JP2000272990A - Crucible comprising pyrolytic graphite and used for growing single crystal - Google Patents

Crucible comprising pyrolytic graphite and used for growing single crystal

Info

Publication number
JP2000272990A
JP2000272990A JP8133799A JP8133799A JP2000272990A JP 2000272990 A JP2000272990 A JP 2000272990A JP 8133799 A JP8133799 A JP 8133799A JP 8133799 A JP8133799 A JP 8133799A JP 2000272990 A JP2000272990 A JP 2000272990A
Authority
JP
Japan
Prior art keywords
crucible
carbon
single crystal
thermal expansion
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8133799A
Other languages
Japanese (ja)
Other versions
JP4309509B2 (en
Inventor
Mitsuteru Tomita
光輝 富田
Takashi Hirose
敬司 広瀬
Taishin Horio
泰臣 堀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP08133799A priority Critical patent/JP4309509B2/en
Publication of JP2000272990A publication Critical patent/JP2000272990A/en
Application granted granted Critical
Publication of JP4309509B2 publication Critical patent/JP4309509B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a crucible which does not contaminate a grown crystal and does not have a site to be used as a nucleus for growing a crystal, by depositing carbon in the shape of the crucible by a pyrolysis method and controlling the surface roughness of the crucible to a specific value or small. SOLUTION: The inner surface roughness Rmax of the crucible is <=10 μm, preferably <=5 μm. The deposit of carbon on the surface of a crucible mold in a crucible shape by a pyrolytic method can be carried out, for example, by a method comprising charging and bringing a carbon source compound such as a hydrocarbon, for example, methane, a halogenated hydrocarbon, for example, dichloromethane, into contact with a substrate (usually graphite) heated at a high temperature of 1,200 to 2,200 deg.C and thereby producing and depositing the pyrolyzed carbon. Preferably, the total ash amount of the pyrolyzed carbon is <=5 ppm. Further preferably, the ratio of a thermal expansion coefficient at 25 to 400 deg.C in the direction parallel to a surface close to the inside surface of the crucible to a thermal expansion coefficient in the direction parallel to a surface close to the outside surface of the crucible is 1±0.01.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シリコン半導体や
化合物半導体などの単結晶体を製造するのに使用され
る、特に化合物半導体の単結晶体を垂直ブリッジマン法
(VB法)又は垂直温度勾配法(VGF法)により単結
晶体を製造するのに使用される黒鉛ルツボに関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a single crystal such as a silicon semiconductor or a compound semiconductor, and more particularly to a method for converting a single crystal of a compound semiconductor into a vertical Bridgman method (VB method) or a vertical temperature gradient. The present invention relates to a graphite crucible used for producing a single crystal by a method (VGF method).

【0002】[0002]

【従来の技術】従来GaAs化合物半導体などの単結晶
体を成長させるのに用いられるルツボとしては、熱分解
窒化ほう素(PBN)を使用したルツボや窒化ほう素の
焼結体などを用いたルツボなどが知られていたが、ルツ
ボ構成成分のボロンが単結晶中に混入してくるという問
題があった。そこで、前記問題を解消するために、前記
材質のルツボの使用に代えて、カーボン製のルツボの使
用が考えられるが、入手可能なカーボン製のルツボで
は、ルツボのカーボンから粉末が発生し、これが単結晶
体製造において汚染の原因となることが知られている。
また、前記問題を解決するものとして、前記PBN材料
等からなるルツボの内面をガラス状カーボンや熱分解カ
ーボンで被覆することの提案がされている(特開平2−
289484号公報参照)。そして、こうすることによ
り、ルツボの内面が滑らかになり、得られる単結晶の結
晶特性が優れ、また前記粉末の脱落の問題もなく、か
つ、製作コストが安くなったことに言及してる。
2. Description of the Related Art Conventionally, as a crucible used for growing a single crystal such as a GaAs compound semiconductor, a crucible using pyrolytic boron nitride (PBN) or a crucible using a sintered body of boron nitride is used. However, there has been a problem that boron as a crucible component is mixed into the single crystal. Therefore, in order to solve the above problem, it is conceivable to use a crucible made of carbon instead of using a crucible made of the above material.However, in an available crucible made of carbon, powder is generated from the carbon of the crucible. It is known that it causes contamination in single crystal production.
In order to solve the above-mentioned problem, it has been proposed to coat the inner surface of a crucible made of the above-mentioned PBN material or the like with glassy carbon or pyrolytic carbon (Japanese Patent Laid-Open Publication No. Hei 2 (1990)).
289484). It is mentioned that by doing so, the inner surface of the crucible becomes smooth, the crystal characteristics of the obtained single crystal are excellent, there is no problem of the powder falling off, and the production cost is reduced.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記提
案のルツボは、PBN製のルツボの内面にガラス状カー
ボンや熱分解カーボンを被覆する必要があり、垂直ブリ
ッジマン法(VB法)又は垂直温度勾配法(VGF法)
で使用されるルツボの形状が、種子結晶収納部を有する
ため、前記ガラス状カーボンや熱分解カーボンが均一に
被覆することが難しいという問題がある。また、PBN
等と炭素という異質の材質の層が積層された構造である
ために、それぞれの層を構成する材料が加熱や冷却の際
に異なった挙動をするためクラックを起こし安いという
問題点があり、また前記ルツボの構造に基づく均一被覆
の難しさから、被覆の不均一の原因より、更に前記クラ
ックの発生が増幅されるという問題があった。従って、
単一材料からなり、育成される結晶を汚染することがな
い化学的安定性を有し、かつ育成単結晶と接触するルツ
ボ内面が平滑で、結晶成長の核となる箇所を形成しない
ルツボが望まれる。よって、本発明の課題は、前記特性
を具備したルツボを提供することである。
However, in the crucible proposed above, it is necessary to coat the inner surface of the PBN crucible with glassy carbon or pyrolytic carbon, and the vertical Bridgman method (VB method) or the vertical temperature gradient is required. Method (VGF method)
Since the shape of the crucible used in the above has a seed crystal storage portion, there is a problem that it is difficult to uniformly cover the glassy carbon and the pyrolytic carbon. Also, PBN
Because of the structure in which layers of different materials such as carbon and the like are laminated, there is a problem that the material constituting each layer has a different behavior during heating and cooling, and is cracked and cheap. Due to the difficulty of uniform coating based on the structure of the crucible, there is a problem that the occurrence of cracks is further amplified due to non-uniform coating. Therefore,
A crucible made of a single material, having chemical stability that does not contaminate the grown crystal, and having a smooth inner surface of the crucible in contact with the grown single crystal and not forming a portion serving as a nucleus for crystal growth is desired. It is. Therefore, an object of the present invention is to provide a crucible having the above characteristics.

【0004】[0004]

【課題を解決するための手段】本発明の要旨は、ルツボ
の内面の表面粗度Rmaxが10μ以下であり、熱分解
法によりルツボ形状に炭素を沈積して得られる単結晶成
長用ルツボであり、また、前記単結晶成長用ルツボの熱
分解炭素の全灰分量を5ppm以下とし、更に、ルツボ
の内側表面近傍の面に平行な方向の25℃〜400℃の
熱膨張係数とルツボ表面外表面近傍の面に平行方向の熱
膨張係数との比が1±0.01である単結晶成長用ルツ
ボである。また更に好ましくはルツボの厚さ方向の25
℃〜400℃の熱膨張係数とルツボ表面に平行方向の熱
膨張係数との比(異方比)が1.6以下であるようにし
た単結晶成長用ルツボである。本発明の単結晶成長用ル
ツボは、作成するルツボの内面形状に対応する外形を有
し、該外形の表面粗度Rmaxができる限り小さく、換
言すればできる限り平滑な、好ましくは表面粗度Rma
xが10μm以下であり、沈積される熱分解炭素の熱膨
張率よりも大きな熱膨張率を有する炭素材料よりなるル
ツボ型の前記表面に、熱分解法によって所望の厚さの炭
素を沈積させた後、冷却して、ルツボ型と沈積により形
成された炭素ルツボの熱膨張率差によって、前記ルツボ
型表面から、熱分解炭素の沈積によって形成されたルツ
ボを分離することよって、製造できる。なお、本願明細
書において、表面粗度Rmaxとは、JIS B060
1の表面粗さの定義による。
The gist of the present invention is a single crystal growth crucible obtained by depositing carbon in a crucible shape by a pyrolysis method, wherein the inner surface of the crucible has a surface roughness Rmax of 10 μ or less. Further, the total ash content of the pyrolytic carbon in the crucible for growing a single crystal is set to 5 ppm or less, and further, the coefficient of thermal expansion of 25 ° C. to 400 ° C. in a direction parallel to the surface near the inner surface of the crucible and the outer surface of the crucible surface This is a single crystal growth crucible having a ratio of 1 ± 0.01 to a coefficient of thermal expansion in a direction parallel to a nearby surface. Still more preferably, 25 in the thickness direction of the crucible.
A crucible for growing a single crystal, wherein a ratio (anisotropic ratio) between a coefficient of thermal expansion of from 400C to 400C and a coefficient of thermal expansion parallel to the crucible surface is 1.6 or less. The crucible for growing a single crystal according to the present invention has an outer shape corresponding to the inner surface shape of the crucible to be produced, and the surface roughness Rmax of the outer shape is as small as possible, in other words, as smooth as possible, preferably the surface roughness Rmax.
x was 10 μm or less, and carbon having a desired thickness was deposited by a pyrolysis method on the crucible-type surface made of a carbon material having a thermal expansion coefficient larger than that of the pyrolytic carbon to be deposited. Thereafter, it can be manufactured by cooling and separating the crucible formed by the deposition of pyrolytic carbon from the crucible-type surface by the difference in thermal expansion coefficient between the crucible and the carbon crucible formed by the deposition. In the specification of the present application, the surface roughness Rmax refers to JIS B060
1 According to the definition of surface roughness.

【0005】[0005]

【発明の実施の形態】前記ルツボ型表面に熱分解法によ
りルツボ形状に炭素を沈積する手段としては、従来から
知られている化学気相蒸着法を利用することができる。
このような方法の一般的なものとしては、例えば120
0℃〜2200℃のような高温に加熱された基材、通常
黒鉛からなる基材に、例えばメタン、プロパン、ベンゼ
ン、アセチレンなどの炭化水素、又はジクロロメタンの
ようなハロゲン化炭化水素などの炭素源化合物を供給
し、接触させることにより、前記加熱された基材の表面
で熱分解炭素を生成沈積させる方法がある。この際、炭
化水素などの熱分解される成分の濃度はキャリヤガスを
使用して、所望の特性の炭素が生成沈積するように調整
する必要がある。このような濃度調整に用いるキャリヤ
ガスとしては、水素が使用される。熱分解される成分の
濃度は、熱分解の温度(加熱された基材の表面の温
度)、反応容器内の圧力、原料ガスの流速などの条件に
よっても調節する必要があり、好ましい特性の炭素が沈
積される条件を選択する必要がある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As a means for depositing carbon in a crucible shape on a crucible surface by a thermal decomposition method, a conventionally known chemical vapor deposition method can be used.
A general example of such a method is, for example, 120
A substrate heated to a high temperature such as 0 ° C. to 2200 ° C., usually a substrate composed of graphite, and a carbon source such as a hydrocarbon such as methane, propane, benzene, acetylene, or a halogenated hydrocarbon such as dichloromethane. There is a method in which a compound is supplied and brought into contact to generate and deposit pyrolytic carbon on the surface of the heated substrate. At this time, it is necessary to adjust the concentration of the components to be thermally decomposed such as hydrocarbons using a carrier gas so that carbon having desired characteristics is produced and deposited. Hydrogen is used as a carrier gas used for such concentration adjustment. The concentration of the components to be thermally decomposed also needs to be adjusted depending on conditions such as the temperature of the thermal decomposition (the temperature of the surface of the heated substrate), the pressure in the reaction vessel, and the flow rate of the raw material gas. It is necessary to select the conditions under which is deposited.

【0006】また、前記反応容器内の圧力条件は、熱分
解炭素の沈積層の均一性、ルツボ内面の平滑性を左右す
る重要なものであり、減圧下、例えば50Torr以
下、好ましくは30Torr以下で行うことが望まし
い。従って、本発明のルツボの製造には、前記化学気相
蒸着法を工夫して、真空容器を用いて行われる。例え
ば、一般に沈積する熱分解炭素の特性は熱分解炭素を生
成沈積させる表面の温度の影響を受けるから、該表面温
度を熱分解炭素を生成沈積させる工程中あまり変動しな
いような加熱手段、例えば輻射加熱、誘導加熱、赤外放
射加熱などのような加熱手段を用い、また前記熱分解表
面の温度を、例えば放射温度計、光高温計などにより監
視しながら制御することが重要である。また、加熱手段
としては、ルツボ型に対応した形状の黒鉛ヒーターを、
前記ルツボ型に対応するように配置して使用することに
よって、熱分解炭素が生成沈積される表面の温度を均一
にすることができる。また、炭素源化合物とキャリヤー
ガスとの混合物の供給手段及び排気手段を工夫すること
により、ルツボ型表面での熱分解炭素の生成沈積制御で
きる。こうした手段により、熱分解炭素の生成沈積初期
の特性と終期の特性との差を小さくすることができ、生
成沈積層の厚さ方向の特性の違いによる、ルツボの加熱
−冷却サイクルにおける、層剥離やクラックの発生の原
因を除去することができる。
[0006] The pressure condition in the reaction vessel is important for determining the uniformity of deposition and deposition of the pyrolytic carbon and the smoothness of the inner surface of the crucible. The pressure condition is, for example, 50 Torr or less, preferably 30 Torr or less. It is desirable to do. Therefore, the production of the crucible of the present invention is performed using a vacuum vessel by devising the chemical vapor deposition method. For example, since the characteristics of the pyrolytic carbon to be deposited are generally affected by the temperature of the surface on which the pyrolytic carbon is generated and deposited, a heating means such as radiant radiation that does not vary much during the process of generating and depositing the pyrolytic carbon. It is important to use a heating means such as heating, induction heating, infrared radiation heating or the like, and to control the temperature of the pyrolysis surface while monitoring it with, for example, a radiation thermometer or an optical pyrometer. In addition, as a heating means, a graphite heater having a shape corresponding to a crucible type,
By arranging and using it so as to correspond to the crucible type, the temperature of the surface on which pyrolytic carbon is formed and deposited can be made uniform. Further, by devising a supply means and an exhaust means for the mixture of the carbon source compound and the carrier gas, it is possible to control the generation and deposition of pyrolytic carbon on the crucible type surface. By such means, it is possible to reduce the difference between the characteristics of the initial stage and the final stage of the formation and deposition of pyrolytic carbon, and delamination in the heating-cooling cycle of the crucible due to the difference in the thickness direction characteristics of the formed and deposited layers. And the cause of the occurrence of cracks can be eliminated.

【0007】また、沈積面に垂直方向の平均熱膨張係数
と沈積面に平行方向の熱膨張係数の違いも、熱分解炭素
層、例えば黒鉛層の沈着後の冷却時に大きなひずみを生
じ、層状のき裂や、剥離を起こしやすい原因となるの
で、できるだけ近づける、換言すれば異方比ができるだ
け小さくなるように、熱分解炭素を生成沈積する条件を
設定することが重要である。特に沈着層の厚さを大きく
する場合には、異方性が大きくなる傾向があるので、特
に注意を要する。ルツボ型には、形成されるルツボがで
きる限りルツボ型からの不純物の拡散などによる不純物
の影響を受けることがないように、純度を高めるためた
ものを使用する必要がある。従って高純度、例えば全灰
分が10ppm以下の黒鉛材料からなるルツボ型を使用
することが好ましい。高純度化の手段としては、従来か
ら用いられている、ハロゲンガス雰囲気下での精製処理
などを用いることができる。また、ルツボ型からのガス
の発生も、生成沈積される炭素の平滑性及び緻密性に悪
影響を与えるから、少なくする必要がある。ルツボ型を
形成する炭素材料、例えば黒鉛材料の熱膨張率は、25
℃〜400℃において、3〜6×10-6/℃程度のもの
が使用される。その値は熱分解炭素の熱膨張率が1.7
×10-6/℃程度であるから、両者の熱膨張率差によっ
て、冷却することで、形成されたルツボをルツボ型から
取り外すことができる。
The difference between the average thermal expansion coefficient in the direction perpendicular to the deposition surface and the thermal expansion coefficient in the direction parallel to the deposition surface also causes a large strain during cooling after the deposition of the pyrolytic carbon layer, for example, a graphite layer, resulting in a layered structure. Since it causes cracks and peeling easily, it is important to set the conditions for generating and depositing pyrolytic carbon so that they are as close as possible, in other words, the anisotropic ratio is as small as possible. In particular, when the thickness of the deposited layer is increased, special attention is required since the anisotropy tends to increase. It is necessary to use a crucible for increasing the purity so that the formed crucible is not affected by impurities such as diffusion of impurities from the crucible as much as possible. Therefore, it is preferable to use a crucible type made of a graphite material having a high purity, for example, a total ash content of 10 ppm or less. As means for high purification, a conventionally used purification treatment in a halogen gas atmosphere can be used. Further, the generation of gas from the crucible mold also has an adverse effect on the smoothness and the denseness of the carbon deposited and deposited, so that it is necessary to reduce it. The coefficient of thermal expansion of a carbon material forming a crucible, for example, a graphite material, is 25%.
At a temperature of from 400C to 400C, a material of about 3 to 6 x 10-6 / C is used. The thermal expansion coefficient of the pyrolytic carbon is 1.7.
Since it is about 10 -6 / ° C, the formed crucible can be removed from the crucible mold by cooling due to the difference in thermal expansion coefficient between the two.

【0008】また、該ルツボ内面の表面粗度Rmaxは
10μm以下、好ましくは5μm以下とすることが望ま
しい。熱分解化合物としては前記したものが使用され
る。ハロゲン化炭化水素を使用すると、熱分解温度が比
較的低い条件において、ルツボの製造を実施することが
できる。前記ルツボの製造に使用される熱分解化合物及
びキャリヤーガスなどの材料や反応器を構成する材料な
ども、反応容器内に不純物が持ち込み、ルツボの純度を
下げないように、精製又は浄化しておくことが必要であ
る。
The surface roughness Rmax of the inner surface of the crucible is desirably 10 μm or less, preferably 5 μm or less. As the thermal decomposition compound, those described above are used. When a halogenated hydrocarbon is used, crucible production can be performed under conditions where the thermal decomposition temperature is relatively low. Materials such as a pyrolysis compound and a carrier gas used in the production of the crucible and materials constituting the reactor are also purified or purified so that impurities are brought into the reaction vessel and the purity of the crucible is not reduced. It is necessary.

【0009】[0009]

