JP2000119064A - SiC FORM AND ITS PRODUCTION - Google Patents

SiC FORM AND ITS PRODUCTION

Info

Publication number
JP2000119064A
JP2000119064A JP10294959A JP29495998A JP2000119064A JP 2000119064 A JP2000119064 A JP 2000119064A JP 10294959 A JP10294959 A JP 10294959A JP 29495998 A JP29495998 A JP 29495998A JP 2000119064 A JP2000119064 A JP 2000119064A
Authority
JP
Japan
Prior art keywords
sic
cvd
molded body
substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10294959A
Other languages
Japanese (ja)
Other versions
JP3932154B2 (en
Inventor
Tsuguo Miyata
嗣生 宮田
Takaomi Sugihara
孝臣 杉原
Akihiro Kuroyanagi
聡浩 黒柳
Tadakazu Iwamura
忠和 岩村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP29495998A priority Critical patent/JP3932154B2/en
Publication of JP2000119064A publication Critical patent/JP2000119064A/en
Application granted granted Critical
Publication of JP3932154B2 publication Critical patent/JP3932154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Producing Shaped Articles From Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a SiC form of low light transmittance, suitably usable as one of various heat-resistant members including various members for semiconductor manufacture such as shields and dummy wafers, and to provide a method for producing the SiC form. SOLUTION: This SiC form is a CVD-SiC form obtained by CVD method, being such one that at least one visible light-opaque CVD-SiC layer 2-20 μm thick is formed on the surface or inside thereof and the light transmittance over a wavelength range of 200-2,500 nm is <=0.4%. The method for producing the SiC form comprises forming a SiC coating film on a substrate by CVD reaction followed by removing the substrate; wherein during the SiC coating film formation process, CVD reaction conditions set in advance are altered to form at least one visible light-opaque CVD-SiC layer on the surface or inside of the SiC form; alternatively, using the above-mentioned CVD-SiC form as a substrate, during forming a SiC coating film on the surface of the substrate, CVD reaction conditions set in advance are altered to form at least one visible light-opaque CVD-SiC layer on the surface or inside of the SiC form.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高純度で耐熱性や
強度特性に優れ、特に光不透過性に優れ、例えば半導体
製造用装置の熱処理装置用遮蔽体、均熱リング等の各種
耐熱部材、あるいは半導体製造用装置の拡散炉装置、エ
ッチング装置、CVD装置などに用いられるダミーウエ
ハやサセプター等の各種部材として好適に用いることの
できるSiC成形体及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to various heat-resistant members such as shields for heat treatment equipment of semiconductor manufacturing equipment, heat equalizing rings, etc. Also, the present invention relates to a SiC molded body that can be suitably used as various members such as a dummy wafer and a susceptor used in a diffusion furnace apparatus, an etching apparatus, a CVD apparatus, and the like of a semiconductor manufacturing apparatus, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】SiCは耐熱性、耐蝕性、強度特性等の
材質特性が優れており、各種工業用の部材として有用さ
れている。特に、CVD法(化学的気相蒸着法)を利用
して作製したSiC成形体(CVD−SiC成形体)
は、緻密で高純度であるため半導体製造用の各種部材を
はじめ高純度が要求される用途分野において好適に用い
られている。
2. Description of the Related Art SiC has excellent material properties such as heat resistance, corrosion resistance and strength properties, and is useful as various industrial members. In particular, a SiC molded body (CVD-SiC molded body) manufactured using a CVD method (chemical vapor deposition method).
Because of its high density and high purity, it is suitably used in various application fields requiring high purity, including various members for semiconductor production.

【0003】このCVD−SiC成形体は、原料ガスを
気相反応させて基体面上にSiCの結晶粒を析出させ、
結晶粒の成長により被膜を形成したのち基体を除去する
ことにより得られるもので、材質的に緻密、高純度で組
織の均質性が高いという特徴がある。
[0003] In this CVD-SiC compact, a raw material gas is subjected to a gas phase reaction to precipitate crystal grains of SiC on a substrate surface,
It is obtained by forming a film by growing crystal grains and then removing the substrate, and is characterized by a dense material, high purity, and high texture homogeneity.

【0004】CVD法によるSiC成形体として、例え
ば特開平6−239609号公報には、0.6328ミ
クロンにおいて約20cm-1以下の減衰定数を有する化学
蒸着で堆積した自立β−SiC。3ミクロンにおいて約
20cm-1以下の減衰定数を有する化学蒸着で堆積した自
立β−SiCが提案されている。このCVD法によるS
iC成形体は、純度の高い程得られるSiCの光透過性
が高いことが知られており、100%の理論密度であ
り、高純度、すなわち5ppm 以下の金属不純物、好まし
くは約3.5ppm 以下の金属不純物であることが開示さ
れている。
[0004] As a SiC molded body by the CVD method, for example, Japanese Patent Application Laid-Open No. 6-239609 discloses a self-supporting β-SiC deposited by chemical vapor deposition having an attenuation constant of about 20 cm -1 or less at 0.6328 microns. Free standing β-SiC deposited by chemical vapor deposition with an attenuation constant of less than about 20 cm −1 at 3 microns has been proposed. S by this CVD method
It is known that the higher the purity, the higher the light transmittance of the obtained SiC is, and the iC molded body has a theoretical density of 100% and high purity, that is, a metal impurity of 5 ppm or less, preferably about 3.5 ppm or less. Are disclosed as metal impurities.

【0005】しかしながら、このように高純度なCVD
法によるSiC成形体は光透過性を有しているためSi
C成形体を半導体製造装置や熱処理装置等の各種部材と
して使用する場合には、用途分野によってはSiCの物
理的性質が問題となることがある。例えば、半導体の製
造プロセスには急速熱アニーリング(rapid thermalann
ealing)、急速熱クリーニング(rapid thermal cleanin
g)、急速熱化学気相堆積(rapid thermal chemical va
por deposition)、急速熱酸化(rapid thermaloxidatio
n)、急速熱窒化(rapid thermal nitridation)などの
急速に熱処理する工程(RTPと呼ばれる)があり、特
開平9−237789号公報ではウエハ基板が高速加熱
によっても面内均一性に優れた性状を呈するように遮蔽
体としてSiCにより構成することが提案されており、
輻射熱に対して不透明な材質性状が要求されている。
However, such high-purity CVD
Since the SiC formed body by the method has light transmittance,
When the C compact is used as various members such as a semiconductor manufacturing apparatus and a heat treatment apparatus, the physical properties of SiC may become a problem depending on the application field. For example, rapid thermal annealing is used in semiconductor manufacturing processes.
ealing), rapid thermal cleanin
g), rapid thermal chemical vapor deposition
por deposition), rapid thermal oxidation
n), rapid thermal nitridation (rapid thermal nitridation) and other rapid heat treatment processes (called RTP). Japanese Unexamined Patent Application Publication No. 9-237789 discloses that a wafer substrate has excellent in-plane uniformity even by high-speed heating. It has been proposed that the shield be made of SiC to exhibit,
Material properties that are opaque to radiant heat are required.

【0006】また、このRTPではウエハ基板の精確な
温度管理が必要となるが、パイロメーターにより測温す
る場合にはウエハ基板の処理面とは反対の面に黒体キャ
ビティを形成するときにウエハ基板を支持する部材など
の光の透過があると外乱光となって精確な温度管理が困
難となる問題がある。そのため、特開平8−25580
0号公報ではウエハ基板を支持する支持リングをシリコ
ンや酸化珪素とし、支持リングを保持するシリンダはパ
イロメーターの周波数の範囲で不透明となるようシリコ
ンをコートした石英製とすることが提案されている。
In this RTP, precise temperature control of the wafer substrate is required. However, when measuring the temperature with a pyrometer, when forming a black body cavity on the surface opposite to the processing surface of the wafer substrate, the wafer is not heated. If light is transmitted through a member or the like that supports the substrate, there is a problem that disturbance light is generated and accurate temperature control becomes difficult. Therefore, Japanese Patent Application Laid-Open No. 8-25580
No. 0 proposes that a support ring for supporting a wafer substrate is made of silicon or silicon oxide, and a cylinder for holding the support ring is made of quartz coated with silicon so as to be opaque in the frequency range of a pyrometer. .

【0007】更に、特開平6−341905号公報で
は、加熱要素からもれた光が、反射キャビティに入るの
を防止するために、隔壁やウエハを支持するガードリン
グがウエハに沿って配置されて、加熱要素からもれた光
を吸収する黒色または灰色を有し、このガードリングは
シリコンから作られることが提案されている。しかし、
特開平6−341905号公報や特開平8−25580
0号公報のシリコンやシリコンをコートしたものでは繰
り返し使用するための酸洗浄に対する耐蝕性に劣り、コ
ートしたシリコンの厚みが減少して光不透過性が減少す
る問題がある。
Further, in Japanese Patent Application Laid-Open No. 6-341905, in order to prevent light leaking from the heating element from entering the reflection cavity, a partition wall and a guard ring supporting the wafer are arranged along the wafer. It has been proposed that this guard ring be made of silicon, having a black or gray color that absorbs light leaking from the heating element. But,
JP-A-6-341905 and JP-A-8-25580
In the case of silicon or the one coated with silicon disclosed in Japanese Patent Publication No. 0, there is a problem that the corrosion resistance against acid washing for repeated use is poor, the thickness of the coated silicon is reduced, and the light impermeability is reduced.

【0008】また、プラズマエッチング処理においてウ
エハのエッチング条件を安定化させるために用いるダミ
ーウエハやCVD処理においてウエハの条件を安定させ
るために用いられるダミーウエハには光透過性が小さい
ことが要求される。ウエハは搬送用ロボットで支持ボー
トに装着されるが、ウエハの認識はレーザー光を照射す
ることにより行われるので、ウエハの光透過性が高いと
ロボットがウエハの位置を的確に認識することができ
ず、反応装置内の所定の位置にウエハを装着することが
困難となる。
[0008] Further, a dummy wafer used for stabilizing the etching conditions of the wafer in the plasma etching process and a dummy wafer used for stabilizing the conditions of the wafer in the CVD process are required to have low light transmittance. The wafer is mounted on a support boat by a transfer robot, but the wafer is recognized by irradiating laser light, so if the light transmittance of the wafer is high, the robot can accurately recognize the position of the wafer. Therefore, it is difficult to mount a wafer at a predetermined position in the reaction apparatus.

【0009】従来、CVD−SiC成形体の結晶形態は
β型であり、高純度の場合には黄色を呈して光透過性を
有するため、光透過性を低下させることが困難であっ
た。例えば、光を表面で散乱させて光透過性を低下する
手段として表面を粗面化する方法があるが、波長900
nmの光を照射した場合、表面粗さRaを10nm以下の鏡
面性状としたものは40〜60%の透過率を呈し、表面
粗さRaを300〜500nmとしたものでは0.3〜
0.8%の透過率を呈して光透過度が低下するが、幅広
い波長域において満足すべき光不透過性を付与すること
は困難である。
Conventionally, the crystal form of a CVD-SiC compact is β-type, and in the case of high purity, it exhibits a yellow color and has light transmittance, so that it has been difficult to reduce the light transmittance. For example, there is a method of roughening the surface as a means for lowering light transmittance by scattering light on the surface.
When irradiated with light having a surface roughness of 10 nm or less, the surface roughness Ra having a specular property of 10 nm or less exhibits a transmittance of 40 to 60%.
Although the light transmittance is reduced by exhibiting a transmittance of 0.8%, it is difficult to provide satisfactory light opacity in a wide wavelength range.

【0010】[0010]

【発明が解決しようとする課題】そこで、本発明者らは
CVD−SiC成形体の性状と光特性との関係について
研究した結果、SiC成形体の材質組織として光を散乱
・反射させる層が存在すると光透過性を低くできること
を見出した。本発明はこの知見に基づいて開発されたも
のであり、その目的は高純度で耐熱性や強度特性に優
れ、特に光不透過性に優れ、例えば遮蔽体やダミーウエ
ハ等の半導体製造用の各種部材、あるいは熱処理装置用
の各種耐熱部材等として好適に用いることのできる高純
度でβ型結晶からなるCVD−SiC成形体及びその製
造方法を提供することにある。
The inventors of the present invention have studied the relationship between the properties of the CVD-SiC molded product and the optical characteristics. As a result, there is a layer that scatters and reflects light as a material structure of the SiC molded product. Then, they found that the light transmittance can be lowered. The present invention has been developed based on this finding, and its object is to provide a high purity, excellent heat resistance and strength characteristic, and particularly excellent light opacity, for example, various members for semiconductor manufacturing such as a shield and a dummy wafer. Another object of the present invention is to provide a CVD-SiC molded body composed of a β-type crystal with high purity, which can be suitably used as various heat-resistant members for a heat treatment apparatus, and a method for producing the same.

【0011】[0011]

【課題を解決するための手段】上記の目的を達成するた
めの本発明によるSiC成形体は、CVD法により得ら
れるβ型結晶からなるCVD−SiC成形体であって、
その表面部あるいは内部に厚さ2〜20μm の可視光不
透過性CVD−SiC層が少なくとも1層形成されてな
り、300〜2500nmの波長域における光透過率が
0.4%以下であることを構成上の特徴とする。
The SiC compact according to the present invention for achieving the above object is a CVD-SiC compact comprising a β-type crystal obtained by a CVD method,
At least one visible light-impermeable CVD-SiC layer having a thickness of 2 to 20 μm is formed on the surface or inside thereof, and the light transmittance in a wavelength region of 300 to 2500 nm is 0.4% or less. This is a structural feature.

【0012】本発明に係るSiC成形体の製造方法は、
基体面にCVD反応によりSiC被膜を成膜したのち基
体を除去するCVD−SiC成形体の製造方法におい
て、SiC被膜を成膜する過程でCVD反応条件を設定
変更して可視光不透過性CVD−SiC層を、CVD−
SiC成形体の表面部あるいは内部に少なくとも1層形
成することを構成上の特徴とする。
[0012] The method for producing a SiC molded body according to the present invention comprises:
In a method for producing a SiC molded body, a SiC film is formed on a substrate surface by a CVD reaction and then the substrate is removed. The SiC layer is formed by CVD-
It is characterized in that at least one layer is formed on the surface or inside of the SiC molded body.

【0013】また、本発明のSiC成形体の他の製造方
法は、基体面にCVD反応によりSiC被膜を成膜した
のち基体を除去して得られたCVD−SiC成形体を基
材とし、基材面にSiC被膜を成膜する過程でCVD反
応条件を設定変更して可視光不透過性CVD−SiC層
を、CVD−SiC成形体の表面部あるいは内部に少な
くとも1層形成することを構成上の特徴とする。
[0013] Another method for producing a SiC molded article of the present invention is to form a CVD-SiC molded article obtained by forming a SiC film on a substrate surface by a CVD reaction and then removing the substrate, In the process of forming the SiC film on the material surface, the setting of the CVD reaction conditions is changed to form at least one visible light opaque CVD-SiC layer on the surface or inside the CVD-SiC molded body. The feature of.

【0014】[0014]

【発明の実施の形態】本発明のSiC成形体は、例えば
図1に例示した断面図に示すようにSiC成形体1はC
VD−SiC基材2の上層部に、可視光不透過性のCV
D−SiC層3、その上層に可視光透過性のCVD−S
iC層4が順次に積層形成された3層構造から構成され
ている。なお、図1は内部に可視光不透過性のCVD−
SiC層3を1層形成した例である。また、図2には内
部に可視光不透過性のCVD−SiC層3を2層形成し
たSiC成形体の断面図を例示した。
BEST MODE FOR CARRYING OUT THE INVENTION As shown in the sectional view of FIG.
In the upper layer of the VD-SiC base material 2, a visible light opaque CV
D-SiC layer 3, visible-light-transmitting CVD-S on the upper layer
The iC layer 4 has a three-layer structure in which layers are sequentially formed. FIG. 1 shows the inside of a CVD-
This is an example in which one SiC layer 3 is formed. FIG. 2 illustrates a cross-sectional view of a SiC molded body in which two visible light-impermeable CVD-SiC layers 3 are formed.

【0015】CVD法によりSiCが析出し基体面にS
iC被膜が形成される過程は、まず原料ガスが気相反応
して基体面上にSiCの核が生成し、このSiC核が成
長してアモルファス質SiCになり、更に微細な多結晶
質SiC粒を経て柱状組織の結晶組織へ成長を続けてS
iC被膜が形成される。したがって、CVD−SiC成
形体の強度特性、熱的特性、光特性等の性状は基体面上
に析出して形成されたSiC被膜の粒子性状により異な
ったものとなる。
SiC is deposited by the CVD method and S
In the process of forming the iC film, first, a raw material gas undergoes a gas-phase reaction to generate nuclei of SiC on the substrate surface, and the SiC nuclei grow to become amorphous SiC, and finer polycrystalline SiC particles are formed. Continues to grow into a columnar crystal structure through S
An iC coating is formed. Therefore, the properties of the CVD-SiC molded body, such as the strength characteristics, thermal characteristics, and optical characteristics, differ depending on the particle characteristics of the SiC film formed by deposition on the substrate surface.

【0016】例えば、粒子径が大きいSiC層から粒子
径が小さいSiC層へ光が通過する場合、界面において
複雑な光の散乱、屈折、反射等が起こって光が閉じ込め
られ光透過性が低下する。また、粒子径が小さいSiC
層から粒子径が大きいSiC層へ光が通過する場合も同
様に光透過性が低下する。本発明のSiC成形体は、粒
子性状としてサブミクロンオーダの微小粒子からなる可
視光不透過性CVD−SiC層を、CVD−SiC成形
体の表面部あるいは内部に少なくとも1層形成すること
により光の散乱、屈折、反射等の光特性を変化させて低
光透過率としたものである。すなわち、異なる粒子性状
の可視光不透過性CVD−SiC層を設けることにより
結晶組織に乱れが生じ、光透過率の低下が図られるので
ある。
For example, when light passes from a SiC layer having a large particle diameter to a SiC layer having a small particle diameter, complicated scattering, refraction, reflection, and the like of light occur at the interface, confining the light and reducing the light transmittance. . In addition, SiC with small particle size
Similarly, when light passes from the layer to the SiC layer having a large particle diameter, the light transmittance also decreases. The SiC molded article of the present invention is characterized by forming at least one layer of visible light impervious CVD-SiC layer composed of fine particles of submicron order on the surface or inside of the CVD-SiC molded article. Light transmittance such as scattering, refraction, reflection and the like is changed to obtain a low light transmittance. That is, by providing the visible light opaque CVD-SiC layer having different particle properties, the crystal structure is disturbed, and the light transmittance is reduced.

【0017】可視光不透過性CVD−SiC層は可視光
線の波長範囲である380〜780nmの波長域の光透過
度の減衰効果が大きいばかりでなく、780nmを越える
近赤外光から赤外光の波長域における光透過度の減衰効
果も大きい。その結果具体的には、300〜2500nm
の波長域における光透過率が0.4%以下という、可視
光から赤外光の波長域における光透過率が小さいSiC
成形体を提供することができる。なお、この可視光不透
過性CVD−SiC層3を2層以上形成すると300〜
2500nmの波長域における光透過率をより低減させる
ことが可能となり、例えば少なくとも2層形成すること
により0.2%以下の低透過率のSiC成形体とするこ
とができる。
The visible light opaque CVD-SiC layer not only has a large effect of attenuating the light transmittance in the wavelength range of 380 to 780 nm, which is the wavelength range of visible light, but also has a near-infrared light to infrared light exceeding 780 nm. The effect of attenuating the light transmittance in the wavelength range is also large. As a result, specifically, 300 to 2500 nm
Having a small light transmittance in the wavelength range from visible light to infrared light, having a light transmittance of 0.4% or less in the wavelength range of
A molded article can be provided. When two or more layers of the visible light opaque CVD-SiC layer 3 are formed, 300 to 300
The light transmittance in the wavelength region of 2500 nm can be further reduced. For example, by forming at least two layers, a SiC molded body having a low transmittance of 0.2% or less can be obtained.

【0018】この可視光不透過性CVD−SiC層の厚
さは、1層の厚さが2〜20μm の範囲に設定される。
1層の厚さが2μm 未満では光透過度を低下させる効果
が小さいためであり、一方、1層の厚さが厚くなると熱
衝撃による剥離が生じ易くなるために20μm 以下の厚
さに設定される。また、CVD−SiC成形体の厚さ
は、CVD−SiC自立成形体として強度、物性安定性
を保持させる上で400μm 以上であることが好まし
い。
The thickness of the visible light opaque CVD-SiC layer is set in the range of 2 to 20 μm.
When the thickness of one layer is less than 2 μm, the effect of lowering the light transmittance is small. On the other hand, when the thickness of one layer is large, peeling due to thermal shock tends to occur. You. Further, the thickness of the CVD-SiC molded body is preferably 400 μm or more in order to maintain strength and physical property stability as a CVD-SiC free-standing molded body.

【0019】本発明のSiC成形体は、基体面にCVD
反応によりSiC被膜を成膜したのち基体を除去するC
VD−SiC成形体の製造方法において、SiC被膜を
成膜する過程でCVD反応条件を設定変更して可視光不
透過性CVD−SiC層を、CVD−SiC成形体の表
面部あるいは内部に少なくとも1層形成することにより
製造することができる。
The SiC molded article of the present invention is characterized in that
C for forming a SiC film by reaction and then removing the substrate
In the method of manufacturing a VD-SiC molded body, at least one visible light opaque CVD-SiC layer is formed on the surface or inside of the CVD-SiC molded body by changing the setting of the CVD reaction conditions in the process of forming the SiC coating. It can be manufactured by forming a layer.

【0020】この製造方法は図3に例示した工程図のよ
うに、除去可能な基体面にCVD反応によりSiCを気
相析出させてSiC被膜を成膜する過程で、CVD反応
条件を適宜に設定変更してSiC被膜中にサブミクロン
級の微小粒子からなる可視光不透過性のCVD−SiC
層を少なくとも1層形成した後、基体を除去するもので
ある。
In this manufacturing method, as shown in the process diagram illustrated in FIG. 3, the CVD reaction conditions are appropriately set in the process of depositing SiC in a vapor phase on a removable substrate surface by CVD reaction to form a SiC film. Alternately, visible light impervious CVD-SiC consisting of submicron class fine particles in SiC coating
After forming at least one layer, the substrate is removed.

【0021】除去可能な基体としては、炭素系材料、シ
リコン等の金属系材料、石英等が用いられるが、加工性
が良好で、空気中で熱処理することにより容易に燃焼除
去可能な炭素系、特に黒鉛材が好適に用いられる。な
お、黒鉛材は可及的に不純物が少ない高純度のものが好
ましい。SiC被膜を成膜後、基体を除去する方法は、
切削除去、研磨除去、空気中で加熱する燃焼除去、ある
いはこれらを適宜に組み合わせて行うことができる。
As the removable substrate, a carbon-based material, a metal-based material such as silicon, quartz, or the like is used. The carbon-based material has good workability and can be easily burned and removed by heat treatment in air. Particularly, a graphite material is preferably used. The graphite material preferably has a high purity with as little impurities as possible. The method of removing the substrate after forming the SiC film is as follows.
Cutting removal, polishing removal, combustion removal by heating in air, or a combination thereof can be performed as appropriate.

【0022】CVD反応は、反応炉内に例えば黒鉛基体
をセットし、系内の空気を排気したのち所定の温度に加
熱保持し、次いで水素ガスを送入して常圧水素ガス雰囲
気に置換した後、水素ガスをキャリアガスとして、トリ
クロロメチルシラン、トリクロロフェニルシラン、ジク
ロロメチルシラン、ジクロロジメチルシラン等のハロゲ
ン化有機珪素化合物を原料ガスとして送入し、気相熱分
解反応させることによりSiCを析出させて黒鉛基体面
にSiC被膜を被着する方法で行われる。気相熱分解さ
せる反応温度はCVD−SiC成形体の強度及び熱伝導
率等を高く維持するために1000〜1450℃の温度
範囲に設定することが望ましい。
In the CVD reaction, for example, a graphite substrate was set in a reaction furnace, the air in the system was evacuated, heated and maintained at a predetermined temperature, and then a hydrogen gas was fed in to replace the atmosphere with a normal pressure hydrogen gas atmosphere. After that, a hydrogen gas is used as a carrier gas, and a halogenated organosilicon compound such as trichloromethylsilane, trichlorophenylsilane, dichloromethylsilane, or dichlorodimethylsilane is supplied as a source gas, and SiC is deposited by a gas phase thermal decomposition reaction. Then, an SiC coating is applied to the graphite substrate surface. The reaction temperature for the gas phase thermal decomposition is desirably set in a temperature range of 1000 to 1450 ° C. in order to keep the strength and the thermal conductivity of the CVD-SiC molded body high.

【0023】SiC被膜の成膜過程は、原料ガスの気相
熱分解反応により先ず基体面にSiCの核が生成し、こ
のSiCの核は成長してアモルファス質SiCとなり、
次第に微細な多結晶質SiC粒に成長する。更にCVD
反応を継続すると微細多結晶質SiC粒は柱状組織の結
晶組織へと成長を続けてSiC膜が形成される。この成
膜過程において、可視光不透過性CVD−SiC層は、
例えば原料ガスであるハロゲン化有機珪素化合物と還元
剤である水素ガスとの混合割合、混合ガスの流量、CV
D反応温度や反応時間、CVD反応装置の圧力等のCV
D反応条件を適宜に設定変更することにより、粒子性状
の異なるSiC粒子からなるSiC層を形成することが
できる。
In the process of forming the SiC film, a SiC nucleus is first generated on the substrate surface by a gas phase thermal decomposition reaction of a raw material gas, and the SiC nucleus grows into amorphous SiC.
It gradually grows into fine polycrystalline SiC grains. Further CVD
When the reaction is continued, the fine polycrystalline SiC grains continue to grow into a columnar crystal structure to form a SiC film. In this film forming process, the visible light opaque CVD-SiC layer is
For example, the mixing ratio of the halogenated organosilicon compound as the raw material gas and the hydrogen gas as the reducing agent, the flow rate of the mixed gas, the CV
D CV such as reaction temperature, reaction time, pressure of CVD reactor etc.
By appropriately setting and changing the D reaction conditions, a SiC layer composed of SiC particles having different particle properties can be formed.

【0024】具体的には、例えば、原料ガスであるハロ
ゲン化有機珪素化合物と還元剤である水素ガスとの混合
割合を変化させる方法として、反応炉内の水素ガスの分
圧を10〜300mmHg/分の割合で漸次減少または増加
する方法、CVD反応温度を変化させる方法として、基
体の温度を1〜20℃/分の割合で昇温あるいは降温す
る方法、CVD反応装置の圧力を変化させる方法とし
て、反応炉内の全圧力を10〜50mmHg/分の割合で漸
次増加する方法、等を単独または組み合わせて行うこと
により、可視光不透過性CVD−SiC層を形成するこ
とができる。
Specifically, for example, as a method of changing the mixing ratio of the halogenated organosilicon compound as the raw material gas and the hydrogen gas as the reducing agent, the partial pressure of the hydrogen gas in the reactor is set to 10 to 300 mmHg / As a method of gradually decreasing or increasing at a rate of minute, a method of changing a CVD reaction temperature, a method of raising or lowering the temperature of a substrate at a rate of 1 to 20 ° C./minute, and a method of changing a pressure of a CVD reaction apparatus The visible light-impermeable CVD-SiC layer can be formed by performing a method of gradually increasing the total pressure in the reaction furnace at a rate of 10 to 50 mmHg / min alone or in combination.

【0025】次いで、原料ガスであるハロゲン化有機珪
素化合物と還元剤である水素ガスとの混合割合、混合ガ
スの流量、CVD反応温度や反応時間、CVD反応装置
の圧力等のCVD反応条件を一定に保持すると、SiC
被膜の組織はSiC粒子が柱状組織の結晶であり、可視
光透過性のCVD−SiC層が形成される。
Next, the CVD reaction conditions such as the mixing ratio of the halogenated organosilicon compound as the raw material gas and the hydrogen gas as the reducing agent, the flow rate of the mixed gas, the CVD reaction temperature and the reaction time, and the pressure of the CVD reactor are fixed. When held at
The structure of the coating is a crystal having a columnar structure of SiC particles, and a visible light transmitting CVD-SiC layer is formed.

【0026】したがって、可視光不透過性CVD−Si
C層と可視光透過性のCVD−SiC層の形成を交互
に、更に繰り返し行えば、CVD−SiC成形体の表面
部あるいは内部に、所望層数の可視光不透過性CVD−
SiC層を形成することが可能となる。
Therefore, the visible light opaque CVD-Si
If the C layer and the visible light-transmitting CVD-SiC layer are alternately and repeatedly formed, a desired number of visible light-impermeable CVD-layers may be formed on the surface or inside the CVD-SiC molded body.
An SiC layer can be formed.

【0027】このようにして、基体面に可視光不透過性
CVD−SiC層を少なくとも1層形成したSiC被膜
を成膜したのち、基体は切削除去、研磨除去、空気中で
加熱する燃焼除去、あるいはこれらを適宜に組み合わせ
た方法により除去され、本発明のSiC成形体が製造さ
れる。
After forming the SiC film having at least one visible light opaque CVD-SiC layer on the surface of the substrate in this manner, the substrate is removed by cutting, polishing, removing by heating in air, and burning. Alternatively, they are removed by a method in which these are appropriately combined, and the SiC molded body of the present invention is manufactured.

【0028】また、本発明のSiC成形体は、基体面に
CVD反応によりSiC被膜を成膜したのち基体を除去
して得られたCVD−SiC成形体を基材として、基材
面にSiC被膜を成膜する過程でCVD反応条件を設定
変更して可視光不透過性CVD−SiC層を、CVD−
SiC成形体の表面部あるいは内部に少なくとも1層形
成する方法により製造することもできる。
Further, the SiC molded article of the present invention uses a CVD-SiC molded article obtained by forming a SiC film on a substrate surface by a CVD reaction and then removing the substrate, using the SiC film on the substrate surface. In the process of forming a film, the CVD reaction conditions are changed and the visible light-impermeable CVD-SiC layer is
It can also be manufactured by a method of forming at least one layer on the surface or inside of the SiC molded body.

【0029】この製造方法は図4に例示した工程図のよ
うに、除去可能な黒鉛等の基体面にCVD反応によりS
iCを気相析出させてSiC被膜を成膜し、次いで基体
を除去して得られたCVD−SiC成形体を基材とし
て、その上にCVD反応条件を適宜に設定変更して、粒
子性状の異なるSiC粒子からなる可視光不透過性CV
D−SiC層を、CVD−SiC成形体の表面部あるい
は内部に少なくとも1層形成するものである。
In this manufacturing method, as shown in the process diagram illustrated in FIG. 4, S
The iC was vapor-phase deposited to form a SiC film, and then the substrate was removed to obtain a CVD-SiC molded body as a substrate. Visible light opaque CV composed of different SiC particles
At least one D-SiC layer is formed on the surface or inside of the CVD-SiC molded body.

【0030】なお、この製造方法においても、図3の工
程図に例示した方法に適用されるCVD反応条件の設定
変更をはじめ、その他の製造条件はそのまま適用するこ
とができ、上述した製造方法、製造条件によりCVD−
SiC成形体の表面部あるいは内部に可視光不透過性C
VD−SiC層を少なくとも1層形成することができ
る。すなわち、図4に例示した製造方法は、基体にSi
C被膜を成膜したのち基体を除去して得られたCVD−
SiC成形体を基材として、その表面にSiC被膜を成
膜する過程でCVD反応条件を設定変更して、可視光不
透過性CVD−SiC層を形成するものであり、図3に
例示した製造方法は、基体にSiC被膜を成膜する過程
で可視光不透過性CVD−SiC層を形成し、その後基
体を除去するものであり、CVD反応条件を設定変更し
て可視光不透過性CVD−SiC層を形成する方法、条
件に関しては同一の手段が適用される。
In this manufacturing method as well, other manufacturing conditions can be applied as they are, such as changing the setting of the CVD reaction conditions applied to the method illustrated in the process chart of FIG. CVD-
Visible light opaque C on the surface or inside of SiC molded body
At least one VD-SiC layer can be formed. That is, the manufacturing method illustrated in FIG.
CVD-C obtained by forming a C film and then removing the substrate
In the process of forming a SiC film on the surface of a SiC molded body, the CVD reaction conditions are changed in the process of forming a SiC film on the surface to form a visible light opaque CVD-SiC layer. The method comprises forming a visible light-impermeable CVD-SiC layer in the process of forming a SiC film on a substrate, and then removing the substrate. The same means is applied to the method and conditions for forming the SiC layer.

【0031】本発明のSiC成形体の光不透過層及び光
透過層の測定は、SiC成形体を積層面方向に対して直
角にダイヤモンドカッター等により切断し、厚さ0.1 〜
0.15mmに研削及び研磨して鏡面性状として試料とし、こ
の試料をタングステンフィラメントを用いた白色光源に
より透過光を観察する方法で行う。
In the measurement of the light-impermeable layer and the light-transmitting layer of the SiC molded body of the present invention, the SiC molded body is cut at right angles to the laminating surface direction by a diamond cutter or the like, and has a thickness of 0.1 to 0.1 mm.
The sample is ground and polished to a thickness of 0.15 mm to obtain a specular surface, and the sample is used to observe transmitted light with a white light source using a tungsten filament.

【0032】また、SiC成形体の透過率は、厚さ5mm
の金属アルミニウム板を標準試料として、島津製作所製
自記分光光度計を用いて光透過率を測定し、次式により
算出する。 T=B−A ここで、T;SiC成形体の透過率 A;金属アルミニウム板の光透過率測定値 B;SiC成形体の光透過率測定値
The transmittance of the SiC molded body is 5 mm in thickness.
The light transmittance is measured by using a self-recording spectrophotometer manufactured by Shimadzu Corporation using the metal aluminum plate as a standard sample, and is calculated by the following equation. T = BA Here, T: transmittance of SiC molded body A: measured value of light transmittance of metal aluminum plate B: measured value of light transmittance of SiC molded body

【0033】このようにして製造したSiC成形体は、
結晶形態が全てβ型からなり、密度が3.2 g/cm3
上、熱伝導率が220W/mK以上、熱膨張係数が3.9〜
4.5×10-8/K(室温〜1000℃)等の性状を示し、高エ
ネルギーの照射光を受けても安定であり、また金属不純
物の含有量も極めて少なく、グロー放電質量分析におい
て不純物量1 ppm以下、全反射蛍光X線による分析値で
も1×1010atom/cm2以下である。したがって、高純度で
耐熱性や強度特性に優れるとともに光透過性が非常に小
さいSiC成形体を得ることができる。
The SiC molded body thus manufactured is
All of the crystal forms are of the β type, have a density of 3.2 g / cm 3 or more, a thermal conductivity of 220 W / mK or more, and a thermal expansion coefficient of 3.9 or more.
It exhibits properties such as 4.5 × 10 -8 / K (room temperature to 1000 ° C.), is stable even when irradiated with high-energy irradiation light, and has a very small content of metal impurities. The amount is 1 ppm or less, and the analysis value by total reflection X-ray fluorescence is 1 × 10 10 atom / cm 2 or less. Therefore, it is possible to obtain a SiC molded body having high purity, excellent heat resistance and strength characteristics, and extremely low light transmittance.

【0034】[0034]

【実施例】以下、本発明の実施例を比較例と対比して具
体的に説明する。
EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples.

【0035】比較例 嵩密度1.8 g/cm3、熱膨張係数4.3×10-6/K、
灰分20 ppm以下の等方性黒鉛材を直径202mm、厚さ
5mmに加工して基体を作製した。この黒鉛基体をCVD
反応装置の石英反応管内にセットして、系内を水素ガス
で置換後、原料ガスにトリクロロメチルシランを、キャ
リアガスに水素ガスを用いて、混合ガス中のトリクロロ
メチルシランの濃度を7.5 vol%、混合ガスを190
l/min の流量で反応管内に送入した。CVD反応温度を
1400℃、反応時間を30時間に設定してCVD反応
を行ってSiC被膜を黒鉛基体面に成膜した。次いで、
空気中で加熱して黒鉛基体を燃焼除去したのち、研磨加
工して平滑化し、直径200mm、厚さ0.5mmの円板状
のSiC成形体を製造した。このCVD−SiC成形体
の密度は3.21 g/cm3、熱伝導率は250W/mK、熱膨
張係数は4.6×10-6/K(室温〜1000℃)であっ
た。
Comparative Example Bulk density 1.8 g / cm 3 , coefficient of thermal expansion 4.3 × 10 −6 / K,
An isotropic graphite material having an ash content of 20 ppm or less was processed to a diameter of 202 mm and a thickness of 5 mm to prepare a substrate. This graphite substrate is CVD
After setting in a quartz reaction tube of a reaction apparatus and replacing the inside of the system with hydrogen gas, using trichloromethylsilane as a raw material gas and hydrogen gas as a carrier gas, the concentration of trichloromethylsilane in the mixed gas was 7.5. vol%, mixed gas 190
It was fed into the reaction tube at a flow rate of l / min. A CVD reaction was performed at a CVD reaction temperature of 1400 ° C. and a reaction time of 30 hours to form a SiC film on the graphite substrate surface. Then
After heating in air to burn off the graphite substrate, it was polished and smoothed to produce a disc-shaped SiC molded body having a diameter of 200 mm and a thickness of 0.5 mm. The density of this CVD-SiC molded body was 3.21 g / cm 3 , the thermal conductivity was 250 W / mK, and the thermal expansion coefficient was 4.6 × 10 −6 / K (room temperature to 1000 ° C.).

【0036】実施例1 比較例のSiC被膜を成膜する過程において、CVD反
応温度を1400℃から1200℃に6℃/分の割合で
降温させて1200℃の温度に1時間保持し、次いで6
℃/分の割合で1400℃に昇温させた。この操作を連
続して2回繰り返して行い、合計30時間CVD反応を
行った。このようにしてCVD反応条件を設定変更する
ことにより、内部に厚さ20μm の可視光不透過性CV
D−SiC層が2層形成されたSiC被膜を成膜した。
その後、比較例と同一の方法により黒鉛基体を除去し、
研磨加工して直径200mm、厚さ0.5mmの円板状Si
C成形体を製造した。このCVD−SiC成形体の密度
は3.21 g/cm3、熱伝導率は230W/mK、熱膨張係数
は4.2×10-6/K(室温〜1000℃)であった。
Example 1 In the process of forming the SiC film of the comparative example, the CVD reaction temperature was lowered from 1400 ° C. to 1200 ° C. at a rate of 6 ° C./min, kept at 1200 ° C. for 1 hour, and then
The temperature was raised to 1400 ° C at a rate of ° C / min. This operation was continuously repeated twice, and the CVD reaction was performed for a total of 30 hours. By changing the setting of the CVD reaction conditions in this way, a visible light opaque CV having a thickness of 20 μm is internally formed.
An SiC film having two D-SiC layers was formed.
Thereafter, the graphite substrate was removed by the same method as the comparative example,
Polished disk-shaped Si 200mm in diameter and 0.5mm thick
A C compact was produced. The density of this CVD-SiC molded body was 3.21 g / cm 3 , the thermal conductivity was 230 W / mK, and the thermal expansion coefficient was 4.2 × 10 −6 / K (room temperature to 1000 ° C.).

【0037】実施例2 比較例のSiC被膜を成膜する過程において、CVD反
応温度を1200℃に設定し、水素ガスの分圧を10mm
Hg/分の割合で740mmHgから680mmHgに減少させ、
その状態に0.5時間保持したのち、再び10mmHg/分
の割合で増大して740mmHgに戻した。このようにして
CVD反応条件の設定変更を行って、合計30時間CV
D反応を行い、内部に厚さ20μm の可視光不透過性C
VD−SiC層を1層形成したSiC被膜を成膜したの
ち、比較例と同一の方法により黒鉛基体を除去し、研磨
加工して直径200mm、厚さ0.5mmの円板状SiC成
形体を製造した。このCVD−SiC成形体の密度は
3.21 g/cm3、熱伝導率は220W/mK、熱膨張係数は
4.2×10-6/K(室温〜1000℃)であった。
Example 2 In the process of forming the SiC film of the comparative example, the CVD reaction temperature was set to 1200 ° C., and the hydrogen gas partial pressure was set to 10 mm.
Hg / min reduced from 740mmHg to 680mmHg,
After maintaining the state for 0.5 hour, the pressure was increased again at a rate of 10 mmHg / min and returned to 740 mmHg. By changing the setting of the CVD reaction conditions in this way, the CV
D reaction was performed, and a 20 μm thick visible light impervious C
After forming a SiC film in which one VD-SiC layer was formed, the graphite substrate was removed and polished by the same method as in the comparative example to obtain a disc-shaped SiC molded body having a diameter of 200 mm and a thickness of 0.5 mm. Manufactured. The density of this CVD-SiC molded body was 3.21 g / cm 3 , the thermal conductivity was 220 W / mK, and the thermal expansion coefficient was 4.2 × 10 −6 / K (room temperature to 1000 ° C.).

【0038】実施例3 比較例のSiC被膜を成膜する過程において、CVD反
応条件として反応温度を1200℃に設定し、CVD反
応管内の全圧力を310mmHgから30mmHg/分の割合で
増加させながら760mmHgに増圧し、その状態に0.5
時間保持したのち30mmHg/分の割合で減圧して310
mmHgに戻す操作を2回行った。このようにしてCVD反
応条件の設定変更を行って、合計30時間CVD反応を
行い、内部に厚さ20μm の可視光不透過性CVD−S
iC層を2層形成したSiC被膜を成膜したのち、比較
例と同一の方法により黒鉛基体を除去し、研磨加工して
直径200mm、厚さ0.5mmの円板状SiC成形体を製
造した。このCVD−SiC成形体の密度は3.23 g
/cm3、熱伝導率は240W/mK、熱膨張係数は4.3×1
-6/K(室温〜1000℃)であった。
Example 3 In the process of forming the SiC film of the comparative example, the reaction temperature was set to 1200 ° C. as the CVD reaction conditions, and the total pressure in the CVD reaction tube was increased from 310 mmHg to 30 mmHg / min while increasing the pressure to 760 mmHg / min. To 0.5
After holding for a time, the pressure was reduced at a rate of 30 mmHg / min to 310.
The operation of returning to mmHg was performed twice. In this way, the CVD reaction conditions are changed, and the CVD reaction is performed for a total of 30 hours, and the visible light-impermeable CVD-S having a thickness of 20 μm is internally formed.
After forming an SiC film having two iC layers, the graphite substrate was removed and polished by the same method as in the comparative example to produce a disc-shaped SiC molded body having a diameter of 200 mm and a thickness of 0.5 mm. . The density of this CVD-SiC compact was 3.23 g.
/ cm 3 , thermal conductivity 240 W / mK, thermal expansion coefficient 4.3 × 1
0 −6 / K (room temperature to 1000 ° C.).

【0039】このようにして製造したSiC成形体につ
いて、島津製作所製自記分光光度計を用いて光透過率を
測定し、得られた結果を表1に示した。
The light transmittance of the thus produced SiC molded body was measured by using a self-recording spectrophotometer manufactured by Shimadzu Corporation. The obtained results are shown in Table 1.

【0040】[0040]

【表1】 [Table 1]

【0041】表1の結果から、CVD法によりSiC被
膜を成膜する際にCVD反応条件を設定変更することに
より、粒子性状の異なるSiC粒子からなり、可視光線
を透過しないSiC層をSiC成形体の内部に1層また
は2層形成した実施例のSiC成形体は、比較例のSi
C成形体に比べて、300〜2500nmの波長域におけ
る光透過率が0.15〜0.3%程度以下と小さく、可
視光から赤外光の波長域における光不透過性に優れてい
ることが判る。
According to the results shown in Table 1, by changing the CVD reaction conditions when forming the SiC film by the CVD method, the SiC layer made of SiC particles having different particle properties and not transmitting visible light can be used as the SiC molded body. The SiC molded body of the embodiment in which one or two layers are formed inside
Light transmittance in the wavelength range of 300 to 2500 nm is as small as about 0.15 to 0.3% or less, and excellent in light opacity in the wavelength range from visible light to infrared light, as compared with the C molded body. I understand.

【0042】[0042]

【発明の効果】以上のとおり、本発明によればCVD−
SiC成形体の表面部あるいは内部に厚さ2〜20μm
の可視光不透過性CVD−SiC層が少なくとも1層形
成されているので、300〜2500nmの可視光から赤
外光の波長域における光不透過性に優れ、また緻密、高
純度のSiC成形体が提供される。また、その製造方法
によればCVD反応によりSiC被膜を成膜する過程に
おいて、CVD反応条件を設定変更することにより可視
光不透過性CVD−SiC層を形成することができる。
したがって、遮蔽体やダミーウエハ等の半導体製造用の
各種部材をはじめ熱処理装置用の各種耐熱部材等として
好適に用いることのできるSiC成形体及びその製造方
法として極めて有用である。
As described above, according to the present invention, CVD-
2-20μm thickness on surface or inside of SiC molded body
Since at least one visible-light-impermeable CVD-SiC layer is formed, the light-impermeable material in the wavelength range of visible light to infrared light of 300 to 2500 nm is excellent, and a dense, high-purity SiC molded body is formed. Is provided. Further, according to the manufacturing method, in the process of forming the SiC film by the CVD reaction, the visible light opaque CVD-SiC layer can be formed by changing the setting of the CVD reaction conditions.
Therefore, the present invention is extremely useful as a SiC molded body that can be suitably used as various heat-resistant members for a heat treatment apparatus, such as various members for manufacturing a semiconductor such as a shield and a dummy wafer, and a method for manufacturing the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】可視光不透過性CVD−SiC層を1層形成し
た本発明のSiC成形体を例示した断面図である。
FIG. 1 is a cross-sectional view illustrating a SiC molded body of the present invention in which one visible-light-impermeable CVD-SiC layer is formed.

【図2】可視光不透過性CVD−SiC層を2層形成し
た本発明のSiC成形体を例示した断面図である。
FIG. 2 is a cross-sectional view illustrating a SiC molded body of the present invention in which two visible light opaque CVD-SiC layers are formed.

【図3】本発明のSiC成形体の製造プロセスを示した
フローチャートである。
FIG. 3 is a flowchart showing a manufacturing process of the SiC molded body of the present invention.

【図4】本発明のSiC成形体の他の製造プロセスを示
したフローチャートである。
FIG. 4 is a flowchart showing another manufacturing process of the SiC molded body of the present invention.

【符号の説明】[Explanation of symbols]

1 SiC成形体 2 CVD−SiC基材 3 可視光不透過性CVD−SiC層 4 可視光透過性CVD−SiC層 DESCRIPTION OF SYMBOLS 1 SiC molded object 2 CVD-SiC base material 3 Visible light opaque CVD-SiC layer 4 Visible light permeable CVD-SiC layer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/68 H01L 21/68 N A (72)発明者 黒柳 聡浩 東京都港区北青山1丁目2番3号 東海カ ーボン株式会社内 (72)発明者 岩村 忠和 東京都港区北青山1丁目2番3号 東海カ ーボン株式会社内 Fターム(参考) 4G001 BA77 BB22 BC22 BD03 BD05 BD31 BD38 BE03 BE11 BE32 4G046 MA15 MB03 MB08 MC02 4G052 DA02 DB12 DC09 4K030 AA06 AA17 BA37 BB04 EA03 FA10 JA09 JA10 LA01 LA11 5F031 CA11 DA13 EA01 MA28 MA29 MA32 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/68 H01L 21/68 NA (72) Inventor Toshihiro Kuroyanagi 1-2-3 Kitaaoyama, Minato-ku, Tokyo No. Tokai Carbon Co., Ltd. (72) Inventor Tadakazu Iwamura 1-3-2 Kitaaoyama, Minato-ku, Tokyo F-term in Tokai Carbon Co., Ltd. 4G001 BA77 BB22 BC22 BD03 BD05 BD31 BD38 BE03 BE11 BE32 4G046 MA15 MB03 MB08 MC02 4G052 DA02 DB12 DC09 4K030 AA06 AA17 BA37 BB04 EA03 FA10 JA09 JA10 LA01 LA11 5F031 CA11 DA13 EA01 MA28 MA29 MA32

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 CVD法により得られるβ型結晶からな
るCVD−SiC成形体であって、その表面部あるいは
内部に厚さ2〜20μm の可視光不透過性CVD−Si
C層が少なくとも1層形成されてなり、300〜250
0nmの波長域における光透過率が0.4%以下であるこ
とを特徴とするSiC成形体。
1. A CVD-SiC molded body comprising a β-type crystal obtained by a CVD method, wherein a visible light-impermeable CVD-Si having a thickness of 2 to 20 μm is formed on the surface or inside thereof.
At least one C layer is formed, and 300 to 250
A SiC molded body having a light transmittance of 0.4% or less in a wavelength range of 0 nm.
【請求項2】 CVD−SiC成形体の厚さが400μ
m 以上である、請求項1記載のSiC成形体。
2. The thickness of a CVD-SiC compact is 400 μm.
The SiC molded body according to claim 1, which is not less than m.
【請求項3】 基体面にCVD反応によりSiC被膜を
成膜したのち基体を除去するCVD−SiC成形体の製
造方法において、SiC被膜を成膜する過程でCVD反
応条件を設定変更して可視光不透過性CVD−SiC層
を、CVD−SiC成形体の表面部あるいは内部に少な
くとも1層形成することを特徴とするSiC成形体の製
造方法。
3. A method for producing a CVD-SiC molded body, in which a SiC film is formed on a surface of a substrate by a CVD reaction and then the substrate is removed, the conditions of the CVD reaction are changed during the process of forming the SiC film, and visible light is changed. A method for producing a SiC molded body, comprising forming at least one impermeable CVD-SiC layer on the surface or inside of a CVD-SiC molded body.
【請求項4】 基体面にCVD反応によりSiC被膜を
成膜したのち基体を除去して得られたCVD−SiC成
形体を基材とし、基材面にSiC被膜を成膜する過程で
CVD反応条件を設定変更して可視光不透過性CVD−
SiC層を、CVD−SiC成形体の表面部あるいは内
部に少なくとも1層形成することを特徴とするSiC成
形体の製造方法。
4. A CVD-SiC formed body obtained by forming a SiC film on a substrate surface by a CVD reaction and then removing the substrate, and using the CVD-SiC formed body obtained as a base material in the process of forming the SiC film on the substrate surface. Change the conditions to set the visible light opaque CVD-
A method for producing a SiC molded body, comprising forming at least one SiC layer on the surface or inside of a CVD-SiC molded body.
【請求項5】 反応炉内の水素ガスの分圧を10〜30
0mmHg/分の割合で減少または増加させることによりC
VD反応条件を設定変更する、請求項3または4記載の
SiC成形体の製造方法。
5. The partial pressure of hydrogen gas in a reactor is 10 to 30.
C by decreasing or increasing at a rate of 0 mmHg / min
5. The method for producing a SiC molded body according to claim 3, wherein the VD reaction conditions are changed.
【請求項6】 基体もしくは基材の温度を1〜20℃/
分の割合で昇温あるいは降温させながら加熱することに
よりCVD反応条件を設定変更する、請求項3または4
記載のSiC成形体の製造方法。
6. The temperature of a substrate or a substrate is 1 to 20 ° C. /
5. The setting of the CVD reaction condition is changed by heating while raising or lowering the temperature at a rate of minutes.
A method for producing a SiC molded body according to the above.
【請求項7】 反応炉内の全圧力を10〜50mmHg/分
の割合で増加させることによりCVD反応条件を設定変
更する、請求項3または4記載のSiC成形体の製造方
法。
7. The method according to claim 3, wherein the CVD reaction conditions are changed by increasing the total pressure in the reactor at a rate of 10 to 50 mmHg / min.
JP29495998A 1998-10-16 1998-10-16 SiC molded body and manufacturing method thereof Expired - Fee Related JP3932154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29495998A JP3932154B2 (en) 1998-10-16 1998-10-16 SiC molded body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29495998A JP3932154B2 (en) 1998-10-16 1998-10-16 SiC molded body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000119064A true JP2000119064A (en) 2000-04-25
JP3932154B2 JP3932154B2 (en) 2007-06-20

Family

ID=17814521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29495998A Expired - Fee Related JP3932154B2 (en) 1998-10-16 1998-10-16 SiC molded body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3932154B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003275A (en) * 2000-06-20 2002-01-09 Tokai Carbon Co Ltd SiC FORMED BODY WITH HINDERING LIGHT TRANSMISSION AND ITS MANUFACTURING METHOD
US6939821B2 (en) * 2000-02-24 2005-09-06 Shipley Company, L.L.C. Low resistivity silicon carbide
JP2006016662A (en) * 2004-07-01 2006-01-19 Tokai Carbon Co Ltd LIGHT NON-TRANSMISSIBLE SiC FORMED BODY AND ITS PRODUCTION METHOD
US8202621B2 (en) * 2001-09-22 2012-06-19 Rohm And Haas Company Opaque low resistivity silicon carbide
KR20190124177A (en) * 2016-08-18 2019-11-04 주식회사 티씨케이 SiC PART FOR SEMICONDUCTOR MANUFACTORING COMPRISING DIFFERENT TRANSMITTANCE MULTILAYER AND METHOD OF MANUFACTURNING THE SAME

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121315A (en) * 1997-10-14 1999-04-30 Mitsui Eng & Shipbuild Co Ltd Multilayer silicon carbide wafer
JPH11228233A (en) * 1998-02-09 1999-08-24 Tokai Carbon Co Ltd Sic molded product and its production
JP2000091255A (en) * 1998-07-17 2000-03-31 Asahi Glass Co Ltd Method of loading dummy wafer
JP2000109366A (en) * 1998-10-07 2000-04-18 Ngk Insulators Ltd Light non-transmittive high purity silicon carbide material, light shieldable material for semiconductor treating device, and semiconductor treating device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121315A (en) * 1997-10-14 1999-04-30 Mitsui Eng & Shipbuild Co Ltd Multilayer silicon carbide wafer
JPH11228233A (en) * 1998-02-09 1999-08-24 Tokai Carbon Co Ltd Sic molded product and its production
JP2000091255A (en) * 1998-07-17 2000-03-31 Asahi Glass Co Ltd Method of loading dummy wafer
JP2000109366A (en) * 1998-10-07 2000-04-18 Ngk Insulators Ltd Light non-transmittive high purity silicon carbide material, light shieldable material for semiconductor treating device, and semiconductor treating device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6939821B2 (en) * 2000-02-24 2005-09-06 Shipley Company, L.L.C. Low resistivity silicon carbide
US7927915B2 (en) 2000-02-24 2011-04-19 Rohm And Haas Company Low resistivity silicon carbide
JP2002003275A (en) * 2000-06-20 2002-01-09 Tokai Carbon Co Ltd SiC FORMED BODY WITH HINDERING LIGHT TRANSMISSION AND ITS MANUFACTURING METHOD
US8202621B2 (en) * 2001-09-22 2012-06-19 Rohm And Haas Company Opaque low resistivity silicon carbide
JP2006016662A (en) * 2004-07-01 2006-01-19 Tokai Carbon Co Ltd LIGHT NON-TRANSMISSIBLE SiC FORMED BODY AND ITS PRODUCTION METHOD
KR20190124177A (en) * 2016-08-18 2019-11-04 주식회사 티씨케이 SiC PART FOR SEMICONDUCTOR MANUFACTORING COMPRISING DIFFERENT TRANSMITTANCE MULTILAYER AND METHOD OF MANUFACTURNING THE SAME
KR20190124178A (en) * 2016-08-18 2019-11-04 주식회사 티씨케이 SiC PART FOR SEMICONDUCTOR MANUFACTORING COMPRISING DIFFERENT TRANSMITTANCE MULTILAYER AND METHOD OF MANUFACTURNING THE SAME
KR102208252B1 (en) * 2016-08-18 2021-01-28 주식회사 티씨케이 SiC PART FOR SEMICONDUCTOR MANUFACTORING COMPRISING DIFFERENT TRANSMITTANCE MULTILAYER AND METHOD OF MANUFACTURNING THE SAME
KR102216867B1 (en) * 2016-08-18 2021-02-18 주식회사 티씨케이 SiC PART FOR SEMICONDUCTOR MANUFACTORING COMPRISING DIFFERENT TRANSMITTANCE MULTILAYER AND METHOD OF MANUFACTURNING THE SAME

Also Published As

Publication number Publication date
JP3932154B2 (en) 2007-06-20

Similar Documents

Publication Publication Date Title
JP4043003B2 (en) SiC molded body and manufacturing method thereof
JP3524679B2 (en) High purity CVD-SiC semiconductor heat treatment member and method of manufacturing the same
KR100592741B1 (en) Silicon carbide fabrication
JPH08188468A (en) Formed silicon carbide produced by chemical vapor deposition and its production
JPH11199323A (en) Dummy wafer
US4424193A (en) Constituent members of a semiconductor element-manufacturing apparatus and a reaction furnace for making said constituent members
JP3932154B2 (en) SiC molded body and manufacturing method thereof
JPH08188408A (en) Silicon carbide molded product by chemical vapor deposition and its production
US20030036471A1 (en) Low resistivity silicon carbide
JP4404703B2 (en) Light-impermeable SiC molded body and method for producing the same
JP2000073171A (en) Production of chemical vapor deposition multilayer silicon carbide film
JPH0639360B2 (en) Method for growing 6H-type and 4H-type silicon carbide single crystals
JP2000109366A (en) Light non-transmittive high purity silicon carbide material, light shieldable material for semiconductor treating device, and semiconductor treating device
JP3857446B2 (en) SiC molded body
JP2002003275A (en) SiC FORMED BODY WITH HINDERING LIGHT TRANSMISSION AND ITS MANUFACTURING METHOD
JP4702712B2 (en) Tubular SiC molded body and method for producing the same
JP3790029B2 (en) SiC dummy wafer
JP2003049270A (en) SiC MOLDING AND PRODUCTION METHOD THEREFOR
JP4361177B2 (en) Silicon carbide material and jig for RTP device
JP4708891B2 (en) Optical reflection mirror
JPH0146454B2 (en)
JPH07267661A (en) Quartz glass pipe and its production
JP2003068594A (en) SiC DUMMY WAFER AND ITS PRODUCING METHOD
Nishino et al. Preparation of ZnO by a nearby vaporizing chemical vapor deposition method
JP2549030B2 (en) Semiconductor processing member and method of manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees