JP3247838B2 - Pyrolytic boron nitride crucible and method for producing the same - Google Patents

Pyrolytic boron nitride crucible and method for producing the same

Info

Publication number
JP3247838B2
JP3247838B2 JP22974896A JP22974896A JP3247838B2 JP 3247838 B2 JP3247838 B2 JP 3247838B2 JP 22974896 A JP22974896 A JP 22974896A JP 22974896 A JP22974896 A JP 22974896A JP 3247838 B2 JP3247838 B2 JP 3247838B2
Authority
JP
Japan
Prior art keywords
crucible
boron nitride
bcl
pyrolytic boron
molecular beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22974896A
Other languages
Japanese (ja)
Other versions
JPH1072298A (en
Inventor
勲 柳沢
賢治 伊藤
和人 平田
昇 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP22974896A priority Critical patent/JP3247838B2/en
Publication of JPH1072298A publication Critical patent/JPH1072298A/en
Application granted granted Critical
Publication of JP3247838B2 publication Critical patent/JP3247838B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、分子線エピタキシ
ー装置の分子線源ルツボに用いられる熱分解窒化ほう素
ルツボ及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pyrolytic boron nitride crucible used for a molecular beam source crucible of a molecular beam epitaxy apparatus and a method for producing the same.

【0002】[0002]

【従来の技術】分子線エピタキシー法(以下MBE 法と略
記する)は、薄膜成長室を10-6〜10-11 トールという超
高真空とし、分子線源ルツボに所望の金属を小量仕込ん
でこれをK−セルと呼ばれる分子線発生装置に装着し、
ルツボを1000〜1500 ℃に加熱して溶融金属から発生す
る分子線を加熱された基板上に当てることによりエピタ
キシー膜を形成するもので、数原子層レベルに制御され
た薄膜の製造が可能である。これは特にGaAs等の化合物
半導体のエピタキシー膜の製造に広く用いられている。
そしてこの分子線源ルツボとしては純度、耐熱性、強度
等の点から化学気相蒸着(以下CVD と略記する)反応に
より製造された熱分解窒化ほう素(以下PBN と略記す
る)製のルツボが用いられている。このルツボは通常は
水平リップ部を有する円筒状の形状で、厚みは約1mmで
ある。
2. Description of the Related Art In a molecular beam epitaxy method (hereinafter abbreviated as MBE method), a thin film growth chamber is set to an ultra-high vacuum of 10 -6 to 10 -11 Torr, and a small amount of a desired metal is charged into a molecular beam source crucible. This is attached to a molecular beam generator called K-cell,
An epitaxy film is formed by heating a crucible to 1000 to 1500 ° C and applying a molecular beam generated from the molten metal to a heated substrate, making it possible to produce a thin film controlled to several atomic layers. . This is widely used especially for manufacturing an epitaxial film of a compound semiconductor such as GaAs.
As the molecular beam source crucible, a pyrolytic boron nitride (hereinafter abbreviated as PBN) crucible manufactured by a chemical vapor deposition (hereinafter abbreviated as CVD) reaction in terms of purity, heat resistance, strength, and the like. Used. This crucible is usually cylindrical with a horizontal lip and is about 1 mm thick.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来のアンモ
ニア( NH3 )と三塩化ほう素( BCl3 )とのCVD 反応
により製造された PBNルツボは赤外線透過率が大きく、
分子線源ルツボとして用いた場合、ルツボの融液のある
レベルまでは均一に加熱できるが、融液のない開口部に
近い部分は赤外線が透過してしまうために温度低下をき
たすという問題がある。この改善法として、グラファイ
トや炭素等をコーティングした PBNルツボが開示されて
いるが(実開昭63‐199172 号公報参照)、製造工程が
増えコストが嵩み、炭素等の不純物の混入の恐れがある
などの問題がある。そのため、ルツボ全域にわたって均
一に加熱でき、不純物の少ない低コストの分子線源用 P
BNルツボの供給が望まれている。
However, the PBN crucible manufactured by the conventional CVD reaction of ammonia (NH 3 ) and boron trichloride (BCl 3 ) has a large infrared transmittance.
When used as a molecular beam source crucible, it can be heated uniformly to a certain level of the melt of the crucible, but there is a problem that the temperature near the opening where there is no melt is lowered because infrared rays are transmitted. . As a method of improving this, a PBN crucible coated with graphite or carbon has been disclosed (see Japanese Utility Model Application Laid-Open No. 63-199172), but the number of manufacturing steps increases, the cost increases, and there is a risk of contamination of impurities such as carbon. There are problems. Therefore, it can be heated uniformly over the entire crucible, and is low in cost for molecular beam sources.
Supply of BN crucibles is desired.

【0004】[0004]

【課題を解決するための手段】本発明は、上記問題に鑑
みなされたもので、これは MBE装置の分子線源ルツボに
用いられる PBNルツボにおいて、CVD反応炉内に供給
するアンモニアと三塩化ほう素のモル比(NH 3 /BCl 3
を0.2 〜1.0の範囲として形成された、波数3700〜6500
cm-1の範囲の赤外線透光率が1.0 %以下(0%を含む)
であることを要旨とするものであり、このルツボを分子
線エピタキシー装置の分子線源用に用いると、ルツボ全
域に渡って均一に加熱することが出来、ルツボの開口部
付近での温度低下によりGa等の液滴が生成しGaAs薄膜の
結晶欠陥が発生するのを防ぐことができる。またこの P
BNルツボの製造方法は、CVD反応炉内にNH3とBCl3
モル比(NH 3 /BCl 3 )0.2 〜1.0の範囲で供給して、耐
熱性芯金上に熱分解窒化ほう素を堆積し、冷却後、芯金
から堆積体を抜き取ることを要旨とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and is directed to a PBN crucible used for a molecular beam source crucible of an MBE apparatus, which is supplied into a CVD reactor.
Molar ratio between ammonia and boron trichloride (NH 3 / BCl 3 )
Is formed in the range of 0.2 to 1.0, the wave number of 3700 to 6500
Infrared transmittance in the range of cm -1 is 1.0% or less (including 0%)
It is intended to subject matter that is, molecules of the crucible
When used for the molecular beam source of the X-ray epitaxy device, uniform heating can be achieved over the entire crucible, and a drop in temperature near the crucible opening generates droplets such as Ga, causing crystal defects in the GaAs thin film. Can be prevented. Also this P
The manufacturing method of BN crucible is as follows: NH 3 and BCl 3 are put in a CVD reactor.
The molar ratio (NH 3 / BCl 3 ) is supplied in the range of 0.2 to 1.0,
Pyrolytic boron nitride is deposited on the thermal core metal, cooled, and
The purpose is to extract the sediment from the material.

【0005】[0005]

【発明の実施の形態】以下、本発明を詳細に説明する。
III―V族化合物半導体単結晶のエピタキシー膜製造プ
ロセスにおける温度は、通常約 800〜1,600 ℃とされる
が、この時の最大エネルギー伝熱波長λmax.は、
λmax.・T =2,898(μm・K)(T:絶対温度)…(1) の式(1)で表されるので、上記温度範囲について式
(1)によりλmax.を求めると、波数 3,700〜6,500 cm
-1 の範囲が得られる。そこで、この波長範囲の赤外線
透過性の低い PBNルツボを用いると、エピタキシー膜の
製造プロセスでのルツボからの赤外線の透過率が大幅に
低くなり、ルツボ内での幅射熱による融液の加熱が均一
に行われるので、得られたエピタキシー膜の結晶欠陥が
極めて少なくなる。この波数 3,700〜6,500 cm-1 の範
囲での赤外線透過率については、1.0 %を超えると均一
な加熱が得られないので、1.0 %以下(0%を含む)で
あることが必要であり、好ましくは0.2 %以下がよい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The temperature in the process of producing an epitaxy film of a group III-V compound semiconductor single crystal is usually about 800 to 1600 ° C., and the maximum energy heat transfer wavelength λmax.
λmax. · T = 2,898 (μm · K) (T: absolute temperature) (1) Since it is expressed by the equation (1), the wave number of 3,700 to 6,500 cm
A range of -1 is obtained. Therefore, if a PBN crucible with low infrared transmittance in this wavelength range is used, the transmittance of infrared light from the crucible in the epitaxy film manufacturing process will be significantly reduced, and the heating of the melt by the radiant heat within the crucible will be difficult. Since it is performed uniformly, crystal defects of the obtained epitaxy film are extremely reduced. The infrared transmittance in the range of the wave number of 3,700 to 6,500 cm -1 should not exceed 1.0% (including 0%) because uniform heating cannot be obtained if it exceeds 1.0%. Is preferably 0.2% or less.

【0006】ルツボの厚みは薄すぎると強度が低下し実
用的でないなどの問題があり、厚すぎると赤外線透過率
は低下するが層分離の発生がおきやすくなるので、0.5
〜2.0 mmがよく、好ましくは0.8 〜1.5 mmがよい。ま
た、ルツボの形状、寸法は公知のものでよい。
[0006] If the thickness of the crucible is too small, there is a problem that the strength is reduced and the crucible is not practical. If the thickness is too large, infrared transmittance is reduced but layer separation easily occurs.
2.02.0 mm, preferably 0.8-1.5 mm. The shape and dimensions of the crucible may be known ones.

【0007】なお、窒化ほう素(BN)の光学的特性につ
いては、バンドギャプ(Eg)が5.8eV とされており(無
機材質研究所研究報告書第27号P.26参照)、赤外線吸収
波数は1,380 cm-1、810 cm-1であるが[D.N.Bose,H.K.He
nisch,J.Am.Cer.Soc.53, P.281 (1970) 参照] 、PBN に
ついては、結晶の乱れたターボストラティック結晶の混
在等により 3,700〜6,500 cm-1 の範囲に吸収が存在す
ると考えられている。本発明者らは、波数 3,700〜6,50
0 cm-1 におけるPBN の赤外線透過率がPBNの製造条件に
依存することを見いだした。
[0007] Regarding the optical characteristics of boron nitride (BN), the band gap (Eg) is 5.8 eV (see Research Report No. 27 of the Research Institute for Inorganic Materials, No. 27, p. 26). 1,380 cm -1 and 810 cm -1 [DNBose, HKHe
53, p.281 (1970)], it is assumed that PBN has absorption in the range of 3,700 to 6,500 cm -1 due to the mixture of turbostratic crystals with disordered crystals. It is considered. We have a wave number of 3,700-6,50
It has been found that the infrared transmittance of PBN at 0 cm -1 depends on the production conditions of PBN.

【0008】すなわち、本発明者等は、ルツボの赤外線
透過率を下げるため、CVD 法によるルツボ製造工程にお
ける原料ガスの NH3とBCl3のモル比( NH3/BCl3 )に
着目し、通常行われているモル比2〜5よりも大幅に小
さくした結果、波数 3,700〜6,500 cm-1 の赤外線透過
率が1%以下にまで下がったPBN ルツボが得られること
を発見した。NH3とBCl3のモル比は、0.1 未満とするとP
BN 膜の強度が低下し、2.0 を超えると赤外線透過率が
1.0 %を超えてしまうので、0.1 〜2.0 とすることが必
要で、好ましくは0.2 〜1.0 がよい。この際、ルツボの
外観はモル比が2.0 から0.2と小さくなるに従って黄褐
色から黒褐色に変化した。本発明の PBNルツボの製造方
法は、所定の形状と寸法の耐熱性芯金を用意し、これを
CVD 反応炉に設置し、圧力を0.01〜0.1 トール、反応温
度を1650〜2000℃とし、 NH3ガスとBCl3ガスをモル比
(NH3/BCl3)が0.1 〜2.0 、好ましくは0.2 〜1.0とな
るように供給し、炉内を0.5 〜10トールの反応圧力に保
ち、芯金上にPBN を所定厚みとなるまで堆積させ、反応
が終了後冷却しこの積層体を芯金から抜き取り、 PBNル
ツボを製造する。
In other words, the present inventors focused on the molar ratio of NH 3 to BCl 3 (NH 3 / BCl 3 ) of the raw material gas in the crucible manufacturing process by the CVD method in order to reduce the infrared transmittance of the crucible, It has been found that a PBN crucible having a wave number of 3,700 to 6,500 cm -1 and an infrared transmittance as low as 1% or less can be obtained as a result of making the molar ratio significantly smaller than the practiced molar ratio of 2 to 5. If the molar ratio between NH 3 and BCl 3 is less than 0.1, P
The strength of the BN film decreases, and if it exceeds 2.0, the infrared transmittance will decrease.
Since it exceeds 1.0%, it is necessary to set it to 0.1 to 2.0, and preferably 0.2 to 1.0. At this time, the appearance of the crucible changed from yellow-brown to black-brown as the molar ratio became smaller from 2.0 to 0.2. In the method of manufacturing a PBN crucible according to the present invention, a heat-resistant core having a predetermined shape and dimensions is prepared, and
Installed in a CVD reactor, the pressure is 0.01 to 0.1 Torr, the reaction temperature is 1650 to 2000 ° C., and the NH 3 gas and BCl 3 gas have a molar ratio (NH 3 / BCl 3 ) of 0.1 to 2.0 , preferably 0.2 to 1.0. The reactor is maintained at a reaction pressure of 0.5 to 10 Torr, PBN is deposited on the core until a predetermined thickness is reached, and after the reaction is completed, the laminate is cooled and the laminate is taken out from the core, and Manufacture crucibles.

【0009】このルツボを MBE装置に組み込み、Ga用の
分子線源ルツボとして用いると、ルツボの均一な加熱が
可能となり、Gaの液滴の飛散による薄膜中の結晶欠陥の
生成が防止でき、良好なデバイスの製造が可能となる。
When this crucible is incorporated into an MBE apparatus and used as a molecular beam source crucible for Ga, uniform heating of the crucible becomes possible, and generation of crystal defects in the thin film due to scattering of Ga droplets can be prevented. It is possible to manufacture a simple device.

【0010】[0010]

【実施例】実施例1 外径30 mm×長さ150 mm の黒鉛型芯金をCVD 炉に設置
し、0.1 トール以下まで減圧し1900 ℃まで昇温し、NH3
とBCl3のモル比を0.5 とし、NH3 ガス0.5 リットル/
分、BCl3ガス1リットル/分を供給し、炉内を2トール
に保つように減圧しながら黒鉛芯金上にPBN を1mm堆積
させた。反応が終了し冷却後、芯金から PBN堆積体を抜
き取り、外径32 mm、長さ105 mm 、厚み1mm の PBNルツ
ボを製造した。
[Example] Example 1 A graphite core metal having an outer diameter of 30 mm and a length of 150 mm was placed in a CVD furnace, the pressure was reduced to 0.1 torr or less, the temperature was raised to 1900 ° C, and NH 3
And the molar ratio of BCl 3 to 0.5, NH 3 gas 0.5 liter /
Then, 1 liter / min of BCl 3 gas was supplied, and 1 mm of PBN was deposited on the graphite core metal while reducing the pressure so as to maintain the inside of the furnace at 2 Torr. After the reaction was completed and cooled, the PBN deposit was extracted from the core metal to produce a PBN crucible having an outer diameter of 32 mm, a length of 105 mm, and a thickness of 1 mm.

【0011】実施例2〜5 NH3 とBCl3のモル比を0.1 (実施例2)、0.2 (実施例
3)、1.0 (実施例4)、2.0 (実施例5)と変えてNH
3 ガスとBCl3 ガスを供給した以外は実施例1と同様な
条件で PBNルツボを製造した。
Examples 2 to 5 The molar ratio of NH 3 to BCl 3 was changed to 0.1 (Example 2), 0.2 (Example 3), 1.0 (Example 4), 2.0 (Example 5) and
A PBN crucible was manufactured under the same conditions as in Example 1 except that 3 gas and BCl 3 gas were supplied.

【0012】比較例 NH3 とBCl3のモル比を3.0 とし、NH3 ガス3リットル/
分とBCl3ガス1リットル/分を供給して行なった以外は
実施例1と同様な条件で PBNルツボを製造した。
Comparative Example The molar ratio of NH 3 to BCl 3 was 3.0, and 3 liters of NH 3 gas /
A PBN crucible was manufactured under the same conditions as in Example 1 except that the supply was performed while supplying 1 liter / minute of BCl 3 gas.

【0013】これらのルツボの波数4000 cm-1における
赤外線透過率と、 MBE装置(Riber社製の型番MBE32F)
に組み込んで金属原料のGaを1000 ℃に加熱した時のル
ツボの底部と開口部の温度差Δt 、及びGaAs薄膜上に生
成した結晶欠陥の数を調べて評価したところ、表1に示
す結果が得られた。なお、表中の欠陥評価は、結晶欠陥
数が○は10ヶ/cm2 未満を、△は200 ヶ/cm2 以上を表
す。また赤外線透過率は波数4000 cm-1において、下記
(2)式により求めた。 透過率=(I/I0) ×100 …(2) (ここで、 I0 :透過前の光の強度、I :透過後の光の
強度)
The infrared transmittance of these crucibles at a wave number of 4000 cm -1 and the MBE device (model number MBE32F manufactured by Riber)
The temperature difference Δt between the bottom of the crucible and the opening when the metal material Ga was heated to 1000 ° C. and the number of crystal defects formed on the GaAs thin film were evaluated. The results shown in Table 1 were obtained. Obtained. In the evaluation of defects in the table, the number of crystal defects is indicated by ○: less than 10 / cm 2 and Δ: 200 / cm 2 or more. The infrared transmittance was determined by the following equation (2) at a wave number of 4000 cm -1 . Transmittance = (I / I 0 ) × 100 (2) (where, I 0 : intensity of light before transmission, I: intensity of light after transmission)

【0014】[0014]

【表1】 [Table 1]

【0015】表1の結果、赤外線透過率を低下させた P
BNルツボはより均一な加熱が可能となり、GaAs膜上の結
晶欠陥を防止できることがわかった。
[0015] As shown in Table 1, it was found that P
It was found that the BN crucible can be heated more evenly and crystal defects on the GaAs film can be prevented.

【0016】[0016]

【発明の効果】本発明により、不純物が少なく赤外線透
過率の低い PBNルツボが低コストで得られ、またこのル
ツボを MBE装置の分子線源セルに用いると、ルツボ全域
にわたって均一に加熱でき、結晶欠陥の少ないエピタキ
シー膜が得られ、良好なデバイスの製造が可能となる。
According to the present invention, a PBN crucible having a small amount of impurities and a low infrared transmittance can be obtained at low cost, and when this crucible is used for a molecular beam source cell of an MBE apparatus , the entire crucible can be obtained.
, An epitaxy film with few crystal defects can be obtained, and a good device can be manufactured.

フロントページの続き (72)発明者 木村 昇 群馬県安中市磯部2丁目13番1号 信越 化学工業株式会社 精密機能材料研究所 内 (56)参考文献 特開 昭61−285383(JP,A) 特開 平3−56674(JP,A) 特開 平8−34684(JP,A) 特開 平2−204391(JP,A) 特開 平4−231459(JP,A) 特開 昭63−277590(JP,A) 実開 昭63−199172(JP,U) 実開 平3−22067(JP,U) (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 H01L 21/203 Continuation of front page (72) Inventor Noboru Kimura 2-13-1 Isobe, Annaka-shi, Gunma Shin-Etsu Chemical Co., Ltd. Precision Functional Materials Laboratory (56) References JP-A-61-285383 (JP, A) JP-A-3-56674 (JP, A) JP-A-8-34684 (JP, A) JP-A-2-204391 (JP, A) JP-A-4-231459 (JP, A) JP-A-63-277590 (JP, A) JP-A 63-199172 (JP, U) JP-A 3-22067 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) C30B 1/00-35 / 00 H01L 21/203

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 CVD反応炉内に供給するアンモニアと
三塩化ほう素のモル比(NH 3 /BCl 3 )を0.2 〜1.0の範
囲として形成された、波数3700〜6500 cm-1の範囲の赤
外線透光率が1.0 %以下(0%を含む)であることを特
徴とする熱分解窒化ほう素ルツボ。
An ammonia supplied into a CVD reactor and
The molar ratio of boron trichloride (NH 3 / BCl 3 ) is in the range of 0.2 to 1.0.
A pyrolytic boron nitride crucible formed as an enclosure, having an infrared transmittance of 1.0% or less (including 0%) in a wave number range of 3700 to 6500 cm -1 .
【請求項2】 該ルツボが分子線エピタキシー装置に用
いられる分子線源ルツボである請求項1に記載の熱分解
窒化ほう素ルツボ。
2. The pyrolytic boron nitride crucible according to claim 1, wherein said crucible is a molecular beam source crucible used in a molecular beam epitaxy apparatus.
【請求項3】 CVD反応炉内にアンモニアと三塩化ほ
う素モル比(NH 3 /BCl 3 )0.2 〜1.0の範囲で供給し
て、耐熱性芯金上に熱分解窒化ほう素を堆積し、冷却
後、芯金から堆積体を抜き取ることを特徴とする熱分解
窒化ほう素ルツボの製造方法。
Wherein the molar ratio of ammonia and three boron chloride containing the CVD reaction furnace (NH 3 / BCl 3) was supplied in the range of 0.2 to 1.0
Deposit pyrolytic boron nitride on the heat-resistant core metal and cool
A method for producing a pyrolytic boron nitride crucible, wherein the deposit is subsequently extracted from the cored bar .
JP22974896A 1996-08-30 1996-08-30 Pyrolytic boron nitride crucible and method for producing the same Expired - Fee Related JP3247838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22974896A JP3247838B2 (en) 1996-08-30 1996-08-30 Pyrolytic boron nitride crucible and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22974896A JP3247838B2 (en) 1996-08-30 1996-08-30 Pyrolytic boron nitride crucible and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1072298A JPH1072298A (en) 1998-03-17
JP3247838B2 true JP3247838B2 (en) 2002-01-21

Family

ID=16897076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22974896A Expired - Fee Related JP3247838B2 (en) 1996-08-30 1996-08-30 Pyrolytic boron nitride crucible and method for producing the same

Country Status (1)

Country Link
JP (1) JP3247838B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101899703A (en) * 2010-08-06 2010-12-01 浙江碧晶科技有限公司 Crucible for growing crystalline silicon ingot and extracting silicon raw material of crystalline silicon ingot and preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101899703A (en) * 2010-08-06 2010-12-01 浙江碧晶科技有限公司 Crucible for growing crystalline silicon ingot and extracting silicon raw material of crystalline silicon ingot and preparation method and application thereof
CN101899703B (en) * 2010-08-06 2012-04-25 浙江碧晶科技有限公司 Crucible for growing crystalline silicon ingot and extracting silicon raw material of crystalline silicon ingot and preparation method and application thereof

Also Published As

Publication number Publication date
JPH1072298A (en) 1998-03-17

Similar Documents

Publication Publication Date Title
US4237151A (en) Thermal decomposition of silane to form hydrogenated amorphous Si film
EP0935013B1 (en) SiC product and manufacturing method thereof
US4099924A (en) Apparatus improvements for growing single crystalline silicon sheets
JPS61201607A (en) Product consisting of pyrolytically prepared boron nitride and its preparation
JPS63182297A (en) Aggregate diamond
JPH0127568B2 (en)
EP0744768B1 (en) Device comprising films of beta-C3N4
JPS61272922A (en) Semiconductor device wafer substrate and manufacture thereof
JP3247838B2 (en) Pyrolytic boron nitride crucible and method for producing the same
JP3212522B2 (en) Pyrolytic boron nitride crucible for molecular beam epitaxy
US3925146A (en) Method for producing epitaxial thin-film fabry-perot cavity suitable for use as a laser crystal by vacuum evaporation and product thereof
JP3758755B2 (en) Pyrolytic boron nitride container and manufacturing method thereof
JP4309509B2 (en) Method for producing crucible for single crystal growth comprising pyrolytic graphite
JP3532397B2 (en) Pyrolytic boron nitride conical cylinder and method for producing the same
JP3614282B2 (en) Pyrolytic boron nitride container and manufacturing method thereof
JP3724870B2 (en) Pyrolytic boron nitride crucible
JP3881490B2 (en) Pyrolytic boron nitride double container and manufacturing method thereof
CN109179422A (en) A kind of preparation method of extensive amorphous silicon particle
CN117165917A (en) Method for preparing large-size single-layer rhenium disulfide film
JP2815076B2 (en) Molecular beam source crucible for molecular beam epitaxy
JP3850083B2 (en) Pyrolytic boron nitride crucible
JP3141441B2 (en) Method of forming SiC crystal film by laser
JPH07196307A (en) Production of silicon laminate
JP2000169298A (en) Silicon carbide molded article
JPH06208961A (en) Manufacture of silicon lamination body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees