JP4309509B2 - Method for producing crucible for single crystal growth comprising pyrolytic graphite - Google Patents

Method for producing crucible for single crystal growth comprising pyrolytic graphite Download PDF

Info

Publication number
JP4309509B2
JP4309509B2 JP08133799A JP8133799A JP4309509B2 JP 4309509 B2 JP4309509 B2 JP 4309509B2 JP 08133799 A JP08133799 A JP 08133799A JP 8133799 A JP8133799 A JP 8133799A JP 4309509 B2 JP4309509 B2 JP 4309509B2
Authority
JP
Japan
Prior art keywords
crucible
carbon
single crystal
pyrolytic carbon
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08133799A
Other languages
Japanese (ja)
Other versions
JP2000272990A (en
Inventor
光輝 富田
敬司 広瀬
泰臣 堀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP08133799A priority Critical patent/JP4309509B2/en
Publication of JP2000272990A publication Critical patent/JP2000272990A/en
Application granted granted Critical
Publication of JP4309509B2 publication Critical patent/JP4309509B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、シリコン半導体や化合物半導体などの単結晶体を製造するのに使用される、特に化合物半導体の単結晶体を垂直ブリッジマン法(VB法)又は垂直温度勾配法(VGF法)により単結晶体を製造するのに使用される黒鉛ルツボの製造方法に関するものである。
【0002】
【従来の技術】
従来GaAs化合物半導体などの単結晶体を成長させるのに用いられるルツボとしては、熱分解窒化ほう素(PBN)を使用したルツボや窒化ほう素の焼結体などを用いたルツボなどが知られていたが、ルツボ構成成分のボロンが単結晶中に混入してくるという問題があった。そこで、前記問題を解消するために、前記材質のルツボの使用に代えて、カーボン製のルツボの使用が考えられるが、入手可能なカーボン製のルツボでは、ルツボのカーボンから粉末が発生し、これが単結晶体製造において汚染の原因となることが知られている。また、前記問題を解決するものとして、前記PBN材料等からなるルツボの内面をガラス状カーボンや熱分解カーボンで被覆することの提案がされている(特開平2−289484号公報参照)。そして、こうすることにより、ルツボの内面が滑らかになり、得られる単結晶の結晶特性が優れ、また前記粉末の脱落の問題もなく、かつ、製作コストが安くなったことに言及している。
【0003】
【発明が解決しようとする課題】
しかしながら、前記提案のルツボは、PBN製のルツボの内面にガラス状カーボンや熱分解カーボンを被覆する必要があり、垂直ブリッジマン法(VB法)又は垂直温度勾配法(VGF法)で使用されるルツボの形状が、種子結晶収納部を有するため、前記ガラス状カーボンや熱分解カーボンが均一に被覆することが難しいという問題がある。また、PBN等と炭素という異質の材質の層が積層された構造であるために、それぞれの層を構成する材料が加熱や冷却の際に異なった挙動をするためクラックを起こし安いという問題点があり、また前記ルツボの構造に基づく均一被覆の難しさから、被覆の不均一の原因より、更に前記クラックの発生が増幅されるという問題があった。従って、単一材料からなり、育成される結晶を汚染することがない化学的安定性を有し、かつ育成単結晶と接触するルツボ内面が平滑で、結晶成長の核となる箇所を形成しないルツボが望まれる。よって、本発明の課題は、前記特性を具備したルツボを提供することである。
【0004】
【課題を解決するための手段】
本発明は、作成するルツボの内面形状に対応する外形を有し、該外形の表面粗度Rmaxが10μm以下であり、沈積される熱分解炭素の熱膨張率よりも大きな熱膨張率を有する炭素材料よりなるルツボ型を真空炉内に配置し、且つ、前記ルツボ型表面に対応する形状の加熱手段を熱分解炭素が生成沈積される前記ルツボ型表面の温度を均一に保つように配置して熱分解法によって所望の厚さの炭素を前記ルツボ型表面に沈積させた後、冷却して、ルツボ型と沈積により形成された炭素ルツボの熱膨張率差によって、前記ルツボ型表面から、熱分解炭素の沈積によって形成されたルツボを分離することを特徴とする単結晶成長用ルツボの製造方法である。
なお、本願明細書において、表面粗度Rmaxとは、JIS B0601の表面粗さの定義による。
【0005】
【発明の実施の形態】
前記ルツボ型表面に熱分解法によりルツボ形状に炭素を沈積する手段としては、従来から知られている化学気相蒸着法を利用することができる。このような方法の一般的なものとしては、例えば1200℃〜2200℃のような高温に加熱された基材、通常黒鉛からなる基材に、例えばメタン、プロパン、ベンゼン、アセチレンなどの炭化水素、又はジクロロメタンのようなハロゲン化炭化水素などの炭素源化合物を供給し、接触させることにより、前記加熱された基材の表面で熱分解炭素を生成沈積させる方法がある。この際、炭化水素などの熱分解される成分の濃度はキャリヤガスを使用して、所望の特性の炭素が生成沈積するように調整する必要がある。このような濃度調整に用いるキャリヤガスとしては、水素が使用される。熱分解される成分の濃度は、熱分解の温度(加熱された基材の表面の温度)、反応容器内の圧力、原料ガスの流速などの条件によっても調節する必要があり、好ましい特性の炭素が沈積される条件を選択する必要がある。
【0006】
また、前記反応容器内の圧力条件は、熱分解炭素の沈積層の均一性、ルツボ内面の平滑性を左右する重要なものであり、減圧下、例えば50Torr以下、好ましくは30Torr以下で行うことが望ましい。従って、本発明のルツボの製造には、前記化学気相蒸着法を工夫して、真空容器を用いて行われる。例えば、一般に沈積する熱分解炭素の特性は熱分解炭素を生成沈積させる表面の温度の影響を受けるから、該表面温度を熱分解炭素を生成沈積させる工程中あまり変動しないような加熱手段、例えば輻射加熱、誘導加熱、赤外放射加熱などのような加熱手段を用い、また前記熱分解表面の温度を、例えば放射温度計、光高温計などにより監視しながら制御することが重要である。また、加熱手段としては、ルツボ型に対応した形状の黒鉛ヒーターを、前記ルツボ型に対応するように配置して使用することによって、熱分解炭素が生成沈積される表面の温度を均一にすることができる。また、炭素源化合物とキャリヤーガスとの混合物の供給手段及び排気手段を工夫することにより、ルツボ型表面での熱分解炭素の生成沈積制御できる。こうした手段により、熱分解炭素の生成沈積初期の特性と終期の特性との差を小さくすることができ、生成沈積層の厚さ方向の特性の違いによる、ルツボの加熱−冷却サイクルにおける、層剥離やクラックの発生の原因を除去することができる。
【0007】
また、沈積面に垂直方向の平均熱膨張係数と沈積面に平行方向の熱膨張係数の違いも、熱分解炭素層、例えば黒鉛層の沈着後の冷却時に大きなひずみを生じ、層状のき裂や、剥離を起こしやすい原因となるので、できるだけ近づける、換言すれば異方比ができるだけ小さくなるように、熱分解炭素を生成沈積する条件を設定することが重要である。特に沈着層の厚さを大きくする場合には、異方性が大きくなる傾向があるので、特に注意を要する。ルツボ型には、形成されるルツボができる限りルツボ型からの不純物の拡散などによる不純物の影響を受けることがないように、純度を高めるためたものを使用する必要がある。従って高純度、例えば全灰分が10ppm以下の黒鉛材料からなるルツボ型を使用することが好ましい。高純度化の手段としては、従来から用いられている、ハロゲンガス雰囲気下での精製処理などを用いることができる。また、ルツボ型からのガスの発生も、生成沈積される炭素の平滑性及び緻密性に悪影響を与えるから、少なくする必要がある。ルツボ型を形成する炭素材料、例えば黒鉛材料の熱膨張率は、25℃〜400℃において、3〜6×10−6/℃程度のものが使用される。その値は熱分解炭素の熱膨張率が1.7×10−6/℃程度であるから、両者の熱膨張率差によって、冷却することで、形成されたルツボをルツボ型から取り外すことができる。
【0008】
また、該ルツボ内面の表面粗度Rmaxは10μm以下、好ましくは5μm以下とすることが望ましい。熱分解化合物としては前記したものが使用される。ハロゲン化炭化水素を使用すると、熱分解温度が比較的低い条件において、ルツボの製造を実施することができる。前記ルツボの製造に使用される熱分解化合物及びキャリヤーガスなどの材料や反応器を構成する材料なども、反応容器内に不純物が持ち込み、ルツボの純度を下げないように、精製又は浄化しておくことが必要である。
【0009】
【実施例】
実施例1ルツボの製造。
図1に示すように、種子結晶収納部を形成する部分を有する、垂直ブリッジマン法ルツボの内側形状に対応する外形を有し、内側には垂直ブリッジマン法ルツボの内側形状に対応する形状に成形された高純度の黒鉛製のルツボ型を真空炉内に配置する。該ルツボの外側の表面粗度は5μmであり、全灰分は10ppmである。該ルツボの外表面に対抗するように、前記ルツボ表面に対応する形状の黒鉛製の抵抗加熱ヒータ(又は誘導加熱手段)を配置する。炉内を真空ポンプにより30Torrまで減圧した。前記ヒータ(又は誘導加熱手段)に通電し、熱分解炭素が生成沈積する表面の温度を放射温度計で監視して、該表面の温度を前記沈積作業中常に2200℃にあるように制御した。熱分解する化合物としてプロパンを使用し、沈積厚さ1.5mm以上になるまで前記反応を継続した。沈積反応を終了した後、これを常温に戻した。この状態でルツボ型とルツボ型該表面に形成されたルツボとは、熱膨張率の違いにより分離しており、形成されたルツボをルツボ型から容易に取り外すことができた。
【0010】
得られたルツボの全灰分量は、5ppmであった。また、ルツボの厚さ方向の熱膨張率は、1.7×10−6/℃であった。また熱分解炭素の生成沈積初期の炭素層の表面に平行な方向の熱膨張率は、1.1×10−6/℃で、該沈積終期の炭素層の表面に平行な方向の熱膨張率は、1.1×10−6/℃であり、その比は1であった。なお、前記測定用には、それぞれの表面から厚さ1mmの試料を採取して用いた。得られた、ルツボの加熱−冷却サイクルにおける特性を調べるため、1000℃に加熱、10℃/分の冷却サイクルを繰り返した。結果は割れ、クラック等の発生は認められず、良好であった。
【0011】
該ルツボを使用した単結晶の製造。前記工程で作成したルツボを従来から用いられていた垂直ブリッジマン法による結晶育成装置に取り付けた。種子結晶収納部にGaP種結晶を入れ、結晶育成ルツボ本体に原料であるGaP多結晶を入れた。原料をルツボ内で溶融し、温度分布のある炉内を移動させ、一端より融液を順次固化させる従来からの手法により結晶成長させた。得られた結晶は不純物の少ない、良好な品質であった。
【0012】
【発明の効果】
本発明のルツボは、単一の炭素材料からなり、表面が平滑で不純物が少ないから、得られる結晶の純度も高く、結晶の成長もよく、且つ熱サイクルに対する耐性も優れている。
【図面の簡単な説明】
【図1】本発明に係る単結晶成長用ルツボを製造する装置の概略図である。
【符号の説明】
1 反応容器 2 ヒータ 3 黒鉛製ルツボ型4 反応ガス 5 排気
[0001]
BACKGROUND OF THE INVENTION
The present invention is used to manufacture a single crystal body such as a silicon semiconductor or a compound semiconductor. In particular, a single crystal body of a compound semiconductor is formed by a vertical Bridgman method (VB method) or a vertical temperature gradient method (VGF method). The present invention relates to a method for producing a graphite crucible used for producing a crystal.
[0002]
[Prior art]
Conventional crucibles used to grow a single crystal such as a GaAs compound semiconductor include crucibles using pyrolytic boron nitride (PBN) and crucibles using a sintered body of boron nitride. However, there is a problem that the crucible constituent boron is mixed into the single crystal. Therefore, in order to solve the above problem, it is conceivable to use a carbon crucible instead of the crucible made of the above material. However, in an available carbon crucible, powder is generated from the carbon of the crucible. It is known to cause contamination in single crystal production. In order to solve the above problem, it has been proposed to cover the inner surface of the crucible made of the PBN material or the like with glassy carbon or pyrolytic carbon (see JP-A-2-289484). And it is mentioned that by doing so, the inner surface of the crucible becomes smooth, the crystal characteristics of the obtained single crystal are excellent, there is no problem of the powder falling off, and the manufacturing cost is reduced.
[0003]
[Problems to be solved by the invention]
However, the proposed crucible needs to cover the inner surface of the PBN crucible with glassy carbon or pyrolytic carbon, and is used in the vertical Bridgman method (VB method) or the vertical temperature gradient method (VGF method). Since the shape of the crucible has a seed crystal storage portion, there is a problem that it is difficult to uniformly coat the glassy carbon and pyrolytic carbon. In addition, since PBN or the like and layers of different materials such as carbon are laminated, the material constituting each layer behaves differently during heating and cooling, causing cracks and low costs. In addition, due to the difficulty of uniform coating based on the structure of the crucible, there was a problem that the generation of the cracks was further amplified due to non-uniform coating. Therefore, the crucible is made of a single material, has chemical stability that does not contaminate the crystal to be grown, has a smooth inner surface of the crucible in contact with the grown single crystal, and does not form a portion that becomes the nucleus of crystal growth. Is desired. Therefore, an object of the present invention is to provide a crucible having the above characteristics.
[0004]
[Means for Solving the Problems]
This onset Ming has a contour corresponding to the inner shape of the crucible to create a surface roughness Rmax of the outer shape is not less 10μm or less, a large thermal expansion coefficient than the thermal expansion coefficient of the pyrolytic carbon is deposited the crucible type made of a carbon material having placed in a vacuum furnace, and the heating hand stage having a shape corresponding to the crucible mold surface so as to maintain a uniform temperature of the crucible-type surface pyrolytic carbon is generated deposited After placing and depositing carbon of a desired thickness on the surface of the crucible mold by a pyrolysis method, cooling is performed, and from the crucible mold surface due to a difference in thermal expansion coefficient between the crucible mold and the carbon crucible formed by the deposition. a method for producing a single crystal growth crucible and separating the crucible formed by the deposition of pyrolytic carbon.
In addition, in this specification, surface roughness Rmax is based on the definition of the surface roughness of JIS B0601.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
A conventionally known chemical vapor deposition method can be used as means for depositing carbon in a crucible shape on the crucible surface by pyrolysis. As a general one of such methods, for example, a substrate heated to a high temperature such as 1200 ° C. to 2200 ° C., a substrate usually made of graphite, a hydrocarbon such as methane, propane, benzene, acetylene, Alternatively, there is a method in which pyrolytic carbon is produced and deposited on the surface of the heated substrate by supplying and contacting a carbon source compound such as a halogenated hydrocarbon such as dichloromethane. At this time, it is necessary to adjust the concentration of the pyrolyzed components such as hydrocarbons using a carrier gas so that carbon having desired characteristics is generated and deposited. Hydrogen is used as a carrier gas used for such concentration adjustment. The concentration of the component to be pyrolyzed must be adjusted by conditions such as the pyrolysis temperature (temperature of the heated substrate surface), the pressure in the reaction vessel, the flow rate of the raw material gas, etc. It is necessary to select the conditions under which it will be deposited.
[0006]
The pressure condition in the reaction vessel is important for the uniformity of the deposition of pyrolytic carbon and the smoothness of the inner surface of the crucible, and is performed under reduced pressure, for example, 50 Torr or less, preferably 30 Torr or less. desirable. Therefore, the crucible of the present invention is manufactured using a vacuum vessel by devising the chemical vapor deposition method. For example, since the characteristics of pyrolytic carbon generally deposited are affected by the temperature of the surface on which pyrolytic carbon is produced and deposited, heating means such as radiation that does not fluctuate significantly during the process of producing and depositing pyrolytic carbon are used. It is important to use heating means such as heating, induction heating, infrared radiation heating, etc., and to control the temperature of the pyrolysis surface while monitoring it with a radiation thermometer, an optical pyrometer, or the like. Further, as a heating means, a graphite heater having a shape corresponding to the crucible type is arranged and used so as to correspond to the crucible type, so that the surface temperature on which pyrolytic carbon is generated and deposited is made uniform. Can do. Further, by devising means for supplying and exhausting a mixture of the carbon source compound and the carrier gas, it is possible to control the formation and deposition of pyrolytic carbon on the crucible surface. By such means, the difference between the initial characteristics and the final characteristics of pyrolytic carbon can be reduced, and delamination in the heating-cooling cycle of the crucible due to the difference in the characteristics in the thickness direction of the generated sediment. And the cause of cracks can be eliminated.
[0007]
In addition, the difference between the average thermal expansion coefficient in the direction perpendicular to the deposition surface and the thermal expansion coefficient in the direction parallel to the deposition surface also causes large strains during cooling after deposition of the pyrolytic carbon layer, for example, the graphite layer, resulting in layered cracks and cracks. Therefore, it is important to set conditions for generating and depositing pyrolytic carbon so that it is as close as possible, in other words, the anisotropic ratio is as small as possible. In particular, when the thickness of the deposited layer is increased, special attention is required because anisotropy tends to increase. For the crucible type, it is necessary to use a crucible for increasing the purity so that the crucible to be formed is not affected by impurities such as diffusion of impurities from the crucible type. Therefore, it is preferable to use a crucible type made of a graphite material having a high purity, for example, a total ash content of 10 ppm or less. As a means for achieving high purity, a conventionally used purification treatment under a halogen gas atmosphere can be used. In addition, the generation of gas from the crucible type also has an adverse effect on the smoothness and denseness of the produced and deposited carbon, and therefore needs to be reduced. A carbon material forming a crucible type, for example, a graphite material, having a thermal expansion coefficient of about 3 to 6 × 10 −6 / ° C. at 25 to 400 ° C. is used. Since the thermal expansion coefficient of pyrolytic carbon is about 1.7 × 10 −6 / ° C., the formed crucible can be removed from the crucible mold by cooling due to the difference in thermal expansion coefficient between the two. .
[0008]
The surface roughness Rmax of the inner surface of the crucible is 10 μm or less, preferably 5 μm or less. As the thermal decomposition compound, those described above are used. When a halogenated hydrocarbon is used, the crucible can be produced under conditions where the thermal decomposition temperature is relatively low. Materials such as pyrolysis compounds and carrier gas used in the production of the crucible and materials constituting the reactor are also refined or purified so that impurities are not brought into the reaction vessel and the purity of the crucible is not lowered. It is necessary.
[0009]
【Example】
Example 1 Production of a crucible.
As shown in FIG. 1, it has an outer shape corresponding to the inner shape of a vertical Bridgman method crucible having a portion that forms a seed crystal storage portion, and has a shape corresponding to the inner shape of the vertical Bridgman method crucible on the inner side. The molded high-purity graphite crucible mold is placed in a vacuum furnace. The surface roughness of the outside of the crucible is 5 μm, and the total ash content is 10 ppm. A resistance heater (or induction heating means) made of graphite having a shape corresponding to the surface of the crucible is disposed so as to oppose the outer surface of the crucible. The inside of the furnace was depressurized to 30 Torr with a vacuum pump. The heater (or induction heating means) was energized, and the temperature of the surface on which pyrolytic carbon was generated and deposited was monitored with a radiation thermometer, and the surface temperature was controlled to always be 2200 ° C. during the deposition operation. Propane was used as the compound to be thermally decomposed, and the reaction was continued until the deposition thickness became 1.5 mm or more. After the deposition reaction was completed, this was returned to room temperature. In this state, the crucible type and the crucible formed on the surface of the crucible were separated due to the difference in thermal expansion coefficient, and the formed crucible could be easily removed from the crucible type.
[0010]
The total ash content of the obtained crucible was 5 ppm. Further, the thermal expansion coefficient in the thickness direction of the crucible was 1.7 × 10 −6 / ° C. Further, the thermal expansion coefficient in the direction parallel to the surface of the carbon layer at the initial stage of formation of pyrolytic carbon is 1.1 × 10 −6 / ° C., and the thermal expansion coefficient in the direction parallel to the surface of the carbon layer at the final stage of deposition. Was 1.1 × 10 −6 / ° C., and the ratio was 1. For the measurement, a sample having a thickness of 1 mm was collected from each surface and used. In order to investigate the characteristics of the obtained crucible in the heating-cooling cycle, heating at 1000 ° C. and cooling cycle at 10 ° C./min were repeated. The results were good with no cracks or cracks observed.
[0011]
Production of a single crystal using the crucible. The crucible created in the above process was attached to a crystal growth apparatus using a vertical Bridgman method that has been used conventionally. A GaP seed crystal was put in the seed crystal storage part, and a GaP polycrystal as a raw material was put in the crystal growing crucible body. The raw material was melted in a crucible, moved in a furnace having a temperature distribution, and crystals were grown by a conventional method of sequentially solidifying the melt from one end. The obtained crystals were of good quality with few impurities.
[0012]
【The invention's effect】
The crucible of the present invention is made of a single carbon material, and has a smooth surface and few impurities. Therefore, the resulting crystal has high purity, good crystal growth, and excellent resistance to thermal cycling.
[Brief description of the drawings]
FIG. 1 is a schematic view of an apparatus for producing a crucible for single crystal growth according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reaction container 2 Heater 3 Graphite crucible type 4 Reaction gas 5 Exhaust

Claims (1)

作成するルツボの内面形状に対応する外形を有し、該外形の表面粗度Rmaxが10μm以下であり、沈積される熱分解炭素の熱膨張率よりも大きな熱膨張率を有する炭素材料よりなるルツボ型を真空炉内に配置し、且つ、前記ルツボ型表面に対応する形状の加熱手段を熱分解炭素が生成沈積される前記ルツボ型表面の温度を均一に保つように配置して熱分解法によって所望の厚さの炭素を前記ルツボ型表面に沈積させた後、冷却して、ルツボ型と沈積により形成された炭素ルツボの熱膨張率差によって、前記ルツボ型表面から、熱分解炭素の沈積によって形成されたルツボを分離することを特徴とする単結晶成長用ルツボの製造方法。A crucible made of a carbon material having an outer shape corresponding to the inner surface shape of the crucible to be created and having a surface roughness Rmax of 10 μm or less and a thermal expansion coefficient larger than that of the deposited pyrolytic carbon the mold was placed in a vacuum oven, and pyrogenic arranged to so as to maintain the uniform temperature of the heating hand stage the crucible mold surface pyrolytic carbon is produced deposition of shape corresponding to the crucible mold surface After depositing carbon of a desired thickness on the surface of the crucible by cooling, cooling and depositing pyrolytic carbon from the surface of the crucible according to the difference in thermal expansion coefficient between the crucible and the carbon crucible formed by the deposition. A method for producing a crucible for growing a single crystal, wherein the crucible formed by the method is separated.
JP08133799A 1999-03-25 1999-03-25 Method for producing crucible for single crystal growth comprising pyrolytic graphite Expired - Lifetime JP4309509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08133799A JP4309509B2 (en) 1999-03-25 1999-03-25 Method for producing crucible for single crystal growth comprising pyrolytic graphite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08133799A JP4309509B2 (en) 1999-03-25 1999-03-25 Method for producing crucible for single crystal growth comprising pyrolytic graphite

Publications (2)

Publication Number Publication Date
JP2000272990A JP2000272990A (en) 2000-10-03
JP4309509B2 true JP4309509B2 (en) 2009-08-05

Family

ID=13743567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08133799A Expired - Lifetime JP4309509B2 (en) 1999-03-25 1999-03-25 Method for producing crucible for single crystal growth comprising pyrolytic graphite

Country Status (1)

Country Link
JP (1) JP4309509B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040044365A (en) * 2002-11-19 2004-05-28 가부시끼가이샤 도꾸야마 As-Grown Single Crystal of Alkaline Earth Metal Fluoride
WO2005003413A1 (en) * 2003-07-03 2005-01-13 Hitachi Chemical Co., Ltd. Crucible and method of growing single crystal by using crucible
JP4525013B2 (en) * 2003-07-03 2010-08-18 日立化成工業株式会社 Crucible
JP5604924B2 (en) * 2010-03-23 2014-10-15 株式会社村田製作所 Graphite crucible and method for analyzing ceramic materials using the same
CN105695954B (en) * 2016-01-22 2018-07-24 山东国晶新材料有限公司 A method of enhancing thermal field of single crystal furnace material mechanical performance

Also Published As

Publication number Publication date
JP2000272990A (en) 2000-10-03

Similar Documents

Publication Publication Date Title
US6336971B1 (en) Method and apparatus for producing silicon carbide single crystal
JP4733485B2 (en) Method for producing seed crystal for silicon carbide single crystal growth, seed crystal for silicon carbide single crystal growth, method for producing silicon carbide single crystal, and silicon carbide single crystal
JPH10291899A (en) Production of silicon carbide single crystal and apparatus for production therefor
EP1026290B1 (en) Method and apparatus for producing silicon carbide single crystal
WO2000039372A1 (en) Method for growing single crystal of silicon carbide
RU2155829C2 (en) Process and gear for production of monocrystals of silicon carbide by way of sublimation growing
TW201829860A (en) Crucible and manufacture method thereof, and 4h-sic crystal growth method
KR101458183B1 (en) An apparatus and method for growing silicon carbide single crystal
KR101000890B1 (en) Seed Attachment Methed for Large Diameter High Quality SiC Singlecrystal Growth
EP1540048A1 (en) Silicon carbide single crystal and method and apparatus for producing the same
JP4309509B2 (en) Method for producing crucible for single crystal growth comprising pyrolytic graphite
JPH0127568B2 (en)
RU2286616C2 (en) Method for producing part incorporating silicon substrate whose surface is covered with silicon carbide film
JP4597285B2 (en) Method and apparatus for producing silicon carbide single crystal
JPH11199395A (en) Production of silicon carbide single crystal
JP4578964B2 (en) Formation of single crystal silicon carbide
JPH06128094A (en) Production of silicon carbide single crystal
JPH0639360B2 (en) Method for growing 6H-type and 4H-type silicon carbide single crystals
JP3657036B2 (en) Silicon carbide thin film and method for manufacturing silicon carbide thin film laminated substrate
JP3758755B2 (en) Pyrolytic boron nitride container and manufacturing method thereof
JPH0710697A (en) Device for producing silicon carbide single crystal
JP4702712B2 (en) Tubular SiC molded body and method for producing the same
JP4216491B2 (en) α-SiC Wafer Manufacturing Method
JPH06183897A (en) Method for growing silicon carbide single crystal
KR101549597B1 (en) The Manufacturing Method of SiC Single Crystal Using the Crucible coated with SiC

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term