JPH0146454B2 - - Google Patents

Info

Publication number
JPH0146454B2
JPH0146454B2 JP60090887A JP9088785A JPH0146454B2 JP H0146454 B2 JPH0146454 B2 JP H0146454B2 JP 60090887 A JP60090887 A JP 60090887A JP 9088785 A JP9088785 A JP 9088785A JP H0146454 B2 JPH0146454 B2 JP H0146454B2
Authority
JP
Japan
Prior art keywords
mold
sic
σsi
molding
glass lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60090887A
Other languages
Japanese (ja)
Other versions
JPS61251528A (en
Inventor
Makoto Sasaki
Toshio Hirai
Motonobu Osakabe
Shoji Adachi
Tetsuo Izumitani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP60090887A priority Critical patent/JPS61251528A/en
Publication of JPS61251528A publication Critical patent/JPS61251528A/en
Publication of JPH0146454B2 publication Critical patent/JPH0146454B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • C03B11/084Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor
    • C03B11/086Construction of plunger or mould for making solid articles, e.g. lenses material composition or material properties of press dies therefor of coated dies
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/08Coated press-mould dies
    • C03B2215/14Die top coat materials, e.g. materials for the glass-contacting layers
    • C03B2215/22Non-oxide ceramics

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、ガラスレンズの成形用金型材に関す
るもので、特にプレス成形後における冷間研磨を
不要とした高い面精度と面粗度を有するガラスレ
ンズのプレス成形用金型及びその製造方法に関す
る。 [従来の技術] 冷間研磨を不要とするガラスレンズ成形用金型
材の具備条件は、高温でのプレス時に金型面がガ
ラスレンズ面にそのまま転写されるため、金型面
が光学的鏡面研磨可能なこと、ガラスレンズ成形
時の高温下で酸化による肌荒れを起さないこと、
および高温のガラスと接触して融着を起しにくい
こと、さらにはプレス時の衝撃に耐える機械強度
をもつことなどである。 従来ガラスレンズ成形用金型材としては、13ク
ロム鋼が一般的に使用されていた。この金型材は
高温で酸化され易く、成形時の高温で酸化され易
く、成形時の高温でガラスと融着しやすい。また
酸化防止のために不活性ガス雰囲気中で使用する
としても、ガラスの離型が困難であるので研磨不
要のガラスレンズプレス成形用金型材としては不
適当である。さらにモールド表面にガラス状カー
ボンを形成させて研磨不要のガラスレンズ成形用
金型とすること(特開昭47−11277号公報)、或は
表面材としてSiC、Si3N4、SiC+Cを用いること
(特開昭52−45613号公報)も知られている。 [発明が解決しようとする問題点] しかし、上記のごとく表面材として形成された
ガラス状カーボンは酸化し易く、構造的にも不安
定で、引かき傷が生じやすい欠点をもつ。一方
SiC、Si3N4、SiC+Cは酸化されにくく、引かき
傷を生じにくいという長所はあるが、特開昭52−
45613号公報に記載されているごとく、ホツトプ
レス、スパツター等の手法により、モールド面に
SiC、Si3N4、SiC+C等を形成する場合には、次
のような問題点がある。すなわちホツトプレス法
により、モールド面にこれらの材料を形成させる
場合は、材料自身にある「巣」のために光学的鏡
面は得られない。またスパツター法では厚い膜を
得ることは困難であり、スパツター後に所定の光
学的鏡面に仕上げてモールドとして用いるために
は、コーテイング用基体は「巣」のないものにし
なければならない。 さらに、SiC+Cについても、グラフアイト量
の範囲が明記されていないばかりか、本発明者が
行なつた実験によると、グラフアイト量が多くな
ると、モールドの酸化肌荒れが生じ、さらに、ガ
ラスの離型が悪くなるため、研磨不用のガラスレ
ンズ成形用金型材としては適さない。 また、ホツトプレス法によつて得られるSi3N4
には、焼結助剤として酸化物が含まれているた
め、ガラスとの融着が発生するので、化学気相析
出法により得られたSi3N4は、ガラスとの離型が
悪い。 [発明の目的] 上述の説明から明らかなように、本発明の目的
は、第1に高圧で能率的なプレス成形に使用し得
るとともに光学的鏡面研磨可能で、ガラスとの融
着のない、すなわち離型しやすい研磨不要のガラ
スレンズのプレス成形用金型材を提供することで
ある。第2には上記の金型材を合成するための条
件を提供することである。 [問題点を解決するための手段] 本発明は高圧で能率的なプレス成形に使用し得
るとともに、光学的鏡面研磨可能でガラスとの融
着のない、すなわち離型しやすい研磨不要のガラ
スレンズのプレス成形用金型材としてカーボンを
含まず、かつ(111)面配向性を有するβ型炭化
珪素からなる材料が最も有効であることを発見し
てなつたものである。 そして、これらのフリーカーボンを含まない材
料を得るためには、原料ガス中のCi、Siのモル分
率をそれぞれΣC、ΣSiとした場合、ΣC/(ΣC+
ΣSi)が0.41から0.47の範囲で化学気相析出法に
より合成することができる。ここで、β型炭化珪
素の析出温度をT℃、炉内全圧力をPTprrとした
場合、T<1500で、かつT<3P+1200なる条件
のもとで合成することにより、(111)面配向性を
有するβ型炭化珪素を得ることができる。 化学気相析出法により合成されるSiCは、普通
β型の結晶体で、大別すると表面にピラミツド状
の凹凸のあるフアセツト状のものと、滑らかなコ
ーン状のものとがある。フアセツト状のものに
は、一般にフリーカーボンが含まれないという利
点があるものの、研削時にダイヤモンドが大きな
結晶粒の間に入りこみ、この後に鏡面研磨したと
きに、研磨面にダイヤモンドが残存したり、ある
いはこれが脱落して穴になつたり、また脱落した
ダイヤモンドによる引かき傷などのトラブルが発
生する。とくに研磨不要のガラスレンズのプレス
成形用金型としては、これらの問題は、重要な要
素となる。つまり合成されたSiCは研磨不要のガ
ラスレンズのプレス成形用金型としては(111)
配向面を示すコーン状のものが望ましいのであ
る。化学気相析出法により、フリーカーボンを含
まないSiCを高速で合成するための原料ガス系と
してはSi源とC源を別々のガスから供給し、かつ
Si源としてはSiH4よりもSiCl4を、またC源とし
ては高温で分解しやすいC3H8を用い、SiCl4のキ
ヤリアーガスとしてはH2を用いる方が望ましい。 次に本発明の限定理由を述べる。原料ガス中の
Si、Cのモル分率をそれぞれΣSi、ΣCとすると、
第2図に示すように、1200℃、100Torrにおい
