JP2000169298A - Silicon carbide molded article - Google Patents

Silicon carbide molded article

Info

Publication number
JP2000169298A
JP2000169298A JP10341486A JP34148698A JP2000169298A JP 2000169298 A JP2000169298 A JP 2000169298A JP 10341486 A JP10341486 A JP 10341486A JP 34148698 A JP34148698 A JP 34148698A JP 2000169298 A JP2000169298 A JP 2000169298A
Authority
JP
Japan
Prior art keywords
cvd
sic
molded body
molded article
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10341486A
Other languages
Japanese (ja)
Other versions
JP3857446B2 (en
Inventor
Akihiro Kuroyanagi
聡浩 黒柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP34148698A priority Critical patent/JP3857446B2/en
Publication of JP2000169298A publication Critical patent/JP2000169298A/en
Application granted granted Critical
Publication of JP3857446B2 publication Critical patent/JP3857446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a SiC molded article low in light transmission and suitably used as one of various kinds of heat-resistant members including various members for producing semiconductors, such as shielding members and dummy wafers. SOLUTION: This SiC molded article comprises as a matrix a CVD-SiC molded article which is produced by CVD(chemical vapor deposition) method and has a crystal property that the strength ratio of diffraction peaks on the crystal surfaces (111), (200), (220) and (311) by a X-ray diffraction method is 100:45 to 55:15 to 25:35 to 45, and at least one CVD-SiC layer which is formed on or in the matrix and has a crystal property that the strength ratio of diffraction peaks on the crystal surfaces (111), (200), (220) and (311) by a X-ray diffraction method is 100:1 to 10:1 to 5:1 to 6. The thickness of the CVD-SiC layer is 10-50% based on that of the CVD-SiC molded article.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高純度で耐熱性や
強度特性に優れ、特に光不透過性に優れ、例えば半導体
製造用装置の熱処理装置用遮蔽体、均熱リング等の各種
耐熱部材、あるいは半導体製造用装置の拡散炉装置、エ
ッチング装置、CVD装置などに用いられるダミーウエ
ハやサセプター等の各種部材として好適に用いることの
できるSiC成形体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to various heat-resistant members such as shields for heat treatment equipment of semiconductor manufacturing equipment, heat equalizing rings, etc. Also, the present invention relates to a SiC molded body that can be suitably used as various members such as a dummy wafer and a susceptor used in a diffusion furnace device, an etching device, a CVD device, and the like of a semiconductor manufacturing device.

【0002】[0002]

【従来の技術】SiCは耐熱性、耐蝕性、強度特性等の
材質特性が優れており、各種工業用の部材として有用さ
れている。特に、CVD法(化学的気相蒸着法)を利用
して作製したSiC成形体(CVD−SiC成形体)
は、緻密で高純度であるため半導体製造用の各種部材を
はじめ高純度が要求される用途分野において好適に用い
られている。CVD法によるSiC成形体は原料ガスを
気相反応させて基材面上にSiCの結晶粒を析出させ、
結晶粒の成長により被膜を形成したのち基材を除去する
ことにより作製されるもので、材質的に緻密、高純度で
組織の均質性が高いという特徴がある。
2. Description of the Related Art SiC has excellent material properties such as heat resistance, corrosion resistance and strength properties, and is useful as various industrial members. In particular, a SiC molded body (CVD-SiC molded body) manufactured using a CVD method (chemical vapor deposition method).
Because of its high density and high purity, it is suitably used in various application fields requiring high purity, including various members for semiconductor production. The SiC molded body by the CVD method causes a gas phase reaction of the raw material gas to precipitate crystal grains of SiC on the substrate surface,
It is produced by forming a film by growing crystal grains and then removing the substrate, and is characterized by a dense material, high purity, and high tissue homogeneity.

【0003】このCVD−SiC成形体は純度の高い
程、光の透過性が高いことが知られており、半導体製造
装置や熱処理装置などの部材として使用する場合に用途
分野によっては光透過性が問題となることがある。例え
ば、半導体の製造プロセスには急速熱アニーリング(ra
pid thermal annealing)、急速熱クリーニング(rapidt
hermal cleaning)、急速熱化学気相堆積(rapid therm
al chemical vapor deposition)、急速熱酸化(rapid th
ermal oxidation)、急速熱窒化(rapid thermalnitrida
tion)などの急速に熱処理する工程(RTPと呼ばれ
る)がある。
[0003] It is known that the higher the purity of this CVD-SiC molded body, the higher the light transmittance thereof. It can be a problem. For example, rapid thermal annealing (ra
pid thermal annealing), rapid thermal cleaning (rapidt)
hermal cleaning), rapid thermal chemical vapor deposition (rapid therm)
al chemical vapor deposition), rapid thermal oxidation (rapid th
ermal oxidation, rapid thermalnitrida
), etc. (referred to as RTP).

