JP2002003275A - SiC FORMED BODY WITH HINDERING LIGHT TRANSMISSION AND ITS MANUFACTURING METHOD - Google Patents
SiC FORMED BODY WITH HINDERING LIGHT TRANSMISSION AND ITS MANUFACTURING METHODInfo
- Publication number
- JP2002003275A JP2002003275A JP2000184263A JP2000184263A JP2002003275A JP 2002003275 A JP2002003275 A JP 2002003275A JP 2000184263 A JP2000184263 A JP 2000184263A JP 2000184263 A JP2000184263 A JP 2000184263A JP 2002003275 A JP2002003275 A JP 2002003275A
- Authority
- JP
- Japan
- Prior art keywords
- sic
- cvd
- substrate
- light
- molded body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Ceramic Products (AREA)
- Producing Shaped Articles From Materials (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、高純度で耐熱性や
強度特性が高く、特に光不透過性に優れ、例えば半導体
製造用装置の熱処理装置用遮蔽体、均熱リング等の各種
耐熱部材、あるいは半導体製造用装置の拡散炉装置、エ
ッチング装置、CVD装置などに用いられるダミーウエ
ハ、サセプターやピン等の各種部材として好適に用いる
ことのできる光不透過性SiC成形体及びその製造方法
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to various heat-resistant members such as shields for heat treatment equipment of semiconductor manufacturing equipment, heat equalizing rings, etc. Also, the present invention relates to a light-impermeable SiC molded article that can be suitably used as various members such as a dummy wafer, a susceptor, and a pin used in a diffusion furnace apparatus, an etching apparatus, a CVD apparatus, and the like of a semiconductor production apparatus, and a method for producing the same.
【0002】[0002]
【従来の技術】SiCは耐熱性、耐蝕性、強度特性等の
材質特性が優れており、各種工業用の部材として有用さ
れている。特に、CVD法(化学的気相蒸着法)を利用
して作製したSiC成形体(CVD−SiC成形体)
は、緻密で高純度であるため半導体製造用の各種部材を
はじめ高純度が要求される用途分野において好適に用い
られている。2. Description of the Related Art SiC has excellent material properties such as heat resistance, corrosion resistance and strength properties, and is useful as various industrial members. In particular, a SiC molded body (CVD-SiC molded body) manufactured using a CVD method (chemical vapor deposition method).
Because of its high density and high purity, it is suitably used in various application fields requiring high purity, including various members for semiconductor production.
【0003】このCVD−SiC成形体は、原料ガスを
気相反応させて基材面上にSiCの結晶粒を析出させ、
結晶粒の成長により被膜を形成したのち基材を除去する
ことにより得られるもので、材質的に緻密、高純度で組
織の均質性が高いという特徴がある。[0003] In this CVD-SiC compact, a raw material gas is subjected to a gas phase reaction to precipitate crystal grains of SiC on a substrate surface.
It is obtained by forming a film by growing crystal grains and then removing the substrate, and is characterized by a dense material, high purity, and high texture homogeneity.
【0004】光透過性のSiC成形体として、例えば特
開平6−239609号公報には、0.6328ミクロ
ンにおいて約20cm-1以下の減衰定数を有する化学蒸着
で堆積した自立β−SiC。3ミクロンにおいて約20
cm-1以下の減衰定数を有する化学蒸着で堆積した自立β
−SiCが提案されている。このCVD法によるSiC
成形体は、純度の高い程得られるSiCの光透過性が高
いことが知られており、100%の理論密度であり、高
純度、すなわち5ppm 以下の金属不純物、好ましくは約
3.5ppm 以下の金属不純物であることが開示されてい
る。As a light-transmitting SiC molded body, for example, Japanese Unexamined Patent Publication No. 6-239609 discloses a self-supporting β-SiC deposited by chemical vapor deposition having an attenuation constant of about 20 cm −1 or less at 0.6328 μm. About 20 at 3 microns
Freestanding β deposited by chemical vapor deposition with a damping constant of less than cm -1
-SiC has been proposed. SiC by this CVD method
It is known that the higher the purity of the molded body, the higher the light transmittance of the obtained SiC is, and the molded article has a theoretical density of 100% and high purity, that is, metal impurities of 5 ppm or less, preferably about 3.5 ppm or less. It is disclosed that it is a metal impurity.
【0005】しかしながら、このように純度の高いCV
D法によるSiC成形体は光透過性を有しているため
に、SiC成形体を半導体製造装置や熱処理装置等の各
種部材として使用する場合には、用途分野によってはS
iCの物理的性質が問題となることがある。However, such a high purity CV
Since the SiC molded body obtained by the method D has optical transparency, when the SiC molded body is used as various members of a semiconductor manufacturing apparatus, a heat treatment apparatus, or the like, depending on the field of application, the S
The physical properties of iC can be problematic.
【0006】例えば、半導体の製造プロセスには急速熱
アニーリング(rapid thermal annealing)、急速熱クリ
ーニング(rapid thermal cleaning)、急速熱化学気相
堆積(rapid thermal chemical vapor deposition)、急
速熱酸化(rapid thermal oxidation)、急速熱窒化(rap
id thermal nitridation)などの急速に熱処理する工程
(RTPと呼ばれる)があり、特開平9−237789
号公報ではウエハ基板が高速加熱によっても面内均一性
に優れた性状を呈するように遮蔽体としてSiCにより
構成することが提案されており、輻射熱に対して不透明
な材質性状が要求されている。For example, semiconductor manufacturing processes include rapid thermal annealing, rapid thermal cleaning, rapid thermal chemical vapor deposition, rapid thermal oxidation. ), Rapid thermal nitriding (rap
id thermal nitridation) (refer to RTP).
In Japanese Patent Application Laid-Open Publication No. H11-157, it is proposed that the shield is made of SiC so that the wafer substrate exhibits excellent in-plane uniformity even by high-speed heating, and a material property that is opaque to radiant heat is required.
【0007】また、このRTPではウエハ基板の精確な
温度管理が必要となるが、パイロメーターにより測温す
る場合にはウエハ基板の処理面とは反対の面に黒体キャ
ビティを形成するときにウエハ基板を支持する部材など
の光の透過があると外乱光となって精確な温度管理が困
難となる問題がある。そのため、特開平8−25580
0号公報ではウエハ基板を支持する支持リングをシリコ
ンや酸化珪素とし、支持リングを保持するシリンダはパ
イロメーターの周波数の範囲で不透明となるようシリコ
ンをコートした石英製とすることが提案されている。In this RTP, accurate temperature control of the wafer substrate is required. However, when measuring the temperature with a pyrometer, when the black body cavity is formed on the surface opposite to the processing surface of the wafer substrate, the temperature of the wafer is reduced. If light is transmitted through a member or the like that supports the substrate, there is a problem that disturbance light is generated and accurate temperature control becomes difficult. Therefore, Japanese Patent Application Laid-Open No. 8-25580
No. 0 proposes that a support ring for supporting a wafer substrate is made of silicon or silicon oxide, and a cylinder for holding the support ring is made of quartz coated with silicon so as to be opaque in the frequency range of a pyrometer. .
【0008】更に、特開平6−341905号公報で
は、加熱要素からもれた光が、反射キャビティに入るの
を防止するために、隔壁やウエハを支持するガードリン
グがウエハに沿って配置されて、加熱要素からもれた光
を吸収する黒色または灰色を有し、このガードリングは
シリコンから作られることが提案されている。しかし、
特開平6−341905号公報や特開平8−25580
0号公報のシリコンやシリコンをコートしたものでは繰
り返し使用するための酸洗浄に対する耐蝕性に劣り、コ
ートしたシリコンの厚みが減少して光不透過性が減少す
る問題がある。Further, in JP-A-6-341905, in order to prevent light leaking from the heating element from entering the reflection cavity, a partition wall and a guard ring for supporting the wafer are arranged along the wafer. It has been proposed that this guard ring be made of silicon, having a black or gray color that absorbs light leaking from the heating element. But,
JP-A-6-341905 and JP-A-8-25580
In the case of silicon or the one coated with silicon disclosed in Japanese Patent Publication No. 0, there is a problem that the corrosion resistance against acid washing for repeated use is poor, the thickness of the coated silicon is reduced, and the light impermeability is reduced.
【0009】また、プラズマエッチング処理やCVD処
理においてウエハの処理条件を安定化させるために用い
るダミーウエハには光透過性が小さいことが要求され
る。ウエハは搬送用ロボットで支持ボートに装着される
が、ウエハの認識はレーザー光を照射することにより行
われるので、ウエハの光透過性が高いと検出器がウエハ
の位置を的確に認識することができず、反応装置内の所
定の位置にウエハを装着することが困難となる。In addition, a dummy wafer used for stabilizing wafer processing conditions in plasma etching processing or CVD processing is required to have low light transmittance. The wafer is mounted on the support boat by the transfer robot, but the wafer is recognized by irradiating laser light, so if the light transmittance of the wafer is high, the detector can accurately recognize the position of the wafer. This makes it difficult to mount a wafer at a predetermined position in the reaction apparatus.
【0010】従来、CVD−SiC成形体の結晶形態は
β型で、高純度の場合には黄色を呈して光透過性を有
し、一般的に光透過性を低下させることは困難であっ
た。例えば、光を表面で散乱させて光透過性を低下させ
る手段として、表面を粗面化する方法があるが、波長9
00nmの光を照射した場合、表面粗さRaを10nm以下
の鏡面性状としたものは40〜60%の透過率を呈し、
表面粗さRaを300〜500nmとしたものでは0.3
〜0.8%の透過率を呈して光透過度が低下するが、3
00〜2500nmの幅広い波長域において満足すべき光
不透過性を有しているとはいえない。Conventionally, the crystal form of a CVD-SiC compact is β-type, and when it has a high purity, it exhibits a yellow color and has light transmittance, and it is generally difficult to reduce the light transmittance. . For example, as a means for scattering light on the surface to reduce the light transmittance, there is a method of roughening the surface.
When irradiated with light of 00 nm, those having a surface roughness Ra of 10 nm or less and having a mirror-like property exhibit a transmittance of 40 to 60%,
When the surface roughness Ra is 300 to 500 nm, 0.3
0.80.8% transmittance and the light transmittance is reduced.
It cannot be said that it has satisfactory light opacity in a wide wavelength range from 00 to 2500 nm.
【0011】[0011]
【発明が解決しようとする課題】そこで、本出願人はC
VD−SiC成形体の性状と光特性との関係について研
究を行い、光透過性の低いSiC成形体として、CVD
法により得られるCVD−SiC成形体であって、その
表面部あるいは内部に少なくとも1層の粒子性状の異な
るSiC層を有し、300〜2500nmの波長域におけ
る光透過率が0.4%以下、2500nmを越える波長域
における光透過率が2.5%以下であるSiC成形体、
及び黒鉛基材面にCVDによりSiC被膜を成膜後基材
を除去するCVD−SiC成形体の製造方法において、
CVD反応条件を設定変更することにより粒子性状の異
なるSiC層を、CVD−SiC成形体の表面部あるい
は内部に少なくとも1層形成するSiC成形体の製造方
法(特開平11−228233号公報)を開発した。Therefore, the applicant of the present invention
A study was conducted on the relationship between the properties of the VD-SiC molded body and the optical characteristics, and as a SiC molded body with low light transmittance, CVD was performed.
A CVD-SiC molded body obtained by the method, comprising at least one SiC layer having a different particle property on the surface or inside thereof, and having a light transmittance of 0.4% or less in a wavelength region of 300 to 2500 nm, A SiC molded body having a light transmittance of not more than 2.5% in a wavelength range exceeding 2500 nm;
And a method for producing a CVD-SiC molded body, in which a SiC film is formed on a graphite substrate surface by CVD and then the substrate is removed.
Developed a method of manufacturing a SiC molded body in which at least one SiC layer having different particle properties is formed on the surface or inside of the CVD-SiC molded body by changing the setting of the CVD reaction conditions (Japanese Patent Laid-Open No. 11-228233). did.
【0012】更に、本出願人はCVD法により得られる
β型結晶からなるCVD−SiC成形体であって、その
表面部あるいは内部に厚さ2〜20μm の可視光不透過
性CVD−SiC層が少なくとも1層形成されてなり、
300〜2500nmの波長域における光透過率が0.4
%以下であるSiC成形体、及び基体面にCVD反応に
よりSiC被膜を成膜したのち基体を除去するCVD−
SiC成形体の製造方法において、SiC被膜を成膜す
る過程でCVD反応条件を設定変更して可視光不透過性
CVD−SiC層を、CVD−SiC成形体の表面部あ
るいは内部に少なくとも1層形成するSiC成形体の製
造方法(特開平12−119064号公報)を開発、提
案した。Further, the applicant of the present invention is a CVD-SiC molded body composed of β-type crystal obtained by a CVD method, wherein a visible light-impermeable CVD-SiC layer having a thickness of 2 to 20 μm is formed on the surface or inside thereof. At least one layer is formed,
The light transmittance in the wavelength range of 300 to 2500 nm is 0.4
% Or less, and a CVD-forming method in which a SiC film is formed on a substrate surface by a CVD reaction and then the substrate is removed.
In the method for producing a SiC molded body, at least one layer of a visible light opaque CVD-SiC layer is formed on the surface or inside of the CVD-SiC molded body by changing the CVD reaction conditions in the process of forming the SiC coating. (Japanese Patent Application Laid-Open No. 12-119064) has been developed and proposed.
【0013】上記の技術は、SiC成形体の材質組織と
して光を散乱・反射させる層を存在させることにより、
光透過性が低くできることを見出した結果に基づくもの
であり、本発明はこれらの知見を基にさらに研究を進め
た結果開発に至ったものである。すなわち、本発明の目
的は、高純度で耐熱性や強度特性が高く、特に光不透過
性に優れ、例えば遮蔽体やダミーウエハ等の半導体製造
用の各種部材、あるいは熱処理装置用の各種耐熱部材等
として好適に用いることのできる高純度でβ型結晶から
なるCVD−SiC成形体及びその製造方法を提供する
ことにある。[0013] The above-mentioned technique is based on the existence of a layer for scattering and reflecting light as a material structure of the SiC molded body.
The present invention is based on the result of finding that light transmittance can be lowered, and the present invention has been developed as a result of further research based on these findings. That is, an object of the present invention is to provide high purity, high heat resistance and high strength properties, and particularly excellent light impermeability, for example, various members for manufacturing a semiconductor such as a shield or a dummy wafer, or various heat resistant members for a heat treatment apparatus. It is an object of the present invention to provide a CVD-SiC molded body composed of a β-type crystal with high purity which can be suitably used as a method, and a method for producing the same.
【0014】[0014]
【課題を解決するための手段】上記の目的を達成するた
めの本発明による光不透過性SiC成形体は、CVD法
により作製されるSiC成形体であって、微粒多結晶性
の組織構造からなり、500〜3000nmの波長域にお
ける光透過率が0.3%以下であることを構成上の特徴
とする。また、微粒多結晶性の組織構造における結晶粒
径は1〜5μmであることが好ましい。The light-impermeable SiC molded body according to the present invention for achieving the above object is a SiC molded body produced by a CVD method, and has a fine grain polycrystalline structure. In this case, the light transmittance in the wavelength range of 500 to 3000 nm is not more than 0.3%. The crystal grain size in the fine-grained polycrystalline structure is preferably 1 to 5 μm.
【0015】また、本発明の光不透過性SiC成形体の
製造方法は、CVD法により基材面にSiCを析出さ
せ、成膜したのち基材を除去するSiC成形体の製造方
法において、CVD反応室内に設けたマッフルの中に基
材を載置し、原料ガスの滞留時間を2〜10秒に制御し
て、成膜速度を80〜400μm /hrに設定することを
構成上の特徴とする。Further, the method for producing a light-impermeable SiC molded article according to the present invention is directed to a method for producing a SiC molded article in which SiC is deposited on a substrate surface by a CVD method, a film is formed, and then the substrate is removed. A structural feature is that the substrate is placed in a muffle provided in the reaction chamber, the residence time of the source gas is controlled to 2 to 10 seconds, and the film forming rate is set to 80 to 400 μm / hr. I do.
【0016】[0016]
【発明の実施の形態】CVD法によるSiC成形体は、
CVD法によって基材面にSiCを析出させてSiCの
被膜を形成したのち基材を除去することにより作製され
る。SiC被膜が形成されるプロセスは、まず原料ガス
が気相反応して基材面上にSiCの核が生成し、このS
iC核が成長してアモルファス質SiCになり、更に微
細な多結晶質SiC粒を経て柱状組織の結晶組織へ成長
を続けてSiC被膜が形成される。したがって、SiC
被膜、すなわちCVD−SiC成形体の強度特性、熱的
特性、光特性等の物理的性状は基材面上に析出して形成
されたSiC被膜の結晶性状により異なったものとな
る。BEST MODE FOR CARRYING OUT THE INVENTION A SiC molded body by a CVD method is:
It is manufactured by depositing SiC on the substrate surface by a CVD method to form a SiC coating, and then removing the substrate. In the process of forming a SiC film, first, a raw material gas undergoes a gas phase reaction to generate a nucleus of SiC on a substrate surface.
The iC nucleus grows into amorphous SiC, and further grows into a columnar crystal structure via finer polycrystalline SiC grains to form a SiC film. Therefore, SiC
The physical properties such as the strength properties, thermal properties, optical properties, etc. of the film, ie, the CVD-SiC molded body, differ depending on the crystal properties of the SiC film formed by deposition on the substrate surface.
【0017】そして、SiC被膜の結晶性状が微細な多
結晶粒である場合には、結晶方位がランダムであるか
ら、結晶境界がいろいろの方位をもって集合した組織構
造を示すことになる。このような組織構造の中を光が通
過する場合、結晶境界面において複雑な光の散乱、屈
折、反射等が起こって光が閉じ込められる現象が起こ
り、光透過能の減少、すなわち光不透過性の増大が図ら
れることとなる。In the case where the SiC film has fine polycrystalline grains, since the crystal orientation is random, the crystal boundaries exhibit a textured structure assembled with various orientations. When light passes through such a tissue structure, complex light scattering, refraction, reflection, etc. occur at the crystal boundary surface, causing a phenomenon that light is confined, resulting in a decrease in light transmittance, that is, light impermeability. Will be increased.
【0018】本発明の光不透過性SiC成形体は、微粒
多結晶性のSiC結晶の組織構造からなり、結晶集合組
織の方位配列の異方性から多結晶の境界面において、上
記の複雑な光の散乱、屈折、反射等が起こって光が閉じ
込められ、光透過性が低下する。そして、500〜30
00nmという可視光線から近赤外線の波長域における光
透過率を0.3%以下にすることができる。この場合、
好ましくは微粒多結晶を構成する結晶粒径は1〜5μm
である。The light-impermeable SiC compact of the present invention has a fine-grained polycrystalline SiC crystal structure structure. Light scattering, refraction, reflection, and the like occur, confining the light and lowering the light transmittance. And 500-30
The light transmittance in the wavelength range from visible light to near infrared light of 00 nm can be reduced to 0.3% or less. in this case,
Preferably, the crystal grain size constituting the fine-grained polycrystal is 1 to 5 μm.
It is.
【0019】この光不透過性SiC成形体は、CVD法
により基材面にSiCを析出させ、成膜したのち基材を
除去するSiC成形体の製造方法において、CVD反応
室内に設けたマッフルの中に基材を載置し、原料ガスの
滞留時間を2〜10秒に制御して、成膜速度を80〜4
00μm /hrに設定することにより製造される。The light-impermeable SiC molded body is formed by depositing SiC on a substrate surface by a CVD method, forming a film, and then removing the substrate. The substrate is placed in the container, the residence time of the source gas is controlled to 2 to 10 seconds, and the film forming rate is set to 80 to 4
It is manufactured by setting to 00 μm / hr.
【0020】CVD−SiC成形体は、CVD反応炉の
反応室内に基材をセットし、CVD法により基材面にS
iCを気相析出させてSiC膜を被着させ、SiC膜を
成膜したのち基材を除去する方法により製造される。基
材には炭素系材料、シリコン等の金属系材料、石英等が
用いられるが、加工性が良好で、空気中で熱処理するこ
とにより容易に燃焼除去可能な炭素系、特に高純度の黒
鉛材が好適に用いられる。SiC被膜を成膜後、基体を
除去する方法は、切削除去、研磨除去、空気中で加熱す
る燃焼除去、あるいはこれらを適宜に組み合わせて行わ
れ、厚さ0.3〜5mmのCVD−SiCの成形体が得ら
れる。A CVD-SiC molded body is prepared by setting a base material in a reaction chamber of a CVD reaction furnace, and depositing S
It is manufactured by a method of depositing a SiC film by vapor-phase deposition of iC, forming a SiC film, and then removing the base material. Carbon-based materials, metal-based materials such as silicon, quartz, etc. are used as the base material. Carbon-based materials, which have good workability and can be easily burned off by heat treatment in air, especially high-purity graphite materials Is preferably used. After forming the SiC film, the method of removing the substrate is performed by cutting, polishing, burning away in air, or a combination thereof as appropriate to obtain a CVD-SiC film having a thickness of 0.3 to 5 mm. A molded article is obtained.
【0021】CVD反応は、反応室内に基材をセット
し、系内の空気を排気したのち所定の温度に加熱保持
し、次いで水素ガスを送入して常圧水素ガス雰囲気に置
換したのち、水素ガスをキャリアガスとして、トリクロ
ロメチルシラン、トリクロロフェニルシラン、ジクロロ
メチルシラン、ジクロロジメチルシラン等のハロゲン化
有機珪素化合物を原料ガスとして送入し気相還元熱分解
させる方法、あるいは四塩化珪素等の珪素化合物とメタ
ン等の炭素化合物との混合ガスを原料ガスとして送入し
気相反応させる方法、により基材面にSiCを析出させ
ることによりSiC被膜が成膜される。CVD反応は1
150〜1500℃の温度で行うことが好ましい。11
50℃未満の温度では成膜速度が遅く、非能率となり、
またSiC被膜中に金属シリコンが混在する危険性があ
る。一方、反応温度が1500℃を越えると膜厚や膜質
の均一性が低下する。In the CVD reaction, a substrate is set in a reaction chamber, the air in the system is evacuated, heated and maintained at a predetermined temperature, and then a hydrogen gas is fed in to replace the atmosphere with a normal pressure hydrogen gas atmosphere. A method in which a halogenated organosilicon compound such as trichloromethylsilane, trichlorophenylsilane, dichloromethylsilane, or dichlorodimethylsilane is supplied as a source gas using hydrogen gas as a carrier gas and subjected to gas phase reduction thermal decomposition, or a method such as silicon tetrachloride. A SiC film is formed by depositing SiC on the substrate surface by a method in which a mixed gas of a silicon compound and a carbon compound such as methane is fed as a raw material gas and reacted in a gas phase. CVD reaction is 1
It is preferable to carry out at a temperature of 150 to 1500 ° C. 11
At a temperature lower than 50 ° C., the film forming rate is low, and the efficiency becomes inefficient.
In addition, there is a risk that metal silicon is mixed in the SiC coating. On the other hand, when the reaction temperature exceeds 1500 ° C., the uniformity of the film thickness and film quality decreases.
【0022】本発明の製造方法は、このSiC被膜を成
膜する際に、図1に模式的に示したようにCVD反応室
内にマッフル1を設けて、マッフル1の中に基材2を載
置する。マッフル1には原料ガスを送入するための数本
から十数本のノズル3が設置されている。なお、ノズル
3は原料ガスが基材2に直接当たらないように、例えば
ノズル先端がマッフル1の壁面に向くように設置し、原
料ガスを間接的に基材2に接触させることが好ましい。
ノズル3から送入された原料ガスが直接基材に当たると
SiC被膜に膜厚斑や組織斑が生じ易くなるためであ
る。またCVD反応時に蒸着したSiCによりノズルが
閉塞するような場合には、ノズル3を適宜に切替え使用
することによりCVD反応を中断することなく連続して
行うことが可能となる。According to the manufacturing method of the present invention, when this SiC film is formed, a muffle 1 is provided in a CVD reaction chamber as schematically shown in FIG. Place. The muffle 1 is provided with several to a dozen or more nozzles 3 for feeding the raw material gas. The nozzle 3 is preferably installed so that the raw material gas does not directly hit the substrate 2, for example, such that the nozzle tip faces the wall surface of the muffle 1, and the raw material gas is preferably indirectly contacted with the substrate 2.
This is because if the raw material gas sent from the nozzle 3 directly hits the base material, unevenness in film thickness and unevenness in the SiC film is likely to occur. Further, in the case where the nozzle is blocked by SiC deposited during the CVD reaction, it is possible to continuously perform the CVD reaction without interruption by appropriately switching and using the nozzle 3.
【0023】このマッフルを設ける理由は、反応容積を
縮小し、実質的に原料ガス濃度の調整を容易化すること
により、CVD反応におけるSiC核の発生を促進して
微粒多結晶の組織構造の形成を図るものである。この場
合、CVD反応条件として、原料ガスの滞留時間を2〜
10秒に制御して、SiC被膜の成膜速度を80〜40
0μm /hrに設定することが必要である。The reason for providing this muffle is that the reaction volume is reduced, and the adjustment of the source gas concentration is substantially facilitated, thereby promoting the generation of SiC nuclei in the CVD reaction and forming the microcrystalline polycrystalline structure. It is intended. In this case, as the CVD reaction conditions, the residence time of the source gas is set to 2 to
By controlling to 10 seconds, the film forming speed of the SiC film is set to 80 to 40.
It is necessary to set it to 0 μm / hr.
【0024】原料ガスの滞留時間とは、CVD反応を行
う際に原料ガスがCVD反応室(マッフル)内に滞留し
て反応に関与する時間を表すパラメータとなるものであ
り、下記式によって算出される値である。 The residence time of the raw material gas is a parameter indicating the time during which the raw material gas stays in the CVD reaction chamber (muffle) during the CVD reaction and participates in the reaction, and is calculated by the following equation. Value.
【0025】この原料ガスの滞留時間を2〜10秒に制
御することにより、成膜速度を80〜400μm /hrに
設定することが可能となる。成膜速度が遅い場合には微
粒多結晶性の組織構造を形成することが困難であり、結
晶組織へと成長する割合が増大することとなる。一方、
成膜速度が速い場合には、組織の不均質性が大きくな
る。By controlling the residence time of the raw material gas to 2 to 10 seconds, the film forming speed can be set to 80 to 400 μm / hr. When the film formation rate is low, it is difficult to form a fine-grained polycrystalline structure, and the rate of growth into a crystal structure increases. on the other hand,
When the deposition rate is high, the heterogeneity of the structure increases.
【0026】[0026]
【実施例】以下、本発明の実施例を比較例と対比して具
体的に説明する。EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples.
【0027】実施例1 CVD反応室内に容積約35l のマッフルを設置し、マ
ッフル内に直径205mm、厚さ5mmの高純度、等方性黒
鉛板(基材)を載置した。なお、マッフルには原料ガス
導入ノズル6本を、黒鉛基材に直接当たらない方向に挿
着した。系内を水素ガスで置換後、トリクロロメチルシ
ラン/水素が7.5 vol%の原料ガスを、原料ガス滞留
時間を4秒に制御するために、92l/min の流量で導入
した。CVD反応温度を1400℃、反応時間を4時間
に設定してCVD反応を行い、黒鉛基材面にSiC被膜
を成膜した後、外周部のSiC被膜を研削除去し、黒鉛
基材を露出して、黒鉛基材を燃焼除去した。得られたS
iC被膜の膜厚は平均1050μm であり、成膜速度は
263μm /hrであった。次いで研磨により平面加工し
て、直径200mm、厚さ500μm のSiC成形体を作
製した。Example 1 A muffle having a volume of about 35 l was set in a CVD reaction chamber, and a high-purity isotropic graphite plate (base material) having a diameter of 205 mm and a thickness of 5 mm was placed in the muffle. In addition, six source gas introduction nozzles were inserted into the muffle in a direction that did not directly hit the graphite substrate. After replacing the inside of the system with hydrogen gas, a raw material gas containing 7.5 vol% of trichloromethylsilane / hydrogen was introduced at a flow rate of 92 l / min in order to control the residence time of the raw material gas to 4 seconds. A CVD reaction was performed at a CVD reaction temperature of 1400 ° C. and a reaction time of 4 hours, and a SiC film was formed on the graphite base material surface. Then, the SiC film on the outer peripheral portion was ground and removed to expose the graphite base material. Thus, the graphite substrate was removed by burning. Obtained S
The average thickness of the iC coating was 1050 μm, and the deposition rate was 263 μm / hr. Then, it was planarized by polishing to produce a SiC molded body having a diameter of 200 mm and a thickness of 500 μm.
【0028】実施例2〜7、比較例1〜4 原料ガスの滞留時間及び成膜速度を設定、制御するため
に原料ガスの流量を変更し、またCVD反応温度、反応
時間を変えてSiC被膜を成膜した他は、実施例1と同
一の方法によりCVD反応、黒鉛基材の除去および研磨
加工を行って、直径200mm、厚さ500μm のSiC
成形体を作製した。Examples 2 to 7 and Comparative Examples 1 to 4 The SiC film was formed by changing the flow rate of the source gas in order to set and control the residence time and the deposition rate of the source gas, and by changing the CVD reaction temperature and the reaction time. Except that a film was formed, a CVD reaction, removal of a graphite substrate and polishing were performed in the same manner as in Example 1 to obtain a SiC having a diameter of 200 mm and a thickness of 500 μm.
A molded body was produced.
【0029】比較例5 反応焼結法により直径200mm、厚さ500μm のSi
C成形体を作製した。Comparative Example 5 Si having a diameter of 200 mm and a thickness of 500 μm was prepared by a reaction sintering method.
A C compact was produced.
【0030】比較例6 比較例5で作製したSiC成形体の上に、CVD法(温
度1400℃)により、厚さ約100μm のSiC被膜を被
着して、直径200mm、厚さ600μm のSiC成形体
を作製した。Comparative Example 6 An SiC film having a thickness of about 100 μm was applied on the SiC molded body produced in Comparative Example 5 by a CVD method (at a temperature of 1400 ° C.) to form an SiC film having a diameter of 200 mm and a thickness of 600 μm. The body was made.
【0031】次に、これらのSiC成形体について、平
面研削により厚みを500μm にそろえた上で、下記の
方法により結晶粒径、光透過率の測定を行い、また耐熱
衝撃性および耐蝕性の試験を行った。 結晶粒径;SiC成形体表面のSEM観察写真から、
結晶粒径を測定した。 光透過率;厚さ5mmの金属アルミニウム板を標準試料
として、島津製作所製自記分光光度計を用いて500〜
3000nmの波長域における光透過率を測定し、次式に
より算出した。 T=B−A 但し、T;SiC成形体の光透過率 A;金属アルミニウム板の光透過率測定値 B;SiC成形体の光透過率測定値 耐熱衝撃性;サンプルを不活性雰囲気中で500〜1
200℃に加熱、冷却する熱サイクル試験を20回行
い、サンプルの状態を観察した。なお、試験途中でサン
プルに亀裂が発生した場合は、亀裂発生時の熱サイクル
試験回数を測定した。 耐蝕性;サンプルを1200℃の100%塩化水素の
気流中(5l/min )で、15時間保持した時の重量減少
率を測定した。Next, the thickness of these SiC compacts was adjusted to 500 μm by surface grinding, and the crystal grain size and light transmittance were measured by the following methods. Was done. From the SEM observation photograph of the surface of the SiC compact,
The crystal grain size was measured. Light transmittance: 500 to 500 mm using a 5 mm-thick metal aluminum plate as a standard sample and a self-recording spectrophotometer manufactured by Shimadzu Corporation.
The light transmittance in the wavelength region of 3000 nm was measured and calculated by the following equation. T = BA, where T: light transmittance of SiC molded body A: measured value of light transmittance of metal aluminum plate B: measured value of light transmittance of SiC molded body Thermal shock resistance: sample in an inert atmosphere at 500 ~ 1
A heat cycle test of heating and cooling to 200 ° C. was performed 20 times, and the state of the sample was observed. When a crack was generated in the sample during the test, the number of heat cycle tests at the time of the crack generation was measured. Corrosion resistance: The rate of weight loss when the sample was kept for 15 hours in a stream of 100% hydrogen chloride at 1200 ° C. (5 l / min) was measured.
【0032】このようにして製造したSiC成形体につ
いて、その製造条件を対比して表1に、測定試験の結果
を表2に示した。Table 1 shows the production conditions of the SiC compact thus produced, and Table 2 shows the results of the measurement test.
【0033】[0033]
【表1】 [Table 1]
【0034】[0034]
【表2】 [Table 2]
【0035】表1、2の結果から、実施例1〜7のSi
C成形体は500〜3000nmの波長域における光透過
率が0.3%以下と低く、またSiC成形体の表面外観
も良好で、耐熱衝撃性及び耐蝕性にも優れていることが
判る。これに対し、比較例1は光透過率は低いが、反応
温度が低いため成膜速度が小さく、微粒多結晶性の組織
構造の形成が充分でなく、また表面には光沢があって、
耐熱衝撃性や耐蝕性も劣っている。また、比較例2では
成膜速度が高く、比較例3では原料ガス滞留時間も短い
ので組織の不均質性が大きくなり、表面外観も凹凸があ
って耐熱衝撃性が低位にある。原料ガス滞留時間が長い
反面、成膜速度が小さい比較例4では、光透過率が高い
ことが認められる。なお、SiC焼結体を用いる比較例
5、6では光透過率は低いが、成形体表面の凹凸が著し
く、また耐熱衝撃性、耐蝕性も著しく劣るものであっ
た。From the results shown in Tables 1 and 2, the Si
It can be seen that the C molded product has a low light transmittance of 0.3% or less in the wavelength region of 500 to 3000 nm, has a good surface appearance of the SiC molded product, and has excellent thermal shock resistance and corrosion resistance. On the other hand, in Comparative Example 1, the light transmittance was low, but the reaction temperature was low, the film formation rate was low, the formation of a fine-grained polycrystalline structure was not sufficient, and the surface was glossy.
Poor thermal shock resistance and corrosion resistance. In Comparative Example 2, the film formation rate was high, and in Comparative Example 3, the source gas residence time was short, so that the heterogeneity of the structure was large, the surface appearance was uneven, and the thermal shock resistance was low. It can be seen that the light transmittance is high in Comparative Example 4 in which the film formation rate is low while the source gas residence time is long. In Comparative Examples 5 and 6 using the SiC sintered body, the light transmittance was low, but the surface irregularities of the molded body were remarkable, and the thermal shock resistance and the corrosion resistance were remarkably poor.
【0036】[0036]
【発明の効果】以上のとおり、本発明の光不透過性Si
C焼結体によれば、微粒多結晶性の組織構造からなるた
めに、光透過率が低く、特に500〜3000nmの波長
域における光透過率が0.3%以下という光不透過性に
優れた、緻密、高純度のSiC成形体が提供される。ま
た、その製造方法によれば、CVD反応室内にマッフル
を設けて、原料ガスの滞留時間及び成膜速度を制御、設
定することにより微粒多結晶性の組織構造を有する光不
透過性に優れたSiC成形体を製造することができる。
したがって、例えば半導体製造用装置の熱処理装置用遮
蔽体、均熱リング等の各種耐熱部材、あるいは半導体製
造用装置の拡散炉装置、エッチング装置、CVD装置な
どに用いられるダミーウエハ、サセプターやピン等の各
種部材として好適に用いることのできる光不透過性Si
C成形体及びその製造方法として、極めて有用である。As described above, the light-impermeable Si of the present invention is used.
According to the C sintered body, since it has a fine-grained polycrystalline structure, the light transmittance is low, and the light transmittance in the wavelength region of 500 to 3000 nm is particularly excellent in light impermeability of 0.3% or less. Further, a dense and high-purity SiC molded body is provided. Further, according to the manufacturing method, a muffle is provided in the CVD reaction chamber, and the residence time and the film forming rate of the source gas are controlled and set to thereby provide excellent light impermeability having a fine-grained polycrystalline structure. A SiC molded body can be manufactured.
Therefore, for example, various heat-resistant members such as a heat treatment device shield and a soaking ring for a semiconductor manufacturing device, or various types of dummy wafers, susceptors and pins used for a diffusion furnace device, an etching device, and a CVD device for a semiconductor manufacturing device. Light-impermeable Si that can be suitably used as a member
It is extremely useful as a C compact and a method for producing the same.
【図1】本発明の光不透過性SiC成形体を製造するた
めのSiC被膜を形成する方法を例示した模式図であ
る。FIG. 1 is a schematic view illustrating a method of forming a SiC coating for producing a light-impermeable SiC molded body of the present invention.
1 マッフル 2 基材 3 原料ガスノズル DESCRIPTION OF SYMBOLS 1 Muffle 2 Substrate 3 Raw material gas nozzle
───────────────────────────────────────────────────── フロントページの続き (72)発明者 金井 健一 東京都港区北青山1丁目2番3号 東海カ ーボン株式会社内 Fターム(参考) 4G001 BA77 BB22 BC22 BC73 BD04 BD31 BD37 BD38 BE22 BE32 4G052 DA02 DB10 DC01 DC09 4K030 AA05 AA06 BA37 BB03 BB04 CA05 DA08 KA41 LA01 LA11 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kenichi Kanai 1-3-2 Kitaaoyama, Minato-ku, Tokyo Tokai Carbon Co., Ltd. F-term (reference) 4G001 BA77 BB22 BC22 BC73 BD04 BD31 BD37 BD38 BE22 BE32 4G052 DA02 DB10 DC01 DC09 4K030 AA05 AA06 BA37 BB03 BB04 CA05 DA08 KA41 LA01 LA11
Claims (3)
であって、微粒多結晶性の組織構造からなり、500〜
3000nmの波長域における光透過率が0.3%以下で
あることを特徴とする光不透過性SiC成形体。1. A SiC molded body produced by a CVD method, having a fine-grained polycrystalline structure,
A light-opaque SiC molded body having a light transmittance of 0.3% or less in a wavelength region of 3000 nm.
載の光不透過性SiC成形体。2. The light-impermeable SiC compact according to claim 1, wherein the crystal grain size is 1 to 5 μm.
せ、成膜したのち基材を除去するSiC成形体の製造方
法において、CVD反応室内に設けたマッフルの中に基
材を載置し、原料ガスの滞留時間を2〜10秒に制御し
て、成膜速度を80〜400μm /hrに設定することを
特徴とする光不透過性SiC成形体の製造方法。3. A method for producing a SiC molded body in which SiC is deposited on a substrate surface by a CVD method, and after forming a film, the substrate is removed, the substrate is placed in a muffle provided in a CVD reaction chamber. A method for producing a light-opaque SiC molded body, wherein the deposition time is set to 80 to 400 μm / hr while controlling the residence time of the raw material gas to 2 to 10 seconds.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000184263A JP2002003275A (en) | 2000-06-20 | 2000-06-20 | SiC FORMED BODY WITH HINDERING LIGHT TRANSMISSION AND ITS MANUFACTURING METHOD |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000184263A JP2002003275A (en) | 2000-06-20 | 2000-06-20 | SiC FORMED BODY WITH HINDERING LIGHT TRANSMISSION AND ITS MANUFACTURING METHOD |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002003275A true JP2002003275A (en) | 2002-01-09 |
Family
ID=18684728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000184263A Pending JP2002003275A (en) | 2000-06-20 | 2000-06-20 | SiC FORMED BODY WITH HINDERING LIGHT TRANSMISSION AND ITS MANUFACTURING METHOD |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002003275A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7170505B2 (en) | 2003-01-29 | 2007-01-30 | Nec Electronics Corporation | Display apparatus drive circuit having a plurality of cascade connected driver ICs |
WO2008079221A1 (en) * | 2006-12-22 | 2008-07-03 | Integrated Materials, Inc. | Polysilicon dummy wafers and process used therewith |
WO2014020776A1 (en) * | 2012-08-01 | 2014-02-06 | 東海カーボン株式会社 | SiC MOLDED BODY AND METHOD FOR PRODUCING SiC MOLDED BODY |
KR20190049450A (en) * | 2017-10-31 | 2019-05-09 | 토와 가부시기가이샤 | Nozzle, resin molding apparatus, and method for producing resin molded product |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06206718A (en) * | 1992-07-31 | 1994-07-26 | Cvd Inc | Extra-high purity silicon carbide and high temperature semiconductor processing device produced by said silicon carbide |
JPH11228233A (en) * | 1998-02-09 | 1999-08-24 | Tokai Carbon Co Ltd | Sic molded product and its production |
JPH11293471A (en) * | 1998-04-06 | 1999-10-26 | Tokai Carbon Co Ltd | Deposition method by cvd process |
JP2000119064A (en) * | 1998-10-16 | 2000-04-25 | Tokai Carbon Co Ltd | SiC FORM AND ITS PRODUCTION |
-
2000
- 2000-06-20 JP JP2000184263A patent/JP2002003275A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06206718A (en) * | 1992-07-31 | 1994-07-26 | Cvd Inc | Extra-high purity silicon carbide and high temperature semiconductor processing device produced by said silicon carbide |
JPH11228233A (en) * | 1998-02-09 | 1999-08-24 | Tokai Carbon Co Ltd | Sic molded product and its production |
JPH11293471A (en) * | 1998-04-06 | 1999-10-26 | Tokai Carbon Co Ltd | Deposition method by cvd process |
JP2000119064A (en) * | 1998-10-16 | 2000-04-25 | Tokai Carbon Co Ltd | SiC FORM AND ITS PRODUCTION |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7170505B2 (en) | 2003-01-29 | 2007-01-30 | Nec Electronics Corporation | Display apparatus drive circuit having a plurality of cascade connected driver ICs |
WO2008079221A1 (en) * | 2006-12-22 | 2008-07-03 | Integrated Materials, Inc. | Polysilicon dummy wafers and process used therewith |
WO2014020776A1 (en) * | 2012-08-01 | 2014-02-06 | 東海カーボン株式会社 | SiC MOLDED BODY AND METHOD FOR PRODUCING SiC MOLDED BODY |
JP2014031527A (en) * | 2012-08-01 | 2014-02-20 | Tokai Carbon Co Ltd | Sic compact and method for manufacturing sic compact |
CN104508178A (en) * | 2012-08-01 | 2015-04-08 | 东海炭素株式会社 | SiC molded body and method for producing SiC molded body |
CN104508178B (en) * | 2012-08-01 | 2016-08-24 | 东海炭素株式会社 | SiC molded body and the manufacture method of SiC molded body |
US9975779B2 (en) | 2012-08-01 | 2018-05-22 | Tokai Carbon Co., Ltd. | SiC formed body and method for producing SiC formed body |
KR20190049450A (en) * | 2017-10-31 | 2019-05-09 | 토와 가부시기가이샤 | Nozzle, resin molding apparatus, and method for producing resin molded product |
KR102179109B1 (en) | 2017-10-31 | 2020-11-16 | 토와 가부시기가이샤 | Nozzle, resin molding apparatus, and method for producing resin molded product |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100496714B1 (en) | FORMED SiC PRODUCT AND MANUFACTURING METHOD THEREOF | |
JP5026794B2 (en) | Free-standing silicon carbide products formed by chemical vapor deposition and methods for manufacturing them | |
KR100592741B1 (en) | Silicon carbide fabrication | |
KR100775879B1 (en) | Sic-formed material and method for manufacturing same | |
JPH11199323A (en) | Dummy wafer | |
US6939821B2 (en) | Low resistivity silicon carbide | |
JP2000302577A (en) | Graphite member coated with silicon carbide | |
US8202621B2 (en) | Opaque low resistivity silicon carbide | |
JP2002003275A (en) | SiC FORMED BODY WITH HINDERING LIGHT TRANSMISSION AND ITS MANUFACTURING METHOD | |
JP3932154B2 (en) | SiC molded body and manufacturing method thereof | |
JP2000302576A (en) | Graphite material coated with silicon carbide | |
JP4404703B2 (en) | Light-impermeable SiC molded body and method for producing the same | |
JP4702712B2 (en) | Tubular SiC molded body and method for producing the same | |
JP2000109366A (en) | Light non-transmittive high purity silicon carbide material, light shieldable material for semiconductor treating device, and semiconductor treating device | |
JP3857446B2 (en) | SiC molded body | |
JP4309509B2 (en) | Method for producing crucible for single crystal growth comprising pyrolytic graphite | |
JP3790029B2 (en) | SiC dummy wafer | |
JP4361177B2 (en) | Silicon carbide material and jig for RTP device | |
JP7514217B2 (en) | Tantalum carbide coated carbon material for heating, manufacturing method for tantalum carbide coated carbon material for heating, silicon carbide epitaxial wafer growth apparatus, and gallium nitride epitaxial wafer manufacturing and growth apparatus | |
JP2003049270A (en) | SiC MOLDING AND PRODUCTION METHOD THEREFOR | |
JP3942158B2 (en) | Method for producing cylindrical SiC molded body | |
JP2003068594A (en) | SiC DUMMY WAFER AND ITS PRODUCING METHOD | |
WO2021034214A1 (en) | Article with silicon carbide coating and method for producing article with silicon carbide coating | |
JP2001214267A (en) | Method for producing high purity silicon carbide tube | |
JP2001302397A (en) | Silicon carbide formed material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20061215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100223 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100624 |