【実施例】実施例1 ルツボの製造。 図1に示すように、種子結晶収納部を形成する部分を有
する、垂直ブリッジマン法ルツボの内側形状に対応する
外形を有し、内側には垂直ブリッジマン法ルツボの内側
形状に対応する形状に成形された高純度の黒鉛製のルツ
ボ型を真空炉内に配置する。該ルツボの外側の表面粗度
は5μmであり、全灰分は10ppmである。該ルツボ
の外表面に対抗するように、前記ルツボ表面に対応する
形状の黒鉛製の抵抗加熱ヒータ(又は誘導加熱手段)を
配置する。炉内を真空ポンプにより30Torrまで減
圧した。前記ヒータ(又は誘導加熱手段)に通電し、熱
分解炭素が生成沈積する表面の温度を放射温度計で監視
して、該表面の温度を前記沈積作業中常に2200℃に
あるように制御した。熱分解する化合物としてプロパン
を使用し、沈積厚さ1.5mm以上になるまで前記反応
を継続した。沈積反応を終了した後、これを常温に戻し
た。この状態でルツボ型とルツボ型該表面に形成された
ルツボとは、熱膨張率の違いにより分離しており、形成
されたルツボをルツボ型から容易に取り外すことができ
た。
EXAMPLE 1 Production of a crucible. As shown in FIG. 1, having an outer shape corresponding to the inner shape of a vertical Bridgman crucible having a portion forming a seed crystal storage part, and having an inner shape corresponding to the inner shape of the vertical Bridgman crucible The molded high-purity graphite crucible is placed in a vacuum furnace. The outer surface roughness of the crucible is 5 μm and the total ash content is 10 ppm. A graphite resistance heater (or induction heating means) having a shape corresponding to the crucible surface is arranged so as to oppose the outer surface of the crucible. The pressure inside the furnace was reduced to 30 Torr by a vacuum pump. The heater (or induction heating means) was energized, the temperature of the surface on which pyrolytic carbon was formed and deposited was monitored with a radiation thermometer, and the temperature of the surface was controlled to be always 2200 ° C. during the deposition operation. Propane was used as the compound to be thermally decomposed, and the reaction was continued until the deposition thickness became 1.5 mm or more. After the deposition reaction was completed, it was returned to room temperature. In this state, the crucible type and the crucible type were separated from the crucible formed on the surface due to a difference in coefficient of thermal expansion, and the formed crucible could be easily removed from the crucible type.

【0010】得られたルツボの全灰分量は、5ppmで
あった。また、ルツボの厚さ方向の熱膨張率は、1.7
×10-6/℃であった。また熱分解炭素の生成沈積初期
の炭素層の表面に平行な方向の熱膨張率は、1.1×1
-6/℃で、該沈積終期の炭素層の表面に平行な方向の
熱膨張率は、1.1×10-6/℃であり、その比は1で
あった。なお、前記測定用には、それぞれの表面から厚
さ1mmの試料を採取して用いた。得られた、ルツボの
加熱−冷却サイクルにおける特性を調べるため、100
0℃に加熱、10℃/分の冷却サイクルを繰り返した。
結果は割れ、クラック等の発生は認められず、良好であ
った。
The total ash content of the obtained crucible was 5 ppm. The thermal expansion coefficient of the crucible in the thickness direction is 1.7.
× 10 -6 / ° C. The coefficient of thermal expansion in the direction parallel to the surface of the carbon layer at the initial stage of the formation and deposition of pyrolytic carbon is 1.1 × 1.
At 0 −6 / ° C., the coefficient of thermal expansion in the direction parallel to the surface of the carbon layer at the end of the deposition was 1.1 × 10 −6 / ° C., and the ratio was 1. For the measurement, a sample having a thickness of 1 mm was collected from each surface and used. In order to examine the characteristics of the obtained crucible in the heating-cooling cycle, 100
The heating cycle to 0 ° C and the cooling cycle at 10 ° C / min were repeated.
As a result, no occurrence of cracks, cracks, etc. was recognized, and the result was good.

【0011】該ルツボを使用した単結晶の製造。前記工
程で作成したルツボを従来から用いられていた垂直ブリ
ッジマン法による結晶育成装置に取り付けた。種子結晶
収納部にGaP種結晶を入れ、結晶育成ルツボ本体に原
料であるGaP多結晶を入れた。原料をルツボ内で溶融
し、温度分布のある炉内を移動させ、一端より融液を順
次固化させる従来からの手法により結晶成長させた。得
られた結晶は不純物の少ない、良好な品質であった。
Production of a single crystal using the crucible. The crucible prepared in the above step was attached to a crystal growing apparatus using a vertical Bridgman method which had been used conventionally. The GaP seed crystal was placed in the seed crystal storage part, and the raw material GaP polycrystal was placed in the crystal growing crucible body. The raw material was melted in a crucible, moved in a furnace having a temperature distribution, and crystal was grown by a conventional method of sequentially solidifying the melt from one end. The obtained crystals were of good quality with few impurities.

【0012】[0012]

【発明の効果】本発明のルツボは、単一の炭素材料から
なり、表面が平滑で不純物が少ないから、得られる結晶
の純度も高く、結晶の成長もよく、且つ熱サイクルに対
する耐性も優れている。
The crucible of the present invention is made of a single carbon material and has a smooth surface and few impurities, so that the obtained crystal has high purity, good crystal growth, and excellent heat cycle resistance. I have.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る単結晶成長用ルツボを製造する装
置の概略図である。
FIG. 1 is a schematic view of an apparatus for manufacturing a crucible for growing a single crystal according to the present invention.

【符号の説明】[Explanation of symbols]

1 反応容器 2 ヒータ 3 黒鉛製ルツボ
型 4 反応ガス 5 排気
Reference Signs List 1 reaction vessel 2 heater 3 graphite crucible 4 reaction gas 5 exhaust

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀尾 泰臣 岐阜県大垣市青柳町300番地 イビデン株 式会社青柳工場内 Fターム(参考) 4G077 AA02 BA04 EG02 HA12 MA02 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Yasuomi Horio 300 Aoyagi-cho, Ogaki-shi, Gifu FBI-term in the Aoyagi Plant of IBIDEN Co., Ltd. (reference) 4G077 AA02 BA04 EG02 HA12 MA02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ルツボの内面の表面粗度Rmaxが10
μ以下であり、熱分解炭素法によりルツボ形状に炭素を
沈積してして得られたことを特徴とする単結晶成長用ル
ツボ。
1. A crucible having an inner surface having a surface roughness Rmax of 10
A crucible for growing a single crystal, which is not more than μ and obtained by depositing carbon in a crucible shape by a pyrolytic carbon method.
【請求項2】 沈積した熱分解炭素の全灰分量が5pp
m以下であることを特徴とする請求項1に記載の単結晶
成長用ルツボ。
2. The total ash content of the deposited pyrolytic carbon is 5 pp.
2. The crucible for growing a single crystal according to claim 1, wherein m is equal to or less than m.
【請求項3】 ルツボの内側表面近傍の面に平行な方向
の25℃〜400℃の熱膨張率係数とルツボ表面外表面
近傍の面に平行方向の熱膨張係数との比が1±0.01
であることを特徴とする請求項1又は2記載の単結晶成
長用ルツボ。
3. The ratio of the coefficient of thermal expansion between 25 ° C. and 400 ° C. in the direction parallel to the surface near the inner surface of the crucible and the coefficient of thermal expansion parallel to the surface near the outer surface of the crucible is 1 ± 0. 01
3. The crucible for growing a single crystal according to claim 1, wherein:
JP08133799A 1999-03-25 1999-03-25 Method for producing crucible for single crystal growth comprising pyrolytic graphite Expired - Lifetime JP4309509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08133799A JP4309509B2 (en) 1999-03-25 1999-03-25 Method for producing crucible for single crystal growth comprising pyrolytic graphite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08133799A JP4309509B2 (en) 1999-03-25 1999-03-25 Method for producing crucible for single crystal growth comprising pyrolytic graphite

Publications (2)

Publication Number Publication Date
JP2000272990A true JP2000272990A (en) 2000-10-03
JP4309509B2 JP4309509B2 (en) 2009-08-05

Family

ID=13743567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08133799A Expired - Lifetime JP4309509B2 (en) 1999-03-25 1999-03-25 Method for producing crucible for single crystal growth comprising pyrolytic graphite

Country Status (1)

Country Link
JP (1) JP4309509B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003413A1 (en) * 2003-07-03 2005-01-13 Hitachi Chemical Co., Ltd. Crucible and method of growing single crystal by using crucible
JP2005022949A (en) * 2003-07-03 2005-01-27 Hitachi Chem Co Ltd Crucible
US7364715B2 (en) * 2002-11-19 2008-04-29 Tokuyama Corporation As-grown single crystal of alkaline earth metal fluoride
JP2011196910A (en) * 2010-03-23 2011-10-06 Murata Mfg Co Ltd Graphite crucible and analysis method of ceramic material using the same
CN105695954A (en) * 2016-01-22 2016-06-22 山东国晶新材料有限公司 Method for strengthening mechanical properties of single crystal furnace thermal field material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7364715B2 (en) * 2002-11-19 2008-04-29 Tokuyama Corporation As-grown single crystal of alkaline earth metal fluoride
WO2005003413A1 (en) * 2003-07-03 2005-01-13 Hitachi Chemical Co., Ltd. Crucible and method of growing single crystal by using crucible
JP2005022949A (en) * 2003-07-03 2005-01-27 Hitachi Chem Co Ltd Crucible
US7399360B2 (en) 2003-07-03 2008-07-15 Hitachi Chemical Company, Ltd. Crucible and method of growing single crystal by using crucible
JP4525013B2 (en) * 2003-07-03 2010-08-18 日立化成工業株式会社 Crucible
US7785416B2 (en) 2003-07-03 2010-08-31 Hitachi Chemical Company, Ltd. Crucible and single crystal growth method using crucible
JP2011196910A (en) * 2010-03-23 2011-10-06 Murata Mfg Co Ltd Graphite crucible and analysis method of ceramic material using the same
CN105695954A (en) * 2016-01-22 2016-06-22 山东国晶新材料有限公司 Method for strengthening mechanical properties of single crystal furnace thermal field material

Also Published As

Publication number Publication date
JP4309509B2 (en) 2009-08-05

Similar Documents

Publication Publication Date Title
US6391109B2 (en) Method of making SiC single crystal and apparatus for making SiC single crystal
TW552325B (en) Method and apparatus for growing silicon carbide crystals
US8409351B2 (en) Production of bulk silicon carbide with hot-filament chemical vapor deposition
US6336971B1 (en) Method and apparatus for producing silicon carbide single crystal
JP2006117512A (en) Method for producing silicon carbide single crystal and silicon carbide single crystal grown by the method, single crystal ingot and silicon carbide single crystal wafer
KR101458183B1 (en) An apparatus and method for growing silicon carbide single crystal
TW201829860A (en) Crucible and manufacture method thereof, and 4h-sic crystal growth method
KR101000890B1 (en) Seed Attachment Methed for Large Diameter High Quality SiC Singlecrystal Growth
JP4309509B2 (en) Method for producing crucible for single crystal growth comprising pyrolytic graphite
JPH0127568B2 (en)
JP4597285B2 (en) Method and apparatus for producing silicon carbide single crystal
JPH06128094A (en) Production of silicon carbide single crystal
JP3758755B2 (en) Pyrolytic boron nitride container and manufacturing method thereof
JPH0710697A (en) Device for producing silicon carbide single crystal
JP4702712B2 (en) Tubular SiC molded body and method for producing the same
JP4216491B2 (en) α-SiC Wafer Manufacturing Method
JP4222630B2 (en) Method for epitaxially growing objects and apparatus for performing such growth
JP3247838B2 (en) Pyrolytic boron nitride crucible and method for producing the same
JPH1160391A (en) Production of silicon carbide single crystal
JP3532397B2 (en) Pyrolytic boron nitride conical cylinder and method for producing the same
JPH05208897A (en) Production of silicon carbide single crystal substrate
JP3850083B2 (en) Pyrolytic boron nitride crucible
JP2003068594A (en) SiC DUMMY WAFER AND ITS PRODUCING METHOD
JPH0510425B2 (en)
JP2000026199A (en) Production of silicon carbide single crystal and silicon carbide single crystal produced therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term