て、ΣC/(ΣC+ΣSi)が0.49以上の値になると、
析出物はSiC+Cになることがわかる。 本発明では、原料ガス中のΣC/(ΣC+ΣSi)
が0.47以上の範囲にある場合にフリーカーボンを
含まないSiCを合成することができることを見い
出した。 また表1は、SiCl4+H2900ml/min、H2450
ml/min、C3H860ml/min一定で、基体加熱温度
を1150〜1500℃、炉内全圧力を5〜300Torrの範
囲で変化させたときに得られたSiC中のC/Si比
を蛍光X線分析装置を用いて測定したものであつ
て、全温度、全圧力範囲において、測定誤差範囲
内でほぼSi:C=1:1であることがわかる。
[Field of Industrial Application] The present invention relates to a mold material for molding glass lenses, and in particular, a mold material for press molding glass lenses that has high surface precision and surface roughness that eliminates the need for cold polishing after press molding. This article relates to a mold and its manufacturing method. [Prior art] The requirements for a mold material for glass lens molding that does not require cold polishing are that the mold surface is directly transferred to the glass lens surface during pressing at high temperatures, so the mold surface is optically mirror polished. What is possible is that the skin does not get rough due to oxidation under high temperatures during glass lens molding.
Another characteristic is that it is resistant to fusion when it comes into contact with high-temperature glass, and it also has mechanical strength that can withstand impact during pressing. Conventionally, 13 chromium steel has been commonly used as a mold material for glass lens molding. This mold material is easily oxidized at high temperatures, easily oxidized at high temperatures during molding, and easily fused with glass at high temperatures during molding. Furthermore, even if it is used in an inert gas atmosphere to prevent oxidation, it is difficult to release the glass from the mold, making it unsuitable as a mold material for press-molding glass lenses that does not require polishing. Furthermore, forming glassy carbon on the mold surface to create a glass lens molding mold that does not require polishing (Japanese Patent Laid-Open No. 11277/1983), or using SiC, Si 3 N 4 , or SiC+C as the surface material. (Japanese Unexamined Patent Publication No. 52-45613) is also known. [Problems to be Solved by the Invention] However, as described above, the glassy carbon formed as the surface material has the disadvantage that it is easily oxidized, structurally unstable, and easily scratched. on the other hand
SiC, Si 3 N 4 and SiC+C have the advantage of being hard to oxidize and hard to cause scratches, but
As described in Publication No. 45613, the mold surface is coated with hot press, sputtering, etc.
When forming SiC, Si 3 N 4 , SiC+C, etc., there are the following problems. That is, when these materials are formed on the mold surface by the hot press method, an optical mirror surface cannot be obtained because of the "porosity" in the material itself. Furthermore, it is difficult to obtain a thick film using the sputtering method, and the coating substrate must be free of "porosity" in order to be finished with a predetermined optical mirror surface after sputtering and used as a mold. Furthermore, for SiC+C, not only is the range of the amount of graphite not specified, but according to experiments conducted by the present inventors, when the amount of graphite increases, oxidation roughness of the mold occurs, and furthermore, the glass releases from the mold. Because of this, it is not suitable as a mold material for glass lens molding that does not require polishing. In addition, Si 3 N 4 obtained by hot pressing method
contains an oxide as a sintering aid, which causes fusion with glass, so Si 3 N 4 obtained by chemical vapor deposition has poor mold release from glass. [Objects of the Invention] As is clear from the above description, the first object of the present invention is to provide a material that can be used for efficient press molding under high pressure, is capable of optical mirror polishing, and is free from fusion with glass. That is, the object of the present invention is to provide a mold material for press molding glass lenses that is easy to release and does not require polishing. The second purpose is to provide conditions for synthesizing the above-mentioned mold material. [Means for Solving the Problems] The present invention provides a glass lens that can be used for efficient press molding under high pressure, is optically polished to a mirror finish, and does not fuse with glass, that is, is easy to release from the mold and does not require polishing. It was discovered that a material made of β-type silicon carbide, which does not contain carbon and has (111) plane orientation, is the most effective material for press molding. In order to obtain materials that do not contain these free carbons, if the mole fractions of Ci and Si in the raw material gas are ΣC and ΣSi, respectively, ΣC/(ΣC+
ΣSi) can be synthesized by chemical vapor deposition in the range of 0.41 to 0.47. Here, when the precipitation temperature of β-type silicon carbide is T°C and the total pressure in the furnace is P Tprr , by synthesizing under the conditions of T < 1500 and T < 3P + 1200, (111) plane orientation β-type silicon carbide having properties can be obtained. SiC, which is synthesized by chemical vapor deposition, is usually a β-type crystal, and can be roughly divided into two types: facet-shaped with pyramid-like irregularities on the surface, and smooth cone-shaped. Faceted materials generally have the advantage of not containing free carbon, but diamonds may get stuck between large crystal grains during grinding, and diamonds may remain on the polished surface when mirror-polished afterwards. This can cause problems such as holes and scratches caused by the diamonds falling off. In particular, these problems are important factors for press molding molds for glass lenses that do not require polishing. In other words, the synthesized SiC can be used as a press molding mold for glass lenses that does not require polishing (111).
A cone-shaped material showing an orientation plane is desirable. The raw material gas system for rapidly synthesizing free carbon-free SiC by chemical vapor deposition method is to supply the Si source and C source from separate gases, and
It is more preferable to use SiCl 4 than SiH 4 as the Si source, use C 3 H 8 , which is easily decomposed at high temperatures, as the C source, and use H 2 as the carrier gas for SiCl 4 . Next, the reasons for the limitations of the present invention will be described. in raw gas
If the mole fractions of Si and C are ΣSi and ΣC, respectively,
As shown in Figure 2, at 1200℃ and 100Torr, when ΣC/(ΣC+ΣSi) becomes a value of 0.49 or more,
It can be seen that the precipitates are SiC+C. In the present invention, ΣC/(ΣC+ΣSi) in the raw material gas
It has been found that SiC containing no free carbon can be synthesized when the value is in the range of 0.47 or more. Table 1 also shows that SiCl 4 + H 2 900ml/min, H 2 450
ml/min, C 3 H 8 constant at 60 ml/min, and the C/Si ratio in SiC obtained when the substrate heating temperature was varied from 1150 to 1500℃ and the total pressure in the furnace was varied from 5 to 300 Torr. It was measured using a fluorescent X-ray analyzer, and it can be seen that Si:C=1:1 is approximately within the measurement error range in all temperature and pressure ranges.

【表】 従来の研究では、高温ほどフリーカーボンが共
析し、低温ほどシリコンが共析するといわれてい
たが、本発明では、生成したSiC中のC/Si比
は、析出温度や圧力にはほとんど依存せず、原料
ガス中のΣC/(ΣC+ΣSi)で決まることを見い
出した。例えば、ΣC/(ΣC+Si)が0.47以下の
ときにはC/Si比が1のSiCが、また0.49のとき
にはC/Si=1.2のSiC+Cが生成する。このこと
は、化学量論的なSiCを合成するための有益な知
見である。一方ΣC/(ΣC+ΣSi)が0.41以下で
はフリーカーボンのない(111)配向をもつβ型
多結晶SiCが得られるがβ型SiCを得ることが出
来なくなるばかりでなく、フリーシリコンが存在
して来る場合もでて来るので望ましい。 また、本発明に於いては実施例4に述べるよう
に、β型炭化珪素の析出温度をT<3p+1200な
る条件を満さない場合には、表面にピラミツド状
の凹凸のあるフアセツト状の多結晶体が生じ、本
発明の目的の金型材としては適さない。 次にフリーカーボンを含まないSiCを合成する
ための装置の説明図を第1図に示す。縦型の石英
反応管1の一方にガス供給系10を、他方に真空
排気系11をそれぞれ配置する。石英反応管1の
内部にセツトしたカーボンヒーターを15Kw、
400KHzの高周波誘導加熱により所定温度に加熱
し、そのカーボンヒーターからの間接加熱で基体
を加熱する。2はワークコイルである。ガス供給
系10内の原料ガスはそれぞれ流量計8を通つて
下部より反応管1に供給されるが、原料のSiCl4
用バブラー9は、20℃の恒温槽3の中にセツトさ
れ、H2ガスにより反応管1内へキヤリアされる。
原料ガスSiCl4+H2およびC3H8を混合器4で混合
した後、反応管1内に導入すると共に、全体の
H2量を一定に保つため、別系統のH2ラインを用
意して直接反応管1に供給する。排気は反応管上
部より行ない、油回転ポンプ(リキツドシールド
タイプポンプ)5により行なう。油回転ポンプ5
と反応管1の間に、トラツプ6を設け未反応の
SiCl4および反応副生成物のHClを除去する。ま
た、反応管内の圧力はマノメーター7を用いて制
御する。 実施例 1 1200℃、100TorrでSiCl4+H2900ml/min、
H2450ml/minの条件下でC3H8量を10、20、40、
60、80、100ml/minと変えたときのΣC/(ΣC+
ΣSi)はそれぞれ0.88、0.162、0.279、0.367、
0.436、0.492となりC3H8100mlのときのみがC/
Si=1.20となり、SiC+Cとなつている。 実施例 2 1200℃、100TorrでH2総量1040ml/min、
C3H860ml/minの条件下で、SiCl4+H2量を150、
300、600、900、1200、1500ml/minと変えたと
きのΣC/(ΣC+ΣSi)はそれぞれ0.777、0.635、
0.466、0.367、0.303となりSiCl4+H2が150、300
ml/minのときに、C/Siはそれぞれ2.13、1.23
となりSiC+Cとなつている。 実施例 3 C/Siが1.0、1.2、1.5、2.0の各種SiCについ
て、ダイヤモンドペーストを用いて約30ARmax
の鏡面に研磨した後、800℃大気中で45時間酸化
させた後の面粗度の変化を第3図に示した。 これからわかるように、C/Siつまりフリーカ
ーボン量が増加するにつれて、酸化による肌荒れ
が顕著になり、ガラスが離型しにくくなる。 実施例 4 SiCl4+H2900ml/min、H2450ml/min、
C3H860ml/minの条件下で基体加熱温度(Td)
1150〜1500℃、炉内全圧力(Ptot)5〜300Torr
で60分合成したときの析出面の配向性をX線回析
で調べた結果が表2に示す。
[Table] In previous research, it was said that free carbon eutectoids eutectoid at higher temperatures, and silicon eutectoids at lower temperatures, but in the present invention, the C/Si ratio in the SiC produced depends on the precipitation temperature and pressure. It was found that it is determined by ΣC/(ΣC + ΣSi) in the source gas, with almost no dependence. For example, when ΣC/(ΣC+Si) is 0.47 or less, SiC with a C/Si ratio of 1 is produced, and when ΣC/(ΣC+Si) is 0.49, SiC+C with C/Si=1.2 is produced. This is a useful finding for synthesizing stoichiometric SiC. On the other hand, when ΣC/(ΣC+ΣSi) is less than 0.41, β-type polycrystalline SiC with (111) orientation without free carbon can be obtained, but not only can β-type SiC not be obtained, but free silicon may also exist. It is desirable because it comes out. In addition, in the present invention, as described in Example 4, if the precipitation temperature of β-type silicon carbide does not satisfy the condition T<3p+1200, a facet-like polycrystal with pyramid-like unevenness on the surface is formed. The resulting material is unsuitable as a mold material for the purposes of the present invention. Next, FIG. 1 shows an explanatory diagram of an apparatus for synthesizing SiC containing no free carbon. A gas supply system 10 is placed on one side of a vertical quartz reaction tube 1, and a vacuum exhaust system 11 is placed on the other side. A 15Kw carbon heater was set inside the quartz reaction tube 1.
It is heated to a predetermined temperature using high-frequency induction heating at 400KHz, and the substrate is heated using indirect heating from the carbon heater. 2 is a work coil. The raw material gases in the gas supply system 10 are each supplied from the lower part to the reaction tube 1 through a flow meter 8, but the raw material SiCl 4
The bubbler 9 is set in a constant temperature bath 3 at 20° C., and is carried into the reaction tube 1 by H 2 gas.
After mixing the raw material gases SiCl 4 +H 2 and C 3 H 8 in the mixer 4, they are introduced into the reaction tube 1 and the whole
In order to keep the amount of H 2 constant, a separate H 2 line is prepared and supplied directly to reaction tube 1. Evacuation is performed from the upper part of the reaction tube using an oil rotary pump (liquid shield type pump) 5. oil rotary pump 5
A trap 6 is installed between the reaction tube 1 and the unreacted
Remove SiCl 4 and reaction byproduct HCl. Further, the pressure inside the reaction tube is controlled using a manometer 7. Example 1 SiCl 4 +H 2 900ml/min at 1200℃, 100Torr,
10 , 20 , 40,
ΣC/(ΣC+
ΣSi) are 0.88, 0.162, 0.279, 0.367, respectively.
0.436, 0.492, and only when C 3 H 8 100ml is C/
Si=1.20, which means SiC+C. Example 2 1200℃, 100Torr, total amount of H2 1040ml/min,
Under the conditions of C 3 H 8 60 ml/min, the amount of SiCl 4 + H 2 was 150,
When changing to 300, 600, 900, 1200, 1500ml/min, ΣC/(ΣC + ΣSi) is 0.777, 0.635, respectively.
0.466, 0.367, 0.303, SiCl 4 + H 2 is 150, 300
At ml/min, C/Si is 2.13 and 1.23, respectively.
Next, it becomes SiC+C. Example 3 About 30 ARmax using diamond paste for various SiC with C/Si of 1.0, 1.2, 1.5, and 2.0.
Figure 3 shows the change in surface roughness after polishing to a mirror surface and oxidizing it in air at 800°C for 45 hours. As can be seen from the graph, as the amount of C/Si, that is, free carbon increases, the surface roughness due to oxidation becomes more noticeable, and it becomes difficult for the glass to be released from the mold. Example 4 SiCl 4 +H 2 900ml/min, H 2 450ml/min,
Substrate heating temperature (Td) under the condition of C 3 H 8 60ml/min
1150~1500℃, total furnace pressure (Ptot) 5~300Torr
Table 2 shows the results of examining the orientation of the deposited surface by X-ray diffraction after 60 minutes of synthesis.

【表】 ○:コーン ×:フアセツト
上記表2から明らかなように、化学気相析出法
により合成されるβ―SiCには、大別すると、フ
アセツト状のものとコーン状のものとがある。フ
アセツト状とコーン状の試料を同一条件で研削、
研磨した結果、フアセツト状の試料では、研磨面
にダイヤモンドが残存したり、これが脱落して生
じたと思われる引かき傷が観察された。 従つて、欠陥のない光学的な鏡面をもつたSiC
を得るための化学気相析出条件は、コーン状すな
わち(111)配向のSiCを合成する条件、すなわ
ち析出温度T℃は1500℃以下、PTorrを炉内圧力
とした場合、T<3P+1200なる条件が適してい
るが、特に低温で高圧ほど適していることがわか
る。 [本発明の効果] 本発明によればフリーカーボンのないβ型炭化
珪素を使用するため、酸化による金型の寿命の低
下が防止でき、プレスレンズ成形用金型として好
適である。コーン状の(111)面配向を示すβ型
炭化珪素であるため、金型を加工する際、ダイア
モンドが結晶粒の間に入り込むことなく、平滑な
面が得られ、精度の高い研磨不要のガラスレンズ
を容易に製造することができる。
[Table] ○: Cone ×: Facet As is clear from Table 2 above, β-SiC synthesized by chemical vapor deposition can be roughly divided into facet-like and cone-like. Grinding facet-shaped and cone-shaped samples under the same conditions.
As a result of polishing, diamonds remained on the polished surface of the faceted sample, and scratches that appeared to be caused by diamonds falling off were observed. Therefore, SiC with a defect-free optical mirror surface
The chemical vapor deposition conditions to obtain cone-shaped SiC, i.e., (111)-oriented SiC, are as follows: the precipitation temperature T is 1500°C or less, and when PTorr is the furnace pressure, T < 3P + 1200. However, it can be seen that the lower the temperature and the higher the pressure, the more suitable it is. [Effects of the Present Invention] According to the present invention, since β-type silicon carbide without free carbon is used, reduction in the life of the mold due to oxidation can be prevented, and the mold is suitable as a mold for press lens molding. Because it is β-type silicon carbide with a cone-shaped (111) plane orientation, when processing a mold, diamonds do not get between the crystal grains, resulting in a smooth surface and a highly precise glass that does not require polishing. Lenses can be manufactured easily.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するための装置の説明
図、第2図は原料ガス中のΣC/(ΣC+ΣSi)と
合成されたSiC中のC/Si、3比との関係を示す
グラフ、第3図は800℃大気中で45時間処理後の
SiCのC/Si比との関係を示すグラフである。
FIG. 1 is an explanatory diagram of an apparatus for carrying out the present invention, and FIG. 2 is a graph showing the relationship between ΣC/(ΣC+ΣSi) in the raw material gas and C/Si in the synthesized SiC, and 3 ratios. Figure 3 shows the result after 45 hours of treatment in 800℃ air.
It is a graph showing the relationship with the C/Si ratio of SiC.

Claims (1)

【特許請求の範囲】 1 モールド表面にフリーカーボンを含まず、か
つ(111)面配向性を有するβ―型炭化珪素を形
成させてなるガラスレンズ成形のための金型。 2 化学気相析出法によりモールド表面に炭化珪
素層を析出形成させる方法において、原料ガス中
のC、Siのモル分率をそれぞれΣC、ΣSiとした場
合、ΣC/(ΣC+ΣSi)が、0.47以下の範囲で合
成することを特徴とするガラスレンズ成形のため
の金型の製造方法。 3 ΣC/(ΣC+ΣSi)が0.47〜0.41である特許請
求の範囲第2項記載のガラスレンズ成形のための
金型の製造方法。 4 β―型炭化珪素の析出温度をT℃、炉内全圧
力をPTprrとした場合、T<1500で、かつT<3P
+1200なる条件のもとで気相析出法により、合成
することを特徴とする特許請求の範囲第2項記載
のガラスレンズ形成のための金型の製造方法。
[Scope of Claims] 1. A mold for molding a glass lens, in which β-type silicon carbide containing no free carbon and having (111) plane orientation is formed on the mold surface. 2 In the method of depositing and forming a silicon carbide layer on the mold surface by chemical vapor deposition, when the mole fractions of C and Si in the raw material gas are ΣC and ΣSi, respectively, ΣC/(ΣC + ΣSi) is 0.47 or less. A method for manufacturing a mold for molding a glass lens, characterized in that a mold is synthesized within a range. 3. The method for manufacturing a mold for molding a glass lens according to claim 2, wherein ΣC/(ΣC+ΣSi) is 0.47 to 0.41. 4 When the precipitation temperature of β-type silicon carbide is T°C and the total pressure in the furnace is P Tprr , T<1500 and T<3P
3. The method for manufacturing a mold for forming a glass lens according to claim 2, wherein the synthesis is performed by a vapor phase precipitation method under conditions of +1200°C.
JP60090887A 1985-04-30 1985-04-30 Mold for forming glass lens and production thereof Granted JPS61251528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60090887A JPS61251528A (en) 1985-04-30 1985-04-30 Mold for forming glass lens and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60090887A JPS61251528A (en) 1985-04-30 1985-04-30 Mold for forming glass lens and production thereof

Publications (2)

Publication Number Publication Date
JPS61251528A JPS61251528A (en) 1986-11-08
JPH0146454B2 true JPH0146454B2 (en) 1989-10-09

Family

ID=14010936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60090887A Granted JPS61251528A (en) 1985-04-30 1985-04-30 Mold for forming glass lens and production thereof

Country Status (1)

Country Link
JP (1) JPS61251528A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0692634B2 (en) * 1987-02-26 1994-11-16 三井造船株式会社 mirror
JPH0662307B2 (en) * 1989-04-06 1994-08-17 オリンパス光学工業株式会社 Optical element molding die and method of manufacturing the same
WO2007139015A1 (en) * 2006-05-31 2007-12-06 Konica Minolta Opto, Inc. Method for film formation, mold, and method for manufacturing mold
JP2008045155A (en) * 2006-08-11 2008-02-28 Konica Minolta Opto Inc Film deposition apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245613A (en) * 1975-09-02 1977-04-11 Eastman Kodak Co Process for molding of optical glass body and body with said process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245613A (en) * 1975-09-02 1977-04-11 Eastman Kodak Co Process for molding of optical glass body and body with said process

Also Published As

Publication number Publication date
JPS61251528A (en) 1986-11-08

Similar Documents

Publication Publication Date Title
EP0935013B1 (en) SiC product and manufacturing method thereof
CA2099788A1 (en) Ultra pure silicon carbide and high temperature semiconductor processing equipment made therefrom
JPH03146672A (en) Susceptor for cvd
JP4781232B2 (en) Silicon melting crucible used in the manufacture of polycrystalline silicon blocks
US4624735A (en) Constituent members of a semiconductor element-manufacturing apparatus and a reaction furnace for making said constituent members
JPH08188408A (en) Silicon carbide molded product by chemical vapor deposition and its production
JPH0146454B2 (en)
US6147020A (en) Light-impermeable, high purity silicon carbide material, a light shielding member for a semiconductor-treating apparatus, and a semiconductor-treating apparatus
JP3932154B2 (en) SiC molded body and manufacturing method thereof
JP2738629B2 (en) Composite members
JP3790029B2 (en) SiC dummy wafer
JPH0692761A (en) Sic-cvd coated and si impregnated sic product and its manufacture
JP3857446B2 (en) SiC molded body
JPH11335840A (en) Precision reproduction by chemical vapor deposition
JPH1059794A (en) Pyrolyzed boron nitride container and its production
JPH0355421B2 (en)
JPH05124864A (en) Production of high purity silicon carbide body
JP3220730B2 (en) Graphite wafer holding jig for atmospheric pressure CVD equipment
JP2549030B2 (en) Semiconductor processing member and method of manufacturing the same
JP2002003275A (en) SiC FORMED BODY WITH HINDERING LIGHT TRANSMISSION AND ITS MANUFACTURING METHOD
JPH04358068A (en) Member coated with sic by cvd
JP3227353B2 (en) Silicon carbide film-coated member and method of manufacturing the same
JPH05124863A (en) Production of high purity silicon carbide body
JP3592837B2 (en) Glass forming mold
JPH06163439A (en) Semiconductor diffusion oven boat and manufacture thereof