【0004】このRTPではウエハ基板の精確な温度管
理が必要となるが、パイロメーターにより測温する場合
にはウエハ基板の処理面とは反対の面に黒体キャビティ
を形成するときにウエハ基板を支持する部材などの光の
透過があると外乱光となって精確な温度管理が困難とな
る問題がある。そのため、特開平6−341905号公
報では加熱要素からもれた光が、反射キャビティに入る
のを防止するために、隔壁やウエハを支持するガードリ
ングがウエハに沿って配置されて、加熱要素からもれた
光を吸収する黒色または灰色を有し、このガードリング
はシリコンから作られることが提案されており、また特
開平8−255800号公報ではウエハ基板を支持する
支持リングをシリコンや酸化珪素とし、支持リングを保
持するシリンダはパイロメーターの周波数の範囲で不透
明となるようシリコンをコートした石英製とすることが
提案されている。
[0004] In this RTP, accurate temperature control of the wafer substrate is required. However, when measuring the temperature with a pyrometer, the wafer substrate is removed when a black body cavity is formed on the surface opposite to the processing surface of the wafer substrate. If light from the supporting member is transmitted, there is a problem that disturbance light is generated and accurate temperature control becomes difficult. For this reason, in Japanese Patent Application Laid-Open No. Hei 6-341905, in order to prevent light leaking from the heating element from entering the reflection cavity, a guard ring for supporting the partition wall and the wafer is arranged along the wafer, and the heating element is prevented from coming out of the heating element. It has been proposed that this guard ring be made of silicon, which has a black or gray color that absorbs leaked light. Japanese Patent Application Laid-Open No. 8-255800 discloses that a support ring for supporting a wafer substrate is made of silicon or silicon oxide. It has been proposed that the cylinder holding the support ring be made of quartz coated with silicon so as to be opaque in the frequency range of the pyrometer.

【0005】しかしながら、特開平6−341905号
公報や特開平8−255800号公報に開示されている
シリコンやシリコンをコートしたものでは繰り返し使用
するための酸洗浄に対する耐蝕性に劣るため、コートし
たシリコンの厚みが次第に減少して光不透過性が低下す
る問題点がある。
[0005] However, those coated with silicon or silicon disclosed in JP-A-6-341905 and JP-A-8-255800 are inferior in corrosion resistance to acid washing for repeated use. However, there is a problem that the light opacity is reduced due to a gradual decrease in the thickness of the film.

【0006】また、プラズマエッチング処理においてウ
エハのエッチング条件を安定化させるために用いるダミ
ーウエハやCVD処理においてウエハの条件を安定化さ
せるために用いられるダミーウエハには光透過性が小さ
いことが要求される。すなわち、ウエハは搬送用ロボッ
トで支持ボートに装着されるが、ウエハの認識はレーザ
ー光を照射することにより行われるので、ウエハの光透
過性が高いとロボットがウエハの位置を的確に認識する
ことができず、反応装置内の所定の位置にウエハを装着
することが困難となる問題点がある。
Further, a dummy wafer used for stabilizing the etching condition of the wafer in the plasma etching process and a dummy wafer used for stabilizing the condition of the wafer in the CVD process are required to have low light transmittance. In other words, the wafer is mounted on the support boat by the transfer robot, but the recognition of the wafer is performed by irradiating the laser beam, so if the light transmittance of the wafer is high, the robot can accurately recognize the position of the wafer. Therefore, there is a problem that it is difficult to mount a wafer at a predetermined position in the reaction apparatus.

【0007】[0007]

【発明が解決しようとする課題】上記の問題点を排除す
るためにCVD−SiC成形体の性状と光特性との関係
について研究した結果、光透過性の低いSiC成形体と
して本出願人はCVD法により得られるCVD−SiC
成形体であって、その表面部あるいは内部に少なくとも
1層の粒子性状の異なるSiC層を有し、300 〜2500nm
の波長域における光透過率が0.4 %以下、2500nmを超え
る波長域における光透過率が2.5 %以下であることを特
徴とするSiC成形体(特願平10−42906 号)やCVD
法により得られるβ型結晶からなるCVD−SiC成形
体であって、その表面部あるいは内部に厚さ2 〜20μm
の可視光不透過性CVD−SiC層が少なくとも1層形
成されてなり、300 〜2500nmの波長域における光透過率
が0.4 %以下であることを特徴とするSiC成形体(特
願平10−294959号)を開発、提案した。
As a result of a study on the relationship between the properties of the CVD-SiC compact and the optical characteristics in order to eliminate the above-mentioned problems, the applicant of the present invention has obtained a CVD-SiC compact having a low light transmittance. -SiC obtained by CVD method
A molded body having at least one SiC layer having different particle properties on its surface or inside, and having a thickness of 300 to 2500 nm.
A SiC molded body (Japanese Patent Application No. 10-42906) or a CVD method, wherein the light transmittance in the wavelength region of 0.4% or less and the light transmittance in the wavelength region exceeding 2500 nm is 2.5% or less.
A CVD-SiC compact comprising a β-type crystal obtained by the method, and having a thickness of 2 to 20 μm on its surface or inside.
Wherein at least one visible light-impermeable CVD-SiC layer is formed and the light transmittance in the wavelength range of 300 to 2500 nm is 0.4% or less (Japanese Patent Application No. 10-294959). No.) was developed and proposed.

【0008】上記の発明は、CVD−SiC成形体の材
質組織として光を散乱・反射させる層が存在すると光透
過性を低くできることを見出した結果に基づくものであ
り、本発明者はこれらの知見を基に更に研究を進めた結
果、CVD−SiC成形体中に結晶構造の乱れを形成す
ると、効果的に光透過率を低下させ得ることを見出し
た。本発明はこの知見に基づいて開発されたものであっ
て、その目的は光不透過性に優れ、例えば半導体製造用
装置の熱処理装置用遮蔽体、均熱リング等の各種耐熱部
材、あるいは半導体製造用装置の拡散炉装置、エッチン
グ装置、CVD装置などに用いられるダミーウエハやサ
セプター等の各種部材として好適に用いることのできる
SiC成形体を提供することにある。
The above invention is based on the finding that the presence of a layer that scatters and reflects light as a material structure of a CVD-SiC molded body can reduce the light transmittance. As a result of further research based on the above, it has been found that the formation of disorder in the crystal structure in the CVD-SiC molded body can effectively reduce the light transmittance. The present invention has been developed on the basis of this finding, and its object is to excel in light opacity, for example, various heat-resistant members such as heat treatment equipment shields for semiconductor manufacturing equipment, heat equalizing rings, and semiconductor manufacturing equipment. An object of the present invention is to provide a SiC molded body that can be suitably used as various members such as a dummy wafer and a susceptor used in a diffusion furnace device, an etching device, a CVD device, and the like of a device.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
の本発明によるSiC成形体は、CVD法により作製さ
れ、結晶面(111) に対する(200) 、(220) 、(311) 面の
X線回折による回折ピークの強度比が100:45〜5
5:15〜25:35〜45の結晶性状を備えたCVD
−SiC成形体を母材とし、その表面部あるいは内部に
結晶面(111) に対する(200) 、(220) 、(311) 面のX線
回折による回折ピークの強度比が100:1〜10:1
〜5:1〜6の結晶性状を有するCVD−SiC層が少
なくとも1層形成されてなり、CVD−SiC層の厚さ
がCVD−SiC成形体の厚さの10〜50%であるこ
とを構成上の特徴とする。
In order to achieve the above object, a SiC molded body according to the present invention is produced by a CVD method, and has a X (X) of the (200), (220) and (311) planes with respect to the crystal plane (111). The intensity ratio of diffraction peaks by line diffraction is 100: 45 to 5
CVD with crystal properties of 5:15 to 25:35 to 45
-Using a SiC molded body as a base material, the intensity ratio of diffraction peaks by X-ray diffraction of (200), (220), and (311) planes with respect to the crystal plane (111) is 100: 1 to 10: 1
-5: At least one CVD-SiC layer having a crystalline property of 1-6 is formed, and the thickness of the CVD-SiC layer is 10-50% of the thickness of the CVD-SiC molded body. Features above.

【0010】[0010]

【発明の実施の形態】本発明のSiC成形体は、CVD
法によって基材面にSiCを析出させ、析出したSiC
の被膜を形成したのち基材を除去することにより作製さ
れるCVD−SiC成形体を母材として、この母材の表
面部あるいは内部に母材とは結晶性状の異なる、すなわ
ち結晶構造の乱れたCVD−SiC層を少なくとも1層
形成した組織性状からなるものである。
BEST MODE FOR CARRYING OUT THE INVENTION
SiC is deposited on the substrate surface by the method
The base material is a CVD-SiC molded body produced by removing the base material after forming a film of the base material, and the surface or inside of the base material has different crystal properties from the base material, that is, the crystal structure is disordered. It has a texture of at least one CVD-SiC layer.

【0011】CVD法によるSiC被膜の形成は1分子
中にSi原子とC原子とを含む、例えばCH3 SiCl
3 、(CH3 3 SiCl、CH3 SiHCl2 などの
ハロゲン化有機珪素化合物を水素ガスなどのキャリアガ
スとともに加熱して還元熱分解させる方法、あるいはS
iCl4 などの珪素化合物とCH4 などの炭素化合物と
を加熱反応させる方法、などにより基材面上にSiCを
析出させることにより行われる。
The formation of the SiC film by the CVD method includes Si atoms and C atoms in one molecule, for example, CH 3 SiCl
3 , a method in which a halogenated organosilicon compound such as (CH 3 ) 3 SiCl or CH 3 SiHCl 2 is heated together with a carrier gas such as hydrogen gas to undergo reductive pyrolysis, or
It is carried out by precipitating SiC on the surface of the base material by a method in which a silicon compound such as iCl 4 and a carbon compound such as CH 4 are heated and reacted.

【0012】基材面にSiC被膜が形成されるプロセス
は、原料ガスが気相反応によりSiCを析出して基材面
上にSiCの核が生成し、このSiC核が成長してアモ
ルファス質SiCに変化し、更に微細な多結晶質SiC
粒を経て柱状組織の結晶組織へと成長を続けてSiC被
膜が形成されるものである。したがって、CVD−Si
C成形体の強度特性、熱的特性、光特性などの性状は基
材面上に析出して形成されたSiC被膜の結晶性状によ
り異なったものとなる。
In the process of forming a SiC film on the surface of a base material, the raw material gas precipitates SiC by a gas phase reaction to generate nuclei of SiC on the surface of the base material, and the SiC nuclei grow to form amorphous SiC. To finer polycrystalline SiC
The SiC film is formed by continuously growing into a columnar crystal structure through the grains. Therefore, CVD-Si
Properties such as the strength characteristics, thermal characteristics, and optical characteristics of the C-formed body differ depending on the crystal properties of the SiC coating formed by deposition on the substrate surface.

【0013】例えば、CVD−SiC成形体の組織中に
結晶構造の異なる層、すなわち結晶構造の乱れたSiC
層が存在すると結晶組織が変化する界面において光特性
が変化して複雑な光の屈折、散乱、反射などの現象が生
じて光の一部が閉じ込められることとなり、光の透過能
の減少、すなわち光不透過性の増大が図られることとな
る。
For example, in the structure of a CVD-SiC compact, layers having different crystal structures, that is, SiC having a disordered crystal structure,
When the layer is present, the light characteristics change at the interface where the crystal structure changes, and complicated phenomena such as refraction, scattering, and reflection of light occur, and a part of the light is confined. Light opacity is increased.

【0014】本発明のSiC成形体は、母材であるCV
D−SiC成形体の結晶構造をX線回折による結晶面(1
11) に対する(200) 、(220) 、(311) 面の回折ピークの
強度比を100:45〜55:15〜25:35〜45
の結晶性状とし、結晶構造の異なるCVD−SiC層と
してX線回折による結晶面(111) に対する(200) 、(22
0) 、(311) 面の回折ピークの強度比を100:1〜1
0:1〜5:1〜6の結晶性状に特定することにより光
透過性の減少、すなわち光不透過性の増大を図るもので
ある。なお、X線回折により求める回折ピーク値はCu
のKαで測定した値である。
The SiC molded body of the present invention has a CV
The crystal structure of the D-SiC compact was determined by the X-ray diffraction
The intensity ratio of the diffraction peaks of the (200), (220) and (311) planes with respect to (11) is 100: 45 to 55:15 to 25:35 to 45.
(200), (22) with respect to the crystal plane (111) by X-ray diffraction as CVD-SiC layers having different crystal structures.
0), the intensity ratio of the diffraction peaks on the (311) plane is 100: 1 to 1
By specifying the crystal properties of 0: 1 to 5: 1 to 6, light transmittance is reduced, that is, light impermeability is increased. The diffraction peak value obtained by X-ray diffraction is Cu
Is the value measured at Kα.

【0015】この結晶性状の異なるCVD−SiC層は
母材の表層部あるいは内部に少なくとも1層形成するこ
とにより光透過性を減少させることができるが、CVD
−SiC層を2〜3層に分散させて形成すると光透過性
をより減少させることができるので好ましい。また、形
成するCVD−SiC層の厚さはSiC成形体の厚さの
10〜50%の範囲に設定される。CVD−SiC層の
厚さが10〜50%の範囲であると、光の屈折、散乱、
反射などの光特性の変化がより効果的に起こるため光透
過性を低下することができる。
The light transmittance can be reduced by forming at least one layer of the CVD-SiC layer having different crystal properties on the surface or inside of the base material.
It is preferable to form the -SiC layer by dispersing it into two or three layers because the light transmittance can be further reduced. The thickness of the formed CVD-SiC layer is set in a range of 10 to 50% of the thickness of the SiC molded body. When the thickness of the CVD-SiC layer is in the range of 10 to 50%, refraction and scattering of light,
Since light characteristics such as reflection change more effectively, light transmittance can be reduced.

【0016】SiC成形体は、除去可能な基材面にCV
D反応によってSiCを析出させてSiC被膜を被着形
成したのち、基材を除去することにより作製される。除
去可能な基材としては、炭素系材料、シリコンなどの金
属系材料、石英などが用いられるが、加工性が良好で、
空気中で熱処理することにより容易に燃焼除去可能な炭
素系、特に黒鉛材が好適に用いられる。なお、黒鉛材は
可及的に不純物が少ない高純度のものが好ましい。Si
C被膜を形成後、基材を除去する方法は、切削除去、研
磨除去、空気中で加熱する燃焼除去、あるいはこれらを
適宜に組み合わせて行うことができる。
The SiC molded body has a CV on the removable substrate surface.
It is produced by depositing a SiC film by depositing SiC by a D reaction and then removing the base material. As the removable substrate, carbon-based materials, metal-based materials such as silicon, quartz, etc. are used, but the workability is good,
A carbon-based material, particularly a graphite material, which can be easily burned off by heat treatment in air, is suitably used. The graphite material preferably has a high purity with as little impurities as possible. Si
After forming the C film, the substrate can be removed by cutting, polishing, burning in air, or a combination of these methods.

【0017】CVD反応は、反応炉内に例えば黒鉛基材
をセットして系内の空気を排気したのち加熱して所定の
温度に保持し、次いで水素ガスを送入して常圧水素ガス
雰囲気に置換した後、水素ガスをキャリアガスとしてC
3 SiCl3 、(CH3 3 SiCl、CH3 SiH
Cl2 などのハロゲン化有機珪素化合物を原料ガスとし
て送入して還元熱分解させる方法、あるいはSiCl4
などの珪素化合物とCH4 などの炭素化合物とを送入し
て加熱反応させる方法、などにより黒鉛基材面上にSi
C被膜を被着形成する。SiC被膜を形成したのち黒鉛
基材を除去することにより母材となるCVD−SiC成
形体が作製される。
In the CVD reaction, for example, a graphite substrate is placed in a reaction furnace.
Set, exhaust the air in the system, and then heat it to the specified
Temperature, and then feed in hydrogen gas to
After replacing the atmosphere, hydrogen gas is used as a carrier gas and C
HThreeSiClThree, (CHThree) ThreeSiCl, CHThreeSiH
ClTwoUsing halogenated organosilicon compounds such as
To reduce and thermally decompose, or SiClFour
And silicon compounds such as CHFourAnd carbon compounds such as
Si on the graphite substrate surface
A C film is deposited. Graphite after forming SiC coating
CVD-SiC formation as base material by removing base material
A feature is created.

【0018】このSiC被膜を形成する過程において、
CVD反応条件、例えばハロゲン化有機珪素化合物と水
素ガス、あるいは珪素化合物と炭素化合物との混合比、
送入量、反応温度、反応時間、反応炉内圧力などを適宜
な値に設定制御することにより母材の表層部あるいは内
部に結晶性状の異なるCVD−SiC層を少なくとも1
層形成することができる。例えば、母材を作製するCV
D反応条件で所定時間反応させて基材面に所望膜厚のS
iC被膜を被着形成したのち、CVD反応条件を設定変
更して所定時間CVD反応を行って結晶性状の異なるC
VD−SiC層を形成し、次いで母材作製時のCVD反
応条件に戻して所定時間SiC被膜を被着形成した後、
基材を除去することにより母材内部に結晶性状の異なる
CVD−SiC層が1層形成されたCVD−SiC成形
体を得ることができる。
In the process of forming the SiC film,
CVD reaction conditions, for example, a mixture ratio of a halogenated organosilicon compound and hydrogen gas, or a silicon compound and a carbon compound,
At least one CVD-SiC layer having a different crystallinity is formed in the surface layer or inside of the base material by setting and controlling the feed amount, the reaction temperature, the reaction time, the pressure in the reaction furnace and the like to appropriate values.
Layers can be formed. For example, a CV for producing a base material
After reacting for a predetermined time under the D reaction condition,
After the formation of the iC film, the CVD reaction conditions are changed and the CVD reaction is performed for a predetermined time to obtain a C layer having a different crystalline property.
After forming a VD-SiC layer, and then returning to the CVD reaction conditions at the time of preparing the base material, forming a SiC coating for a predetermined time,
By removing the base material, a CVD-SiC molded body in which one CVD-SiC layer having different crystal properties is formed inside the base material can be obtained.

【0019】[0019]

【実施例】以下、本発明の実施例を比較例と対比して具
体的に説明する。
EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples.

【0020】実施例1 直径202mm、厚さ6mmの高純度等方性黒鉛材(灰分 1
0ppm以下)を基材として、この黒鉛基材をCVD反応装
置のチャンバー内にセットして加熱した。チャンバー内
を水素ガスで置換後、原料ガスにCH3 SiCl3 、キ
ャリアガスに水素ガスを用い、混合ガス中のCH3 Si
Cl3 の濃度を7.5vol %に設定して190 l/minの
流量でチャンバー内に送入し、1400℃の温度で14
時間、次いで1300℃の温度で2時間、再び1400
℃の温度で14時間CVD反応を行って黒鉛基材面にS
iC被膜を被着した。次いで、横断方向に切断したのち
空気中で加熱して黒鉛基材を燃焼除去し、更に表面を研
磨加工して直径200mm、厚さ0.5mmのSiC成形体
を作製した。このようにして、内部に結晶性状の異なる
CVD−SiC層を1層形成したCVD−SiC成形体
を作製した。
Example 1 A high-purity isotropic graphite material having a diameter of 202 mm and a thickness of 6 mm (ash content: 1
The graphite substrate was set in a chamber of a CVD reactor and heated. After purging the chamber with hydrogen gas, CH 3 SiCl 3 as the raw material gas, a hydrogen gas as a carrier gas, CH 3 Si in the mixed gas
The concentration of Cl 3 was set to 7.5 vol%, and the mixture was fed into the chamber at a flow rate of 190 l / min.
Time, then 2 hours at a temperature of 1300 ° C., again 1400
Perform CVD reaction at a temperature of 14 ° C. for 14 hours to apply S
An iC coating was applied. Next, after cutting in the transverse direction, the graphite base material was burned and removed by heating in air, and the surface was further polished to produce a SiC molded body having a diameter of 200 mm and a thickness of 0.5 mm. Thus, a CVD-SiC molded body in which one CVD-SiC layer having different crystal properties was formed inside was produced.

【0021】実施例2〜8、比較例4〜5 CVD反応の反応温度及び時間を設定変更したほかは、
実施例1と同じ方法によりSiC成形体を作製した。
Examples 2 to 8 and Comparative Examples 4 to 5 The reaction temperature and time of the CVD reaction were changed except for the setting.
A SiC molded body was produced in the same manner as in Example 1.

【0022】比較例1〜3 CVD反応の反応温度を一定とし、反応時間を設定変更
したほかは、実施例1と同じ方法によりSiC成形体を
作製した。
Comparative Examples 1 to 3 SiC compacts were produced in the same manner as in Example 1 except that the reaction temperature of the CVD reaction was fixed and the reaction time was changed.

【0023】このようにして作製したSiC成形体のC
VD反応条件を対比して表1に示した。また島津製作所
製自記分光光度計を用いて波長0.5、2及び10μm
の光に対する光透過率の測定、及びX線回折により結晶
面 (111) (200) (220) (311)面の回折強度の相対比率を
測定した。なお、内部に形成したCVD−SiC層のX
線回折は表面を研磨加工して内部のCVD−SiC層を
露出させて測定した。得られた結果を表2に示した。
The C of the SiC molded body thus produced is
Table 1 compares the VD reaction conditions. Using a Shimadzu self-recording spectrophotometer, wavelengths of 0.5, 2 and 10 μm
Of the crystal planes (111), (200), (220), and (311) were measured by X-ray diffraction. In addition, X of the CVD-SiC layer formed inside
The line diffraction was measured by polishing the surface to expose the inner CVD-SiC layer. Table 2 shows the obtained results.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 (注) *1 結晶面(111) に対する結晶面(200) 、(220) 、(311) のX線回折によ る回折ピークの相対強度[Table 2] (Note) * 1 Relative intensity of diffraction peaks by X-ray diffraction of crystal planes (200), (220), and (311) with respect to crystal plane (111)

【0026】表1、2の結果から、反応温度1400℃
で形成したCVD−SiC成形体の母材の中央部に反応
温度1300℃で形成したCVD−SiC層を1層形成
し、その厚さがCVD−SiC成形体の20%である実
施例1では光透過率は0.3%以下と低い値を示し、C
VD−SiC層の厚さが50%である実施例2では光透
過率は更に低下することが判る。なお、CVD−SiC
層を形成する反応温度が1350℃とCVD−SiC成
形体の形成温度である1400℃との差が小さい実施例
3、4では結晶構造の乱れがやや少なくなるために実施
例1、2に比べて光透過率の低下が少なくなる傾向が認
められる。また、CVD−SiC層を2層形成した実施
例5〜8では光透過率がより低下することが認められ
る。これに対して、CVD−SiC層を形成しない比較
例1〜3では光透過率の低下は認められず、またCVD
−SiC層の厚さが小さい比較例4、5では光透過率を
充分に低下させることができないことが判る。
From the results in Tables 1 and 2, the reaction temperature was 1400 ° C.
In Example 1, in which one CVD-SiC layer formed at a reaction temperature of 1300 ° C. was formed at the center of the base material of the CVD-SiC molded body formed in the above, and the thickness was 20% of the CVD-SiC molded body. The light transmittance shows a low value of 0.3% or less, and C
It can be seen that in Example 2 where the thickness of the VD-SiC layer was 50%, the light transmittance was further reduced. In addition, CVD-SiC
In Examples 3 and 4 in which the difference between the reaction temperature for forming the layer is 1350 ° C. and 1400 ° C. which is the temperature for forming the CVD-SiC molded body, the disorder of the crystal structure is slightly reduced. Therefore, the tendency for the decrease in light transmittance to decrease is recognized. In Examples 5 to 8 in which two CVD-SiC layers were formed, it was recognized that the light transmittance was further reduced. On the other hand, in Comparative Examples 1 to 3 in which the CVD-SiC layer was not formed, no decrease in the light transmittance was observed.
-It turns out that the light transmittance cannot be sufficiently reduced in Comparative Examples 4 and 5 in which the thickness of the SiC layer is small.

【0027】[0027]

【発明の効果】以上のとおり、本発明のSiC成形体に
よれば母材であるCVD−SiC成形体の表面部あるい
は内部に結晶構造が乱れた特定の結晶性状を有するCV
D−SiC層が少なくとも1層形成され、またその厚さ
を特定することにより、光透過率を効果的に低下させる
ことができる。したがって、光不透過性に優れ、遮蔽体
やダミーウエハ等の半導体製造用の各種部材をはじめ熱
処理装置用の各種耐熱部材等として好適に用いることが
可能となる、
As described above, according to the SiC molded article of the present invention, a CV having a specific crystallinity in which the crystal structure is disturbed on the surface or inside of the CVD-SiC molded article as the base material.
By forming at least one D-SiC layer and specifying its thickness, the light transmittance can be effectively reduced. Therefore, it is excellent in light opacity, and can be suitably used as various heat-resistant members for a heat treatment apparatus including various members for semiconductor production such as a shield and a dummy wafer.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 CVD法により作製され、結晶面(111)
に対する(200) 、(220) 、(311) 面のX線回折による回
折ピークの強度比が100:45〜55:15〜25:
35〜45の結晶性状を備えたCVD−SiC成形体を
母材とし、その表面部あるいは内部に結晶面(111) に対
する(200) 、(220) 、(311) 面のX線回折による回折ピ
ークの強度比が100:1〜10:1〜5:1〜6の結
晶性状を有するCVD−SiC層が少なくとも1層形成
されてなり、CVD−SiC層の厚さがCVD−SiC
成形体の厚さの10〜50%であることを特徴とするS
iC成形体。
1. The method according to claim 1, wherein the crystal face (111) is produced by a CVD method.
The intensity ratio of the diffraction peaks of the (200), (220), and (311) planes by X-ray diffraction with respect to 100: 45 to 55:15 to 25:
A diffraction peak by X-ray diffraction of the (200), (220), and (311) planes with respect to the crystal plane (111) on the surface or inside of the base material is a CVD-SiC molded body having crystal properties of 35 to 45. At least one CVD-SiC layer having a crystallinity of 100: 1 to 10: 1 to 5: 1 to 6 is formed, and the CVD-SiC layer has a thickness of CVD-SiC.
S having a thickness of 10 to 50% of the thickness of the molded body
iC molded body.
JP34148698A 1998-12-01 1998-12-01 SiC molded body Expired - Fee Related JP3857446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34148698A JP3857446B2 (en) 1998-12-01 1998-12-01 SiC molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34148698A JP3857446B2 (en) 1998-12-01 1998-12-01 SiC molded body

Publications (2)

Publication Number Publication Date
JP2000169298A true JP2000169298A (en) 2000-06-20
JP3857446B2 JP3857446B2 (en) 2006-12-13

Family

ID=18346438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34148698A Expired - Fee Related JP3857446B2 (en) 1998-12-01 1998-12-01 SiC molded body

Country Status (1)

Country Link
JP (1) JP3857446B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034867A (en) * 2001-07-27 2003-02-07 Tokai Carbon Co Ltd TUBULAR SiC-COMPACT AND MANUFACTURING METHOD THEREFOR
EP1483782A1 (en) * 2002-02-22 2004-12-08 MITSUI ENGINEERING & SHIPBUILDING CO., LTD Production method of sic monitor wafer
JP2019526525A (en) * 2016-08-18 2019-09-19 トカイ カーボン コリア カンパニー,リミティド SiC material and SiC composite material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5999401A (en) * 1982-11-29 1984-06-08 Toshiba Ceramics Co Ltd Silicon carbide mirror
JPH03126671A (en) * 1989-10-11 1991-05-29 Nippon Pillar Packing Co Ltd Composite material
JPH04114971A (en) * 1990-09-05 1992-04-15 Nippon Pillar Packing Co Ltd Composite material
JPH08290968A (en) * 1995-04-19 1996-11-05 Nippon Steel Corp Composite material
JPH1012563A (en) * 1996-06-21 1998-01-16 Toshiba Ceramics Co Ltd Member for heat treatment of high-purity cvd-sic semiconductor and its manufacture
JPH10206612A (en) * 1997-01-20 1998-08-07 Nippon Pillar Packing Co Ltd Mirror surface body
JPH1160392A (en) * 1997-08-08 1999-03-02 Nippon Pillar Packing Co Ltd Silicon carbide composite material, its production and single crystal silicon carbide

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5999401A (en) * 1982-11-29 1984-06-08 Toshiba Ceramics Co Ltd Silicon carbide mirror
JPH03126671A (en) * 1989-10-11 1991-05-29 Nippon Pillar Packing Co Ltd Composite material
JPH04114971A (en) * 1990-09-05 1992-04-15 Nippon Pillar Packing Co Ltd Composite material
JPH08290968A (en) * 1995-04-19 1996-11-05 Nippon Steel Corp Composite material
JPH1012563A (en) * 1996-06-21 1998-01-16 Toshiba Ceramics Co Ltd Member for heat treatment of high-purity cvd-sic semiconductor and its manufacture
JPH10206612A (en) * 1997-01-20 1998-08-07 Nippon Pillar Packing Co Ltd Mirror surface body
JPH1160392A (en) * 1997-08-08 1999-03-02 Nippon Pillar Packing Co Ltd Silicon carbide composite material, its production and single crystal silicon carbide

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034867A (en) * 2001-07-27 2003-02-07 Tokai Carbon Co Ltd TUBULAR SiC-COMPACT AND MANUFACTURING METHOD THEREFOR
JP4702712B2 (en) * 2001-07-27 2011-06-15 東海カーボン株式会社 Tubular SiC molded body and method for producing the same
EP1483782A1 (en) * 2002-02-22 2004-12-08 MITSUI ENGINEERING & SHIPBUILDING CO., LTD Production method of sic monitor wafer
EP1483782A4 (en) * 2002-02-22 2008-05-21 Mitsui Shipbuilding Eng Production method of sic monitor wafer
JP2019526525A (en) * 2016-08-18 2019-09-19 トカイ カーボン コリア カンパニー,リミティド SiC material and SiC composite material
JP2021066657A (en) * 2016-08-18 2021-04-30 トカイ カーボン コリア カンパニー,リミティド SiC material and SiC composite material
US11591227B2 (en) 2016-08-18 2023-02-28 Tokai Carbon Korea Co., Ltd. SiC material and SiC composite material

Also Published As

Publication number Publication date
JP3857446B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
JP4043003B2 (en) SiC molded body and manufacturing method thereof
US5937316A (en) SiC member and a method of fabricating the same
US6893749B2 (en) SiC-formed material
KR20220149760A (en) Chemical vapor deposition silicon carbide bulk with enhanced etching properties
JPH11199323A (en) Dummy wafer
JPH0127568B2 (en)
US20050255245A1 (en) Method and apparatus for the chemical vapor deposition of materials
US6872637B2 (en) Opaque low resistivity silicon carbide
JP3857446B2 (en) SiC molded body
JP2691219B2 (en) Diamond synthesis
JP3932154B2 (en) SiC molded body and manufacturing method thereof
JP4702712B2 (en) Tubular SiC molded body and method for producing the same
JP4404703B2 (en) Light-impermeable SiC molded body and method for producing the same
JP4309509B2 (en) Method for producing crucible for single crystal growth comprising pyrolytic graphite
JP2002003275A (en) SiC FORMED BODY WITH HINDERING LIGHT TRANSMISSION AND ITS MANUFACTURING METHOD
JP3790029B2 (en) SiC dummy wafer
JPH02262324A (en) X-ray transmitting film and its manufacture
Chu et al. Morphology and IR Transmission of β-SiC Synthesized by Chemical Vapor Deposition
RU2286617C2 (en) Method for producing part incorporating silicon substrate whose surface is covered with silicon carbide film
JPH0146454B2 (en)
JP2799849B2 (en) Diamond synthesis by chemical vapor deposition
JP2003049270A (en) SiC MOLDING AND PRODUCTION METHOD THEREFOR
JP2001302397A (en) Silicon carbide formed material
Daigo et al. Observation and Suppression of Growth Pits Formed On 4H-SiC Epitaxial Films Grown Using Halide Chemical Vapor Deposition Process
JP3247838B2 (en) Pyrolytic boron nitride crucible and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060914

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees