1つの層を核形成層とし、その他の層を通常結晶層とし、核形成層を挟んだ通常結晶層間の結晶成長が不連続であり、通常結晶層におけるSiCの結晶成長を厚み方向に連続にしたことを特徴とする熱処理治具が開示されている。
【0006】
上記公報のうち、特開平5−6862号公報によれば、結晶構造の不連続中間層(4) に金属不純物の拡散層ができるために不純物に対する孔蝕の進行が停滞するので耐蝕性が向上し、また特開平7−335728号公報によれば、基材から拡散した不純物は核形成層にトラップされ、更にここからの再拡散は別の結晶粒界を行程とするため拡散距離が長くなるので不純物の拡散を遅延させることができる。
【0007】
【発明が解決しようとする課題】
しかしながら、SiC被覆炭素材料にあっては、SiC被膜の組織状態によって耐熱サイクル特性や耐熱衝撃特性が微妙に変化し、過酷な熱履歴を受ける半導体製造用の熱処理部材として使用する際にSiC被膜にクラックが生じたり、SiC被膜が剥離したりする問題点があった。また、化学的安定性もSiC被膜の組織状態によって影響され、耐蝕性が低下する問題点もあった。
【0008】
本発明者は、これらの問題点を解消するためにSiC被膜の組織状態と耐熱衝撃性および耐蝕性との関連について研究を進めた結果、炭素基材面に被着するSiC被膜の粒子径が小さい場合には炭素基材面に強固に被着し、一方外部雰囲気と接するSiC被膜外面の粒子径が大きいと腐食性ガスの進入が低減できることを見出した。
【0009】
本発明は上記の知見に基づいて開発されたもので、その目的は、半導体製造用の熱処理部材として好適に用いられる、耐熱衝撃性および耐蝕性に優れたSiC被覆炭素材料を提供することにある。
【0010】
【課題を解決するための手段】
上記の目的を達成するための本発明によるSiC被覆炭素材料は、炭素基材の表面にSiC被膜を被着した炭素材料であって、SiC被膜が、炭素基材面に接する最内層のSiC被膜▲3▼、最外層のSiC被膜▲1▼、およびSiC被膜▲1▼とSiC被膜▲3▼との中間層のSiC被膜▲2▼の3層からなり、最内層のSiC被膜▲3▼の平均粒子径が2〜5μm 、最外層のSiC被膜▲1▼の平均粒子径が10〜30μm 、中間層のSiC被膜▲2▼の平均粒子径が炭素基材面に接する最内層のSiC被膜▲3▼の平均粒子径から最外層のSiC被膜▲1▼の平均粒子径へと連続的に変化する傾斜的性状を備えていることを構成上の特徴とする。
【0011】
【発明の実施の形態】
本発明のSiC被覆炭素材料は図1および図2に示すように炭素基材の表面に3層からなるSiC被膜が被着されたものである。すなわち、図1、図2は本発明のSiC被覆炭素材料の断面を模式的に示したもので、1は炭素基材、2は炭素基材面に接する最内層のSiC被膜▲3▼、4は最外層のSiC被膜▲1▼であり、3はSiC被膜▲1▼とSiC被膜▲3▼との中間層となるSiC被膜▲2▼である。
【0012】
SiC被膜を被着する炭素基材は特に限定されるものではないが、半導体を製造する際の処理部材として用いられるものであるから可及的に高純度であり、かつ熱的に異方性の少ない等方性黒鉛材が好ましく用いられる。この炭素基材面に直接被着されるSiC被膜は基材面に強固に被着されることが必要である。CVD法により析出形成したSiC被膜は、SiC被膜を構成するSiC粒子の粒子径が小さい場合には、SiC粒子は炭素基材表層部の気孔やポア等の空隙部に浸透するために強固に被着される。すなわち、本発明は炭素基材面に接する最内層のSiC被膜▲3▼を構成するSiC粒子の平均粒子径を2〜5μm の範囲に設定することにより、基材表面に被着したSiC被膜を基材面と強固に密着した状態で被着させたものである。
【0013】
しかし、粒子径の小さいSiC粒子で構成されたSiC被膜ではSiC粒子間の界面が大きくなり、腐食性ガスの侵入も多くなるために耐蝕性が相対的に低下する問題が生じる。そこで本発明のSiC被覆炭素材料では、外部雰囲気に直接曝される最外層のSiC被膜▲1▼を平均粒子径が大きな、すなわち平均粒子径が10〜30μm のSiC粒子で構成されたSiC被膜を被着して、SiC粒子間の界面を小さくすることにより腐食性ガスの侵入を低減化して耐蝕性の向上を図るものである。
【0014】
しかしながら、このような粒子性状の異なるSiC被膜▲3▼およびSiC被膜▲1▼を炭素基材面に順次被着すると、SiC被膜▲3▼とSiC被膜▲1▼との熱的性状の相違から、急速な加熱および冷却の熱サイクルを受けた場合にはSiC被膜▲3▼とSiC被膜▲1▼との界面である膜境でクラックが発生し易く、被膜間で剥離する難点がある。そこで、図3に示すようにSiC被膜▲1▼とSiC被膜▲3▼との間に中間層としてSiC被膜▲2▼を設け、その平均粒子径がSiC被膜▲1▼と▲3▼との中間の値で連続的に変化する傾斜的性状の粒子性状とすることにより熱的性状の相違を緩和して、SiC被膜▲1▼とSiC被膜▲3▼の被膜間で生じるクラックや剥離を抑制するものである。なおSiC被膜▲2▼のSiC被膜▲1▼に接する面ではSiC被膜▲1▼と、またSiC被膜▲2▼がSiC被膜▲3▼に接する面ではSiC被膜▲3▼と同等の粒子性状とすることが望ましい。
【0015】
このように本発明のSiC被覆炭素材料は、SiC粒子の平均粒子径を特定の範囲に設定したSiC被膜▲1▼、▲2▼および▲3▼の3層構造からなるSiC被膜を被着したものであるから、急熱、急冷による熱衝撃にもクラックや剥離などが発生し難く、また腐食性ガスの侵入も効果的に防止される。
【0016】
なお、3層構造からなるSiC被膜は、その膜厚が20〜400μm であることが好ましい。膜厚が20μm 未満では本発明の効果が充分でなく、一方400μm を超える膜厚に被着しても顕著な効果の向上が認められないためである。
【0017】
また、SiC被膜を構成するSiC被膜▲1▼、▲2▼および▲3▼の各被膜は、それぞれの被膜の機能を果たすために所定の膜厚に被着することが好ましい。すなわち、炭素基材面に接する最内層のSiC被膜▲3▼の膜厚は基材面と強固に密着した状態で被着させるためにSiC被膜の膜厚の10〜30%であることが好ましく、最外層のSiC被膜▲1▼の膜厚は腐食性のガス侵入を効果的に抑止するためにSiC被膜の膜厚の40〜80%に被着することが望ましい。また、SiC被膜▲1▼と▲3▼との熱的特性を緩和するために機能するSiC被膜▲2▼の膜厚はSiC被膜の膜厚の10〜30%であることが好ましい。
【0018】
本発明のSiC被膜の形成、すなわち炭素基材面に順次SiC被膜▲3▼、▲2▼および▲1▼を形成被着する方法はCVD装置におけるSiCの析出条件を適宜変更することにより行うことができる。例えばCH3 SiCl3 、(CH3)3 SiCl、CH3 SiHCl2 等の有機珪素化合物の濃度あるいはSiCl4 等の珪素化合物とCH4 等の炭素化合物とのモル比、CVD反応装置の反応室内の圧力、反応温度、反応時間などの条件因子を適宜設定制御してSiCの析出速度を調節することにより、所定の粒子性状を有する被膜を所定厚さに形成被着することができる。
【0019】
【実施例】
以下、本発明の実施例を比較例と対比しながら詳細に説明する。
【0020】
実施例1
CVD装置の反応室(有効容積;直径 300mm、長さ 500mm)に炭素基材として直径 220mm、厚さ 4mmの高純度等方性黒鉛材を入れて、常圧下に水素ガスを送入して置換した。原料ガスに(CH3 3 SiClを、キャリアガスに水素ガスを用いて、原料ガス濃度を7.5 Vol%に制御しながら混合ガスを30l/分の速度で供給し、1450Kの温度に10分間保持してSiC被膜▲3▼を被着したのち、次いで、10分間かけて1650Kの温度に昇温してSiC被膜▲2▼を形成した。引き続き1650Kの温度で20分間保持してSiC被膜▲1▼を形成被着した。このようにして、膜厚20μm のSiC被膜▲3▼、膜厚25μm のSiC被膜▲2▼および膜厚60μm のSiC被膜▲1▼を高純度等方性黒鉛材の表面に順次被着した。また、このSiC被膜▲1▼〜▲3▼の各被膜を構成するSiC粒子の直径を測定して平均粒子径を算出した。
【0021】
実施例2〜8、比較例1〜8
実施例1と同一の高純度等方性黒鉛材を用い、原料ガス濃度、混合ガスの供給速度、CVD反応温度および保持時間などを変えて異なる膜厚のSiC被膜▲1▼〜▲3▼を順次形成被着し、また各被膜を構成するSiC粒子の直径を測定して平均粒子径を算出した。なお、比較例1〜6においてはSiC被膜▲1▼〜▲3▼の1部を形成しなかった。
【0022】
このようにして得られた高純度等方性黒鉛材の表面に被着したSiC被膜▲1▼〜▲3▼の膜厚および各被膜を構成するSiC粒子の平均粒子径を表1に示した。
【0023】
【表1】

Figure 0003773341
【0024】
次に、これらのSiC被覆炭素材料について下記の方法により耐熱衝撃試験および耐蝕性試験を行って、その結果を表2に示した。
耐熱衝撃試験;400℃に加熱後、水中に投入して急冷した際のSiC被膜の状況を観察した。
耐蝕性試験 ;温度1200℃に加熱した塩化水素ガスを流量0.7ミリリットル/ cm2/分にて8時間処理した際のSiC被膜の重量減少率およびSiC被膜の状況を観察した。
【0025】
【表2】
Figure 0003773341
【0026】
表1、2の結果から、特定の粒子性状を備えたSiC被膜▲1▼から▲3▼を積層形成した実施例のSiC被覆炭素材料は、耐熱衝撃性および耐蝕性に優れた特性を保持していることが判る。これに対して、比較例では耐熱衝撃性試験において亀裂が生じたり、耐蝕性試験において重量減少率が多いなど特性が充分でないことが認められる。
【0027】
【発明の効果】
以上のとおり、本発明によれば、炭素基材面にSiC被膜▲3▼、SiC被膜▲2▼およびSiC被膜▲1▼を順次に被着した3層状のSiC被膜により耐熱衝撃性および耐蝕性に優れたSiC被覆炭素材料を提供することが可能となる。したがって、半導体製造用の処理部材として極めて有用である。
【図面の簡単な説明】
【図1】本発明のSiC被覆炭素材料の断面を例示した模式図である。
【図2】本発明のSiC被覆炭素材料の断面を模式的に拡大した部分拡大図である。
【図3】SiC被膜を構成するSiC被膜▲1▼、▲2▼、▲3▼の平均粒子径の分布を例示した模式図である。
【符号の説明】
1 炭素基材
2 SiC被膜▲3▼
3 SiC被膜▲2▼
4 SiC被膜▲1▼[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a SiC-coated carbon material excellent in thermal shock resistance and corrosion resistance, which is suitably used as a heat treatment member in semiconductor manufacturing.
[0002]
[Prior art]
Processing members for semiconductor manufacturing, such as susceptors, liner tubes, process tubes, wafer boats, etc., have high purity and non-contamination properties that do not contaminate silicon wafers. It is required to be stable and have high corrosion resistance.
[0003]
Conventionally, as a processing member for manufacturing these semiconductors, a processing member in which a SiC film is deposited on the surface of a carbon substrate or the like by a CVD method (chemical vapor deposition method) has been useful. The SiC film is formed by CVD, for example, by thermally decomposing organosilicon compounds such as CH 3 SiCl 3 , (CH 3 ) 3 SiCl, and CH 3 SiHCl 2 containing Si and C atoms in one molecule, or SiCl. silicon compounds such as 4 and CH 4, etc. and a carbon compound of heated reaction is carried out in a manner to precipitate SiC and.
[0004]
As a semiconductor processing member coated with a SiC film by this CVD method, for example, in Japanese Patent Laid-Open No. 5-6862, a base material (1) having a predetermined shape and a base material (1) are laminated. A microcrystalline SiC layer (3) and a coarse crystalline SiC layer (2) formed in a continuous manner, and the crystal structure is continuous between the microcrystalline SiC layer (3) and the coarse crystalline SiC layer (2). A semiconductor processing member characterized by having an intermediate layer (4) with poor properties is disclosed.
[0005]
Japanese Patent Laid-Open No. 7-335728 discloses a SiC coated heat treatment jig for semiconductor manufacturing comprising a base material and an SiC film formed on the surface of the base material by a CVD method. The SiC film is formed into a plurality of substantially parallel layers, at least one of which is a nucleation layer, the other layer is a normal crystal layer, and crystal growth between normal crystal layers sandwiching the nucleation layer Is discontinuous, and a heat treatment jig is disclosed in which SiC crystal growth in a normal crystal layer is continuous in the thickness direction.
[0006]
Among the above publications, according to Japanese Patent Laid-Open No. 5-6862, since the diffusion layer of metal impurities is formed in the discontinuous intermediate layer (4) of the crystal structure, the progress of pitting corrosion against the impurities is stagnated, so the corrosion resistance is improved. In addition, according to Japanese Patent Laid-Open No. 7-335728, impurities diffused from the base material are trapped in the nucleation layer, and further, the re-diffusion from here takes another crystal grain boundary as a stroke, resulting in a long diffusion distance. Therefore, the diffusion of impurities can be delayed.
[0007]
[Problems to be solved by the invention]
However, in the SiC-coated carbon material, the heat cycle characteristics and thermal shock characteristics change slightly depending on the structure of the SiC film, and when used as a heat treatment member for semiconductor manufacturing that receives a severe thermal history, There was a problem that a crack occurred or the SiC coating peeled off. In addition, the chemical stability is also affected by the structure of the SiC coating, and there is a problem that the corrosion resistance is lowered.
[0008]
In order to solve these problems, the present inventor conducted research on the relationship between the structural state of the SiC coating and the thermal shock resistance and corrosion resistance. As a result, the particle size of the SiC coating deposited on the carbon substrate surface was reduced. It has been found that if the particle size of the outer surface of the SiC coating in contact with the external atmosphere is large, the invasion of corrosive gas can be reduced when it is small and firmly adhered to the carbon substrate surface.
[0009]
The present invention has been developed based on the above findings, and an object of the present invention is to provide a SiC-coated carbon material excellent in thermal shock resistance and corrosion resistance, which is suitably used as a heat treatment member for semiconductor production. .
[0010]
[Means for Solving the Problems]
The SiC-coated carbon material according to the present invention for achieving the above object is a carbon material in which a SiC coating is applied to the surface of a carbon substrate, and the SiC coating is the innermost SiC coating in contact with the carbon substrate surface. (3), the outermost SiC coating (1), and the SiC coating (2) intermediate between the SiC coating (1) and the SiC coating (3). The innermost SiC coating (3) The average particle diameter is 2 to 5 μm, the outermost SiC coating (1) has an average particle diameter of 10 to 30 μm, and the intermediate SiC coating (2) has an average particle diameter in contact with the carbon substrate surface. 3 is characterized in that it has a gradient property that continuously changes from the average particle size of 3 ▼ to the average particle size of the outermost SiC coating (1).
[0011]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIG. 1 and FIG. 2, the SiC-coated carbon material of the present invention is obtained by coating a three-layer SiC film on the surface of a carbon substrate. That is, FIGS. 1 and 2 schematically show a cross section of the SiC-coated carbon material of the present invention, where 1 is a carbon base material, 2 is the innermost SiC coating in contact with the carbon base material surface (3), 4 Is the outermost SiC film (1), and 3 is the SiC film (2) which is an intermediate layer between the SiC film (1) and the SiC film (3).
[0012]
The carbon base material on which the SiC coating is applied is not particularly limited, but is as high purity as possible and thermally anisotropic because it is used as a processing member in manufacturing a semiconductor. An isotropic graphite material with a low content is preferably used. The SiC coating directly applied to the carbon substrate surface needs to be firmly applied to the substrate surface. The SiC film deposited and formed by the CVD method, when the particle size of the SiC particles constituting the SiC film is small, the SiC particles penetrate firmly into the voids such as pores and pores on the surface of the carbon base material, so that the SiC film is firmly covered. Worn. That is, in the present invention, by setting the average particle diameter of the SiC particles constituting the innermost SiC coating (3) in contact with the carbon substrate surface in the range of 2 to 5 μm, the SiC coating deposited on the substrate surface is formed. It is deposited in a state of being in close contact with the substrate surface.
[0013]
However, in the SiC coating composed of SiC particles having a small particle diameter, the interface between the SiC particles becomes large and the invasion of corrosive gas increases, which causes a problem that the corrosion resistance is relatively lowered. Therefore, in the SiC-coated carbon material of the present invention, the outermost SiC coating (1) directly exposed to the external atmosphere is a SiC coating composed of SiC particles having a large average particle size, that is, an average particle size of 10 to 30 μm. It adheres and reduces the invasion of corrosive gas by reducing the interface between the SiC particles, thereby improving the corrosion resistance.
[0014]
However, when the SiC film (3) and the SiC film (1) having different particle properties are sequentially deposited on the carbon substrate surface, the thermal properties of the SiC film (3) and the SiC film (1) are different. When subjected to rapid heating and cooling thermal cycles, cracks are likely to occur at the film boundary, which is the interface between the SiC film (3) and the SiC film (1), and there is a difficulty in peeling between the films. Therefore, as shown in FIG. 3, an SiC film (2) is provided as an intermediate layer between the SiC film (1) and the SiC film (3), and the average particle size thereof is between the SiC films (1) and (3). The difference in thermal properties is mitigated by adopting a gradient property that changes continuously at an intermediate value, and cracks and delamination between the SiC coating (1) and the SiC coating (3) are suppressed. To do. It should be noted that the SiC film {circle over (2)} is in contact with the SiC film {circle around (1)}, and the surface of the SiC film {circle around (2)} is in contact with the SiC film {circle around (3)}. It is desirable to do.
[0015]
As described above, the SiC-coated carbon material of the present invention was coated with the SiC film having the three-layer structure of the SiC film (1), (2) and (3) in which the average particle diameter of the SiC particles was set within a specific range. Therefore, cracks and delamination are less likely to occur during thermal shock caused by rapid heating or rapid cooling, and the invasion of corrosive gas is effectively prevented.
[0016]
The SiC film having a three-layer structure preferably has a thickness of 20 to 400 μm. When the film thickness is less than 20 μm, the effect of the present invention is not sufficient. On the other hand, even if the film is deposited to a film thickness exceeding 400 μm, no significant improvement in effect is observed.
[0017]
Moreover, it is preferable that each of the SiC coatings (1), (2), and (3) constituting the SiC coating is deposited in a predetermined film thickness in order to perform the function of each coating. That is, the film thickness of the innermost SiC film (3) in contact with the carbon substrate surface is preferably 10 to 30% of the film thickness of the SiC film in order to deposit in a state of being in close contact with the substrate surface. The film thickness of the outermost SiC film {circle around (1)} is desirably applied to 40 to 80% of the film thickness of the SiC film in order to effectively suppress corrosive gas intrusion. The film thickness of the SiC film (2) that functions to relax the thermal characteristics of the SiC films (1) and (3) is preferably 10 to 30% of the film thickness of the SiC film.
[0018]
The formation of the SiC film of the present invention, that is, the method of sequentially forming and depositing the SiC films (3), (2) and (1) on the carbon substrate surface is performed by appropriately changing the SiC deposition conditions in the CVD apparatus. Can do. For example, the concentration of an organic silicon compound such as CH 3 SiCl 3 , (CH 3 ) 3 SiCl, or CH 3 SiHCl 2, or the molar ratio between a silicon compound such as SiCl 4 and a carbon compound such as CH 4 , the reaction chamber in the CVD reactor By appropriately setting and controlling the condition factors such as pressure, reaction temperature, and reaction time to adjust the deposition rate of SiC, a film having a predetermined particle property can be formed and deposited to a predetermined thickness.
[0019]
【Example】
Hereinafter, examples of the present invention will be described in detail in comparison with comparative examples.
[0020]
Example 1
A CVD chamber reaction chamber (effective volume; diameter 300 mm, length 500 mm) is filled with a high purity isotropic graphite material with a diameter of 220 mm and a thickness of 4 mm as a carbon substrate, and hydrogen gas is sent under atmospheric pressure for replacement. did. Using (CH 3 ) 3 SiCl as the source gas and hydrogen gas as the carrier gas, the mixed gas was supplied at a rate of 30 l / min while controlling the source gas concentration to 7.5 Vol%. After holding for 6 minutes to deposit the SiC film (3), the temperature was raised to a temperature of 1650 K over 10 minutes to form an SiC film (2). Subsequently, the SiC film (1) was formed and deposited by holding at a temperature of 1650 K for 20 minutes. In this manner, a 20 μm thick SiC film (3), a 25 μm thick SiC film (2) and a 60 μm thick SiC film (1) were sequentially deposited on the surface of the high purity isotropic graphite material. Further, the average particle diameter was calculated by measuring the diameter of the SiC particles constituting each of the SiC coatings (1) to (3).
[0021]
Examples 2-8, Comparative Examples 1-8
Using the same high-purity isotropic graphite material as in Example 1, and changing the raw material gas concentration, the mixed gas supply rate, the CVD reaction temperature and the holding time, etc. The average particle size was calculated by measuring the diameter of the SiC particles that were successively formed and deposited, and constituting each coating. In Comparative Examples 1 to 6, one part of the SiC coatings (1) to (3) was not formed.
[0022]
Table 1 shows the thicknesses of the SiC coatings {circle around (1)} to {circle around (3)} deposited on the surface of the high purity isotropic graphite material thus obtained and the average particle diameter of the SiC particles constituting each coating. .
[0023]
[Table 1]
Figure 0003773341
[0024]
Next, these SiC-coated carbon materials were subjected to a thermal shock test and a corrosion resistance test by the following methods, and the results are shown in Table 2.
Thermal shock test: The state of the SiC coating when heated to 400 ° C. and then quenched in water was observed.
Corrosion resistance test: The weight loss rate of the SiC coating and the state of the SiC coating were observed when hydrogen chloride gas heated to a temperature of 1200 ° C. was treated at a flow rate of 0.7 ml / cm 2 / min for 8 hours.
[0025]
[Table 2]
Figure 0003773341
[0026]
From the results shown in Tables 1 and 2, the SiC-coated carbon materials of the examples in which the SiC coatings (1) to (3) having specific particle properties were laminated and maintained excellent characteristics in thermal shock resistance and corrosion resistance. You can see that On the other hand, in the comparative example, it is recognized that the characteristics are not sufficient, such as cracking in the thermal shock resistance test, and a large weight reduction rate in the corrosion resistance test.
[0027]
【The invention's effect】
As described above, according to the present invention, the three-layered SiC film in which the SiC film (3), the SiC film (2), and the SiC film (1) are sequentially applied to the carbon substrate surface is used for thermal shock resistance and corrosion resistance. It is possible to provide a SiC-coated carbon material excellent in the above. Therefore, it is extremely useful as a processing member for semiconductor manufacturing.
[Brief description of the drawings]
FIG. 1 is a schematic view illustrating a cross section of a SiC-coated carbon material of the present invention.
FIG. 2 is a partially enlarged view schematically showing a cross section of the SiC-coated carbon material of the present invention.
FIG. 3 is a schematic diagram illustrating the distribution of average particle diameters of SiC coatings (1), (2), and (3) constituting the SiC coating.
[Explanation of symbols]
1 Carbon substrate 2 SiC coating (3)
3 SiC coating (2)
4 SiC coating (1)

Claims (3)

炭素基材の表面にSiC被膜を被着した炭素材料であって、SiC被膜が、炭素基材面に接する最内層のSiC被膜▲3▼、最外層のSiC被膜▲1▼、およびSiC被膜▲1▼とSiC被膜▲3▼との中間層のSiC被膜▲2▼の3層からなり、最内層のSiC被膜▲3▼の平均粒子径が2〜5μm 、最外層のSiC被膜▲1▼の平均粒子径が10〜30μm 、中間層のSiC被膜▲2▼の平均粒子径が炭素基材面に接する最内層のSiC被膜▲3▼の平均粒子径から最外層のSiC被膜▲1▼の平均粒子径へと連続的に変化する傾斜的性状を備えていることを特徴とするSiC被覆炭素材料。A carbon material in which a SiC film is deposited on the surface of a carbon substrate, the SiC film being in contact with the carbon substrate surface, the innermost SiC film (3), the outermost SiC film (1), and the SiC film It consists of three layers of SiC film (2) as an intermediate layer between 1 and SiC film (3). The average particle diameter of the innermost SiC film (3) is 2 to 5 μm, and the outermost SiC film (1) The average particle diameter of 10 to 30 μm and the average particle diameter of the SiC coating (2) in the intermediate layer is the average of the SiC coating (1) of the outermost layer from the average particle diameter of the innermost SiC coating (3) in contact with the carbon substrate surface. A SiC-coated carbon material having a gradient property that continuously changes to a particle diameter. SiC被膜の膜厚が20〜400μm である請求項1記載のSiC被覆炭素材料。  The SiC-coated carbon material according to claim 1, wherein the film thickness of the SiC film is 20 to 400 µm. SiC被膜▲1▼〜▲3▼の各膜厚が、SiC被膜の膜厚に対して、SiC被膜▲1▼40〜80%、SiC被膜▲2▼10〜30%、SiC被膜▲3▼10〜30%である請求項1記載のSiC被覆炭素材料。  The thickness of each of the SiC coatings {circle around (1)} to {circle around (3)} is 40 to 80%, SiC coating {circle around (2)} to 10%, and SiC coating {circle around (3)} to the thickness of the SiC coating. The SiC-coated carbon material according to claim 1, which is -30%.
JP31606197A 1997-10-31 1997-10-31 SiC coated carbon material Expired - Fee Related JP3773341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31606197A JP3773341B2 (en) 1997-10-31 1997-10-31 SiC coated carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31606197A JP3773341B2 (en) 1997-10-31 1997-10-31 SiC coated carbon material

Publications (2)

Publication Number Publication Date
JPH11130565A JPH11130565A (en) 1999-05-18
JP3773341B2 true JP3773341B2 (en) 2006-05-10

Family

ID=18072833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31606197A Expired - Fee Related JP3773341B2 (en) 1997-10-31 1997-10-31 SiC coated carbon material

Country Status (1)

Country Link
JP (1) JP3773341B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4663927B2 (en) 2001-08-29 2011-04-06 信越化学工業株式会社 Rare earth-containing oxide member
EP1306890A2 (en) * 2001-10-25 2003-05-02 Matsushita Electric Industrial Co., Ltd. Semiconductor substrate and device comprising SiC and method for fabricating the same
JP6476047B2 (en) * 2015-04-22 2019-02-27 イビデン株式会社 Manufacturing method of firing jig
KR101914289B1 (en) * 2016-08-18 2018-11-01 주식회사 티씨케이 SiC PART FOR SEMICONDUCTOR MANUFACTORING COMPRISING DIFFERENT TRANSMITTANCE MULTILAYER AND METHOD OF MANUFACTURNING THE SAME
EP3514257A1 (en) * 2018-01-18 2019-07-24 Heraeus GMSI LLC Process for manufacturing a silicon carbide coated body
EP3514128A1 (en) * 2018-01-18 2019-07-24 Heraeus GMSI LLC Process for manufacturing a silicon carbide coated body

Also Published As

Publication number Publication date
JPH11130565A (en) 1999-05-18

Similar Documents

Publication Publication Date Title
EP2520691B1 (en) Tantalum carbide-coated carbon material and manufacturing method for same
JP5275567B2 (en) Tantalum carbide-coated carbon material and method for producing the same
CA2202026C (en) Method of making a diamond-coated composite body
KR100193546B1 (en) Ultra hard membrane coating member and manufacturing method thereof
JPH1179846A (en) Silicon carbide formed product
KR100427118B1 (en) Heat treatment jig and its manufacturing method
JP3773341B2 (en) SiC coated carbon material
JP4071919B2 (en) SiC-coated graphite member and method for producing the same
JP2000302577A (en) Graphite member coated with silicon carbide
JPH0127568B2 (en)
JPH03153876A (en) Silicon carbide member
JP2000302576A (en) Graphite material coated with silicon carbide
JP3929140B2 (en) Corrosion resistant member and manufacturing method thereof
JP2000073171A (en) Production of chemical vapor deposition multilayer silicon carbide film
WO2021117498A1 (en) Tantalum carbonate-coated graphite member and method for producing same
JP4702712B2 (en) Tubular SiC molded body and method for producing the same
JP2002097092A (en) Glassy carbon material coated with silicon carbide film and method for producing the same
CA2066100A1 (en) Method of forming a silicon diffusion and/or overlay coating on the surface of a metallic substrate by chemical vapor deposition
JP3739507B2 (en) Manufacturing method of heat treatment jig
JPS6010108B2 (en) Method for pyrolytically depositing silicon nitride onto a substrate
JP7396977B2 (en) Semiconductor heat treatment member and its manufacturing method
JP4556090B2 (en) Member for silicon carbide semiconductor manufacturing apparatus and method for manufacturing the same
JP4386663B2 (en) Carbon composite material
JP7322371B2 (en) Method for manufacturing polycrystalline silicon carbide substrate
JP3925884B2 (en) Method for coating SiC film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060214

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees