JP4404703B2 - Light-impermeable SiC molded body and method for producing the same - Google Patents

Light-impermeable SiC molded body and method for producing the same Download PDF

Info

Publication number
JP4404703B2
JP4404703B2 JP2004195357A JP2004195357A JP4404703B2 JP 4404703 B2 JP4404703 B2 JP 4404703B2 JP 2004195357 A JP2004195357 A JP 2004195357A JP 2004195357 A JP2004195357 A JP 2004195357A JP 4404703 B2 JP4404703 B2 JP 4404703B2
Authority
JP
Japan
Prior art keywords
light
sic
layer
cvd
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004195357A
Other languages
Japanese (ja)
Other versions
JP2006016662A (en
Inventor
聡浩 黒柳
裕次 牛嶋
孝臣 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2004195357A priority Critical patent/JP4404703B2/en
Publication of JP2006016662A publication Critical patent/JP2006016662A/en
Application granted granted Critical
Publication of JP4404703B2 publication Critical patent/JP4404703B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、高純度で耐熱性や強度特性に優れ、特に光不透過性が高く、例えば半導体製造用装置の熱処理装置用遮蔽体、均熱リング等の各種耐熱部材、あるいは半導体製造用装置の拡散炉装置、エッチング装置、CVD装置などに用いられるダミーウエハやサセプター等の各種部材として好適に用いることのできる光不透過性SiC成形体及びその製造方法に関する。   The present invention has high purity, excellent heat resistance and strength characteristics, and particularly high light impermeability. For example, a heat treatment device shield for a semiconductor manufacturing apparatus, various heat resistant members such as a soaking ring, or a semiconductor manufacturing apparatus. The present invention relates to a light-impermeable SiC molded body that can be suitably used as various members such as a dummy wafer and a susceptor used in a diffusion furnace apparatus, an etching apparatus, a CVD apparatus, and the like, and a method for manufacturing the same.

SiCは耐熱性、耐蝕性、強度特性等の材質特性が優れており、各種工業用の部材として有用されている。特に、CVD法(化学的気相蒸着法)を利用して作製したSiC成形体(CVD−SiC成形体)は、緻密で高純度であるため半導体製造用の各種部材をはじめ高純度が要求される用途分野において好適に用いられている。   SiC is excellent in material properties such as heat resistance, corrosion resistance and strength properties, and is useful as various industrial members. In particular, an SiC molded body (CVD-SiC molded body) produced by using a CVD method (chemical vapor deposition method) is dense and highly pure, so high purity is required including various members for semiconductor manufacturing. It is suitably used in certain application fields.

このCVD−SiC成形体は、原料ガスを気相反応させて基材面上にSiCの結晶粒を析出させ、結晶粒の成長により被膜を形成したのち基材を除去することにより得られるもので、材質的に緻密、高純度で組織の均質性が高いという特徴があり、一般に純度が高い程、光透過性が高いことが知られている。   This CVD-SiC molded body is obtained by causing a raw material gas to undergo a gas phase reaction to deposit SiC crystal grains on the surface of the base material, forming a film by growing the crystal grains, and then removing the base material. It is known that the material is dense, high purity, and the homogeneity of the structure is high. Generally, the higher the purity, the higher the light transmittance.

このようにCVD法によるSiC成形体は高純度で光透過性が高いため、半導体製造装置や熱処理装置等の各種部材として使用する場合には、用途分野によってはSiCの物理的性質が問題となることがある。例えば、半導体の製造プロセスにはラピッドサーマルプロセス(RTP)と呼ばれる急速に熱処理する工程があり、特許文献1ではウエハ基板が高速加熱によっても面内均一性に優れた性状を呈するように遮蔽体としてSiCにより構成することが提案されており、輻射熱に対して不透明な材質性状が要求されている。   Thus, since the SiC molded body by CVD method has high purity and high light transmittance, when used as various members such as a semiconductor manufacturing apparatus and a heat treatment apparatus, the physical properties of SiC become a problem depending on the application field. Sometimes. For example, a semiconductor manufacturing process includes a rapid thermal process called a rapid thermal process (RTP), and in Patent Document 1, a wafer substrate is used as a shield so that it exhibits excellent in-plane uniformity even by high-speed heating. It has been proposed to be composed of SiC, and a material property that is opaque to radiant heat is required.

また、このRTPではウエハ基板の精確な温度管理が必要となるが、パイロメーターにより測温する場合にはウエハ基板の処理面とは反対の面に黒体キャビティを形成するときにウエハ基板を支持する部材などの光の透過があると外乱光となって精確な温度管理が困難となる問題がある。そのため、特許文献2ではウエハ基板を支持する支持リングをシリコンや酸化珪素とし、支持リングを保持するシリンダはパイロメーターの周波数の範囲で不透明となるようシリコンをコートした石英製とすることが提案されている。   In addition, this RTP requires precise temperature control of the wafer substrate, but when measuring with a pyrometer, the wafer substrate is supported when forming a black body cavity on the surface opposite to the processing surface of the wafer substrate. If there is light transmission through a member or the like, there is a problem that it becomes disturbance light and accurate temperature management becomes difficult. Therefore, Patent Document 2 proposes that the support ring for supporting the wafer substrate is made of silicon or silicon oxide, and the cylinder for holding the support ring is made of quartz coated with silicon so as to be opaque in the range of the pyrometer frequency. ing.

また、プラズマエッチング処理においてウエハのエッチング条件を安定化させるために用いるダミーウエハやCVD処理においてウエハの条件を安定させるために用いられるダミーウエハには光透過性が小さいことが要求される。ウエハは搬送用ロボットで支持ボートに装着されるが、ウエハの認識はレーザー光を照射することにより行われるので、ウエハの光透過性が高いとロボットがウエハの位置を的確に認識することができず、反応装置内の所定の位置にウエハを装着することが困難となる。また、ダミーウエハに光を照射して、反射光を検出してウエハへのパーティクル付着状態などを検出しているので、光を透過せず十分に反射光が得られることが必要となる。   Further, a dummy wafer used for stabilizing the etching conditions of the wafer in the plasma etching process and a dummy wafer used for stabilizing the conditions of the wafer in the CVD process are required to have low light transmittance. Wafers are mounted on a support boat by a transfer robot. However, since wafer recognition is performed by irradiating laser light, the robot can accurately recognize the position of the wafer if the wafer is highly transparent. Therefore, it becomes difficult to mount the wafer at a predetermined position in the reaction apparatus. Further, since the dummy wafer is irradiated with light and the reflected light is detected to detect the state of particle adhesion to the wafer, it is necessary to obtain sufficient reflected light without transmitting light.

そこで、特許文献3には含有する金属元素の各々が0.3ppm 以下の高純度を有し、肉厚が0.1〜1mmであるCVD−SiC質プレートで、波長2.5〜20μmの赤外線領域における赤外線の最大透過率が5%以下である高純度CVD−SiC質の半導体熱処理用部材が提案されている。また、特許文献4にはCVD法によりSiCの層を複数積層して形成した多層SiCウエハが提案されており、光の透過率が異なる複数のSiC層を積層すること、光の透過率の小さなSiC層の両面により光透過率の大きなSiC層を配置することなどが開示されている。   Therefore, in Patent Document 3, each of the metal elements contained is a CVD-SiC plate having a high purity of 0.3 ppm or less and a thickness of 0.1 to 1 mm, and an infrared ray having a wavelength of 2.5 to 20 μm. A high-purity CVD-SiC semiconductor heat-treating member having a maximum infrared transmittance of 5% or less in the region has been proposed. Further, Patent Document 4 proposes a multilayer SiC wafer formed by laminating a plurality of SiC layers by a CVD method, and laminating a plurality of SiC layers having different light transmittances, and having a small light transmittance. It is disclosed that a SiC layer having a high light transmittance is disposed on both sides of the SiC layer.

また、本出願人も光不透過性に優れたSiC成形体としてCVD法により得られるCVD−SiC成形体であって、その表面部あるいは内部に少なくとも1層の粒子性状の異なるSiC層を有し、300〜2500nmの波長域における光透過率が0.4%以下、2500nmを超える波長域における光透過率が2.5%以下であることを特徴とするSiC成形体及びその製造方法(特許文献5)を提案した。   Further, the present applicant is also a CVD-SiC molded body obtained by the CVD method as a SiC molded body having excellent light impermeability, and has at least one SiC layer having different particle properties on the surface or inside thereof. A SiC molded article having a light transmittance in a wavelength region of 300 to 2500 nm of 0.4% or less and a light transmittance of 2.5% or less in a wavelength region exceeding 2500 nm and a method for producing the same (Patent Document) 5) was proposed.

更に、本出願人はCVD法により得られるβ型結晶からなるCVD−SiC成形体であって、その表面部あるいは内部に厚さ2〜20μmの可視光不透過性CVD−SiC層が少なくとも1層形成されてなり、300〜2500nmの波長域における光透過率が0.4%以下であることを特徴とするSiC成形体及びその製造方法(特許文献6)を開発、提案した。
特開平09−237789号公報 特開平08−255800号公報 特開平10−012563号公報 特開平11−121315号公報 特開平11−228233号公報 特開2000−119064号公報
Further, the present applicant is a CVD-SiC molded body made of a β-type crystal obtained by a CVD method, and has at least one visible light-impermeable CVD-SiC layer having a thickness of 2 to 20 μm on the surface or inside thereof. As a result, an SiC molded body characterized in that the light transmittance in a wavelength region of 300 to 2500 nm is 0.4% or less and a manufacturing method thereof (Patent Document 6) have been developed and proposed.
JP 09-237789 A JP 08-255800 A JP 10-012563 A JP-A-11-121315 Japanese Patent Laid-Open No. 11-228233 JP 2000-1119064 A

本発明者らは、引き続き低光透過性のCVD−SiC成形体の開発について研究を行い、SiC成形体の材質組織として光の透過方向を制御して光を散乱・反射させる層を存在させると、より一層光透過性が低減化することを確認した。   The inventors have continued research on the development of a low-light-transmitting CVD-SiC molded body, and that there is a layer that scatters and reflects light by controlling the light transmission direction as the material structure of the SiC molded body. It was confirmed that the light transmittance was further reduced.

すなわち、本発明の目的は、例えば遮蔽体やダミーウエハ等の半導体製造用の各種部材、あるいは熱処理装置用の各種耐熱部材等として好適に用いることのできる高純度で耐熱性や強度特性に優れた光不透過性のCVD−SiC成形体及びその製造方法を提供することにある。   That is, the object of the present invention is a light with high purity and excellent heat resistance and strength characteristics that can be suitably used as various members for semiconductor production such as a shield or a dummy wafer, or various heat resistant members for a heat treatment apparatus. An object of the present invention is to provide an impermeable CVD-SiC molded body and a method for producing the same.

上記の目的を達成するための本発明による光不透過性SiC成形体は、CVD法により得られるβ型結晶からなるCVD−SiC成形体であって、平均粒子径2μm以下、厚さ15〜30μmの光不透過層4、その上下両側にSiC(111)面のX線回折ピークの強度が5000cps以上に配向した厚さ5〜15μmの中間層3、5、及び、その外側に平均粒子径8〜30μm、厚さ100μm以上の光透過層2、6の多層構造からなることを構成上の特徴とする。   The light-opaque SiC molded body according to the present invention for achieving the above object is a CVD-SiC molded body made of a β-type crystal obtained by a CVD method, and has an average particle diameter of 2 μm or less and a thickness of 15 to 30 μm. Light-impermeable layer 4, intermediate layers 3 and 5 having a thickness of 5 to 15 μm in which the intensity of the X-ray diffraction peak of the SiC (111) plane is oriented to 5000 cps or more on both upper and lower sides thereof, and an average particle diameter of 8 on the outer side thereof A structural feature is that the light transmission layers 2 and 6 have a multilayer structure of ˜30 μm and a thickness of 100 μm or more.

また、その製造方法は、黒鉛基材面にCVD法によりSiC被膜を成膜後黒鉛基材を除去するCVD−SiC成形体の製造方法において、SiC被膜を成膜する過程でCVD反応条件を設定変更して、光透過層2、中間層3、光不透過層4、中間層5、及び、光透過層6を順次形成するSiC成膜工程からなることを構成上の特徴とする。   Moreover, the manufacturing method sets the CVD reaction conditions in the process of forming the SiC film in the manufacturing method of the CVD-SiC molded body in which the SiC base film is removed after forming the SiC film on the graphite base surface by the CVD method. A structural feature is that it includes a SiC film forming process in which the light transmission layer 2, the intermediate layer 3, the light non-transmission layer 4, the intermediate layer 5, and the light transmission layer 6 are sequentially formed.

更に、他の製造方法としては黒鉛基材面にCVD法により平均粒子径8〜30μm、厚さ100μm以上のSiC被膜を成膜後黒鉛基材を除去して得られたCVD−SiC成形体を光透過層2として、該光透過層2面にSiC被膜を成膜する過程でCVD反応条件を設定変更して、中間層3、光不透過層4、中間層5、及び、光透過層6を順次形成するSiC成膜工程を施すことを構成上の特徴とする。   Furthermore, as another production method, a CVD-SiC molded body obtained by forming a SiC film having an average particle diameter of 8 to 30 μm and a thickness of 100 μm or more on the surface of the graphite substrate by CVD and removing the graphite substrate is obtained. As the light transmissive layer 2, the CVD reaction conditions are changed in the course of forming a SiC film on the surface of the light transmissive layer 2, and the intermediate layer 3, the light non-transmissive layer 4, the intermediate layer 5, and the light transmissive layer 6 are changed. A structural feature is that an SiC film forming process is sequentially performed.

本発明の光不透過性SiC成形体によれば、光透過層2、中間層3、光不透過層4、中間層5、光透過層6を順次に積層した多層構造から形成し、各層の粒子性状や(111)結晶面の配向度、および、その厚さなどを特定したSiC成形体から構成され、特に、SiC(111)結晶面の配向度が高い中間層を介在させて透過光を垂直方向主体に制御することにより、層間の界面における光の反射をより増大させることができるので、光透過率を効果的に低減することが可能となる。更に、この多層構造を複数層に設けると、一層光透過性を低減することができる。また、基材面にSiC粒子を析出させる際に、CVD反応条件を制御することにより、本発明の光不透過性SiC成形体を製造することができる。   According to the light-impermeable SiC molded body of the present invention, the light-transmitting layer 2, the intermediate layer 3, the light-impermeable layer 4, the intermediate layer 5, and the light-transmitting layer 6 are formed in a multilayer structure in order, Consists of SiC compacts that specify the particle properties, orientation degree of (111) crystal plane, and thickness thereof, and in particular, transmits light through an intermediate layer having high orientation degree of SiC (111) crystal face. By controlling mainly in the vertical direction, the reflection of light at the interface between layers can be further increased, so that the light transmittance can be effectively reduced. Furthermore, when this multilayer structure is provided in a plurality of layers, the light transmittance can be further reduced. Moreover, when depositing SiC particles on the substrate surface, the light-impermeable SiC molded article of the present invention can be produced by controlling the CVD reaction conditions.

したがって、本発明は、半導体製造用装置の熱処理装置用遮蔽体、均熱リング等の各種耐熱部材、あるいは半導体製造用装置の拡散炉装置、エッチング装置、CVD装置などに用いられるダミーウエハやサセプター等の各種部材として好適な光不透過性SiC成形体及びその製造方法として有用性が高い。   Therefore, the present invention provides various heat-resistant members such as shields for heat treatment devices of semiconductor manufacturing devices, soaking rings, or dummy wafers and susceptors used in diffusion furnace devices, etching devices, CVD devices, etc. of semiconductor manufacturing devices. It is highly useful as a light-impermeable SiC molded article suitable as various members and a method for producing the same.

本発明の光不透過性SiC成形体は、図1に例示した側断面図に示すように、光透過層2の上に中間層3、光不透過層4、中間層5、及び、光透過層6が順次に積層された多層構造から形成されたものであり、この場合は5層構造から構成されている。   As shown in the side sectional view illustrated in FIG. 1, the light-impermeable SiC molded body of the present invention has an intermediate layer 3, a light-impermeable layer 4, an intermediate layer 5, and a light-transmitting layer on the light-transmitting layer 2. The layer 6 is formed from a multilayer structure in which the layers 6 are sequentially stacked. In this case, the layer 6 is composed of a five-layer structure.

これらの各層のうち、光不透過層4は平均粒子径が2μm以下のSiC微粒子から構成される。SiCの粒子層に光が入射すると光は粒子の表面や粒間の界面で反射、屈折、散乱等が起こり、透過光が減少する。したがって、粒子径が小さいほど粒子の表面や粒間の界面が大きくなり、透過光が減少することになる。そして、本発明はこの光不透過層4を平均粒子径が2μm以下の微粒子から構成するものである。平均粒子径が2μmを越えると光透過率の低下が十分でなくなるためである。また光不透過層4は15〜30μmの厚さに形成される。厚さが15μm未満では光不透過性の効果が十分でなく、また30μmを越える層厚にすると、成膜速度が遅いので生産性が低下するうえに耐熱衝撃性も低くなる。   Among these layers, the light-impermeable layer 4 is composed of SiC fine particles having an average particle diameter of 2 μm or less. When light is incident on the SiC particle layer, the light is reflected, refracted, scattered, etc. at the surface of the particle and the interface between the particles, and the transmitted light is reduced. Therefore, the smaller the particle diameter, the larger the surface of the particle and the interface between the particles, and the transmitted light decreases. In the present invention, the light-impermeable layer 4 is composed of fine particles having an average particle diameter of 2 μm or less. This is because when the average particle diameter exceeds 2 μm, the light transmittance is not sufficiently lowered. The light opaque layer 4 is formed to a thickness of 15 to 30 μm. If the thickness is less than 15 μm, the effect of light impermeability is not sufficient, and if the layer thickness exceeds 30 μm, the film formation rate is slow, so that productivity is lowered and thermal shock resistance is also lowered.

この光不透過層4の上下両側には、SiC(111)面のX線回折ピークの強度が5000cps以上に配向した厚さ5〜15μmの中間層3、5が形成されている。すなわち中間層3、5はSiC(111)の結晶面が高度に発達したSiC層であり、この中間層により透過光の方向は垂直方向主体に制御される。そして、中間層3を透過した光は、平均粒子径が2μm以下の微粒子からなる光不透過層4の界面及び光不透過層4と中間層5の界面において光の反射が増大するため、さらに光透過率の低下を図ることができる。   On the upper and lower sides of the light-impermeable layer 4, intermediate layers 3 and 5 having a thickness of 5 to 15 μm are formed in which the intensity of the X-ray diffraction peak of the SiC (111) plane is 5000 cps or more. That is, the intermediate layers 3 and 5 are SiC layers in which the crystal plane of SiC (111) is highly developed, and the direction of transmitted light is controlled mainly by the intermediate layer. The light transmitted through the intermediate layer 3 is reflected more at the interface between the light-impermeable layer 4 and the interface between the light-impermeable layer 4 and the intermediate layer 5 made of fine particles having an average particle diameter of 2 μm or less. The light transmittance can be reduced.

X線回折ピークの強度が5000cpsを下回る場合には、SiC(111)面の配向度が小さいために垂直方向への光の制御が十分でないので、界面における透過光の減少効果も小さくなる。また、中間層3、5の厚さは5〜15μmに設定する。厚さが5μm未満では透過光の垂直成分が少ないので光不透過層4との界面における光の反射が十分でなくなるためであるが、一方、厚さが15μmを越えるとSiC(111)面へ高度に配向しているため、機械的強度の低下や熱衝撃による剥離が生じ易くなるためである。   When the intensity of the X-ray diffraction peak is less than 5000 cps, since the degree of orientation of the SiC (111) plane is small and the control of light in the vertical direction is not sufficient, the effect of reducing transmitted light at the interface is also small. The thickness of the intermediate layers 3 and 5 is set to 5 to 15 μm. This is because when the thickness is less than 5 μm, the vertical component of the transmitted light is small so that the reflection of light at the interface with the light-impermeable layer 4 is insufficient. On the other hand, when the thickness exceeds 15 μm, the SiC (111) surface is reached. This is because the orientation is highly oriented, and mechanical strength is reduced and peeling due to thermal shock is likely to occur.

なお、X線回折ピークの強度はX線にCuのKα線を用いて、印加電圧;40KV、印加電流;20mA、走査速度;4°/分、発散スリット;1°入射スリット;1°、散乱スリット;0.3mm、フィルター;Ni、の条件でX線回折を行って、回折ピーク値より求める。   The intensity of the X-ray diffraction peak was determined by using Cu Kα ray for X-ray, applied voltage: 40 KV, applied current: 20 mA, scanning speed: 4 ° / min, diverging slit; 1 ° incident slit; 1 °, scattering X-ray diffraction is performed under the conditions of slit: 0.3 mm, filter: Ni, and obtained from the diffraction peak value.

この中間層3、5の外側には平均粒子径8〜30μm、厚さ100μm以上の光透過層2、6が形成されている。この光透過層は、本発明の光不透過性SiC成形体の強度を保持するためと生産能率を維持するために形成させるもので、光不透過層4及び中間層3、5等はその粒子性状等から強度が低く、またその成膜条件もCVD反応を遅くする条件設定が必要となる。そこで、CVD法により析出したSiC粒を十分に成長させてSiC被膜を成膜させ、強度を維持させるとともに成膜速度を上げるために平均粒子径が8〜30μmのSiC被膜を100μm以上の厚さに成膜した光透過層2、6を設けた多層構造とする。   Light transmission layers 2 and 6 having an average particle diameter of 8 to 30 μm and a thickness of 100 μm or more are formed outside the intermediate layers 3 and 5. This light-transmitting layer is formed to maintain the strength of the light-impermeable SiC molded body of the present invention and to maintain the production efficiency. The light-impermeable layer 4 and the intermediate layers 3, 5 and the like are particles thereof. The strength is low due to properties and the like, and the film formation conditions must be set so as to slow down the CVD reaction. Therefore, a SiC film deposited by CVD is sufficiently grown to form a SiC film, and an SiC film having an average particle diameter of 8 to 30 μm is formed to a thickness of 100 μm or more in order to maintain the strength and increase the film formation speed. A multilayer structure is provided in which the light-transmitting layers 2 and 6 are formed.

このように本発明の光不透過性SiC成形体は、平均粒子径が2μm以下の微細粒子からなる光不透過層4により、微細粒子による光の反射、屈折、散乱される度合が増大して透過光を著しく低減することができる。更に、光不透過層4の上下両側に形成したSiC(111)面のX線回折ピークの強度が5000cps以上と高度に配向した中間層3、5により、中間層を透過する光は主に中間層に垂直方向の光成分となり、この透過光が光不透過層4の界面において反射、屈折、散乱する度合がより一層増大することにより、光透過率の一層の低減化を図ることが可能となる。更に、平均粒子径を8〜30μm、厚さを100μm以上に形成した光透過層2、6により十分な強度を有する自立したCVD−SiC成形体とすることができる。   Thus, the light-impermeable SiC molded body of the present invention increases the degree of reflection, refraction, and scattering of light by the fine particles by the light-impermeable layer 4 made of fine particles having an average particle diameter of 2 μm or less. Transmitted light can be significantly reduced. Furthermore, the light transmitted through the intermediate layer is mainly intermediate because of the intermediate layers 3 and 5 that are highly oriented with the intensity of the X-ray diffraction peak of the SiC (111) plane formed on the upper and lower sides of the light-impermeable layer 4 being 5000 cps or more. It becomes possible to further reduce the light transmittance by further increasing the degree of reflection, refraction, and scattering of the transmitted light at the interface of the light-impermeable layer 4 as a light component perpendicular to the layer. Become. Furthermore, it can be set as the self-supporting CVD-SiC molded object which has sufficient intensity | strength by the light transmissive layers 2 and 6 formed in average particle diameters 8-30 micrometers and thickness in 100 micrometers or more.

更に、図2に示すように、図1に示した多層構造を繰り返した複数層に設けることにより、光不透過性を一層向上させることもできる。なお、図2の符号番号は図1と同じである。   Furthermore, as shown in FIG. 2, the light impermeability can be further improved by providing the multilayer structure shown in FIG. 1 in a plurality of repeated layers. 2 are the same as those in FIG.

本発明の光不透過性SiC成形体、例えば、図1に示した光不透過性SiC成形体の製造は図3に示した工程図のように、黒鉛基材面にCVD法によりSiC被膜を成膜後黒鉛基材を除去するCVD−SiC成形体の製造方法において、SiC被膜を成膜する過程でCVD反応条件を設定変更して、光透過層2、中間層3、光不透過層4、中間層5、及び、光透過層6を順次形成するSiC成膜工程により製造することができる。   The light-opaque SiC molded body of the present invention, for example, the light-opaque SiC molded body shown in FIG. 1 is manufactured by applying a SiC film on the graphite substrate surface by CVD as shown in the process diagram of FIG. In the method for producing a CVD-SiC molded body in which the graphite substrate is removed after film formation, the CVD reaction conditions are changed in the course of forming the SiC film, and the light transmitting layer 2, the intermediate layer 3, and the light non-transmitting layer 4 are changed. In addition, the intermediate layer 5 and the light transmission layer 6 can be manufactured by a SiC film forming step for sequentially forming the intermediate layer 5 and the light transmission layer 6.

なお、図3の工程図において、Aのプロセスを繰り返すことにより図1の多層構造を複数層に設けた図2に示す光不透過性SiC成形体を製造することができる。   In the process diagram of FIG. 3, the light-impermeable SiC molded body shown in FIG. 2 in which the multilayer structure of FIG. 1 is provided in a plurality of layers can be manufactured by repeating the process A.

あるいは、図4に示した工程図のように、黒鉛基材面にCVD法により平均粒子径8〜30μm、厚さ100μm以上にSiC被膜を成膜した後、黒鉛基材を除去して得られた光透過層2を基材として、該基材にCVD反応条件を設定変更して、中間層3、光不透過層4、中間層5、及び、光透過層6を順次形成するSiC成膜工程を施すことにより製造することもできる。   Alternatively, as shown in the process diagram of FIG. 4, it is obtained by forming a SiC film on the graphite substrate surface with an average particle diameter of 8 to 30 μm and a thickness of 100 μm or more by CVD, and then removing the graphite substrate. SiC film formation in which the intermediate layer 3, the light non-transparent layer 4, the intermediate layer 5, and the light transmissive layer 6 are sequentially formed by changing the CVD reaction conditions on the base material using the light transmissive layer 2 as a base material It can also be manufactured by applying a process.

また、図4の工程図において、Bのプロセスを繰り返すことにより図1の多層構造を複数層に設けた図2に示す光不透過性SiC成形体を製造することもできる。   4, the light-impermeable SiC molded body shown in FIG. 2 in which the multilayer structure of FIG. 1 is provided in a plurality of layers can be manufactured by repeating the process B.

CVD法によるSiC被膜の形成は、CVD反応炉内に例えば黒鉛基材をセットし、系内の空気を排気したのち所定の温度に加熱保持し、次いで水素ガスを送入して常圧水素ガス雰囲気に置換した後、水素ガスをキャリアガスとして、トリクロロメチルシラン、トリクロロフェニルシラン、ジクロロメチルシラン、ジクロロジメチルシラン等のハロゲン化有機珪素化合物を原料ガスとして送入し、還元熱分解反応によりSiCを気相析出させて黒鉛基材面にSiC被膜を被着する方法、あるいは、四塩化珪素等の珪素化合物とメタン等の炭素化合物との原料ガスを送入して加熱し、気相反応によりSiCを気相析出させて黒鉛基材面にSiC被膜を被着する方法、で行われる。   For the formation of the SiC film by the CVD method, for example, a graphite substrate is set in a CVD reactor, the air in the system is evacuated, heated and held at a predetermined temperature, and then hydrogen gas is fed and atmospheric hydrogen gas is supplied. After substituting the atmosphere, hydrogen gas is used as a carrier gas, and halogenated organosilicon compounds such as trichloromethylsilane, trichlorophenylsilane, dichloromethylsilane, dichlorodimethylsilane, etc. are fed as source gases, and SiC is reduced by a reductive pyrolysis reaction A method in which a SiC film is deposited on the graphite substrate surface by vapor deposition, or a raw material gas of a silicon compound such as silicon tetrachloride and a carbon compound such as methane is fed and heated, and SiC is generated by a gas phase reaction. Is vapor-phase deposited to deposit a SiC coating on the graphite substrate surface.

SiC被膜の形成プロセスは、先ず、原料ガスが気相反応して基材面上にSiCの核が生成し、このSiC核が成長してアモルファス質SiCになり、更に微細な多結晶質SiC粒を経て柱状形態の結晶組織へ成長を続けて、SiC被膜が形成される。したがって、CVD−SiC成形体の強度特性、熱的特性、光特性等の性状は基体面上に析出して形成されたSiC被膜の粒子性状により異なったものとなる。   In the process of forming the SiC film, first, the raw material gas reacts in a gas phase to generate SiC nuclei on the substrate surface, and the SiC nuclei grow to become amorphous SiC, and further fine polycrystalline SiC grains. Then, the SiC film is formed by continuing the growth into a columnar crystal structure. Therefore, properties such as strength properties, thermal properties, and optical properties of the CVD-SiC molded body vary depending on the particle properties of the SiC coating formed by deposition on the substrate surface.

このSiC被膜を形成する成膜過程において、例えば、SiC核の生成速度はCVD反応温度、原料ガス濃度、原料ガス量等に影響されるところが大きく、またSiC核の成長及び柱状結晶組織への粒成長は主に反応温度に影響される。そして、微細粒子からなるSiC被膜の形成はCVD反応温度を低温域に設定することにより、また柱状形態の大粒子からなるSiC被膜の形成はCVD反応温度を高温域に設定することにより形成することができる。   In the film formation process for forming this SiC film, for example, the generation rate of SiC nuclei is greatly affected by the CVD reaction temperature, the raw material gas concentration, the raw material gas amount, etc., and the growth of SiC nuclei and the grains into the columnar crystal structure Growth is mainly influenced by the reaction temperature. And, the formation of the SiC film composed of fine particles is performed by setting the CVD reaction temperature in a low temperature region, and the formation of the SiC film composed of columnar large particles is performed by setting the CVD reaction temperature in a high temperature region. Can do.

すなわち、SiC被膜を形成する成膜過程において、CVD反応条件を設定変更することにより光透過層2、6、中間層3、5、光不透過層4を形成することが可能となる。   That is, in the film formation process for forming the SiC film, the light transmission layers 2 and 6, the intermediate layers 3 and 5, and the light non-transmission layer 4 can be formed by changing the CVD reaction conditions.

例えば、平均粒子径8〜30μm、厚さ100μm以上の光透過層2、6の形成は、原料ガス濃度、原料ガス量、反応炉内圧力等を一定に保持した状態で、反応温度範囲を1350〜1450℃に設定して適宜時間反応させることにより、柱状組織のSiC粒子からなるSiC被膜に成膜することができる。   For example, the formation of the light transmission layers 2 and 6 having an average particle diameter of 8 to 30 μm and a thickness of 100 μm or more is performed by setting the reaction temperature range to 1350 while keeping the raw material gas concentration, the raw material gas amount, the pressure in the reaction furnace, and the like constant. By setting the temperature to ˜1450 ° C. and reacting for an appropriate time, a SiC film composed of SiC particles having a columnar structure can be formed.

また、SiC(111)面のX線回折ピークの強度が5000cps以上に配向した厚さ5〜15μmの中間層3、5は反応温度範囲を1200〜1350℃に設定して、一定温度で適宜時間反応させる方法、あるいはこの温度範囲で昇温あるいは降温させて適宜時間反応させる方法で形成することができる。   Further, the intermediate layers 3 and 5 having a thickness of 5 to 15 μm in which the intensity of the X-ray diffraction peak of the SiC (111) plane is oriented to 5000 cps or more are set at a reaction temperature range of 1200 to 1350 ° C. It can be formed by a method of reacting, or a method of reacting for an appropriate time by raising or lowering temperature within this temperature range.

また、平均粒子径2μm以下、厚さ15〜30μmの光不透過層4は反応温度範囲を1050〜1200℃に設定して適宜時間反応させることにより、微細な多結晶質SiC粒の柱状結晶粒子への成長を阻止する段階で止める方法で形成することができる。   Further, the light-impermeable layer 4 having an average particle diameter of 2 μm or less and a thickness of 15 to 30 μm is set to a reaction temperature range of 1050 to 1200 ° C. and allowed to react for an appropriate period of time to thereby form columnar crystal particles of fine polycrystalline SiC particles. It can be formed by a method of stopping at the stage of preventing growth.

以下、本発明の実施例を具体的に説明する。   Examples of the present invention will be specifically described below.

実施例1
嵩密度1.8 g/cm3、熱膨張係数4.3×10-6/K、灰分20 ppm以下の等方性黒鉛材を直径202mm、厚さ5mmに加工して黒鉛基材を作製した。この黒鉛基材をCVD反応装置の石英反応管内にセットして、系内を水素ガスで置換後、原料ガスにトリクロロメチルシランを、キャリアガスに水素ガスを用いて、混合ガス中のトリクロロメチルシランの濃度を7.5 vol%に、混合ガスの流量を200 l/minとなるように流量調節して反応管内に送入した。CVD反応温度を1400℃に保持して10時間CVD反応を行って、厚さ400μmのSiC被膜(光透過層2)を成膜した。
Example 1
Bulk density 1.8 g / cm 3, thermal expansion coefficient of 4.3 × 10 -6 / K, ash 20 ppm or less isotropic graphite material with a diameter 202 mm, was processed to a thickness of 5mm to prepare a graphite substrate . After setting this graphite substrate in the quartz reaction tube of the CVD reactor and replacing the system with hydrogen gas, using trichloromethylsilane as the source gas and hydrogen gas as the carrier gas, trichloromethylsilane in the mixed gas The concentration was adjusted to 7.5 vol%, and the flow rate of the mixed gas was adjusted to 200 l / min. The CVD reaction temperature was kept at 1400 ° C. and the CVD reaction was carried out for 10 hours to form a 400 μm thick SiC film (light transmission layer 2).

次いで、反応管内の温度を1250℃に下げ、0.25時間CVD反応を行って、厚さ5μmのSiC被膜(中間層3)を成膜し、その後、反応管内の温度を1100℃に下げて2時間CVD反応を行って、厚さ20μmのSiC被膜(光不透過層4)を成膜した。更に、反応管内の温度を1250℃に上げて0.25時間CVD反応を行い、厚さ5μmのSiC被膜(中間層5)を成膜した後、反応管内の温度を1400℃に上げて10時間CVD反応を行って、厚さ400μmのSiC被膜(光透過層6)を成膜した。次いで、黒鉛基材を燃焼除去した後、研磨加工して表面を平滑化して、直径200mmの図1に示した5層構造からなるSiC成形体を製造した。   Next, the temperature in the reaction tube is lowered to 1250 ° C., and a CVD reaction is performed for 0.25 hours to form a SiC film (intermediate layer 3) having a thickness of 5 μm. Thereafter, the temperature in the reaction tube is lowered to 1100 ° C. A CVD reaction was carried out for 2 hours to form a SiC film (light opaque layer 4) having a thickness of 20 μm. Further, the temperature in the reaction tube was raised to 1250 ° C. and a CVD reaction was carried out for 0.25 hours to form a 5 μm thick SiC film (intermediate layer 5), and then the temperature in the reaction tube was raised to 1400 ° C. for 10 hours. A CVD reaction was carried out to form a 400 μm thick SiC film (light transmission layer 6). Next, the graphite base material was burned and removed, and then the surface was smoothed by polishing to produce a SiC molded body having a diameter of 200 mm and having the five-layer structure shown in FIG.

実施例2
実施例1において、中間層3及び中間層5となるSiC被膜を成膜するCVD反応時間を0.5時間として、厚さ10μmのSiC被膜を成膜した他は、全て実施例1と同じ方法により、図1に示した5層構造からなるSiC成形体を製造した。
Example 2
In Example 1, all the same methods as in Example 1 except that the SiC reaction time for forming the SiC film to be the intermediate layer 3 and the intermediate layer 5 was 0.5 hour and the SiC film having a thickness of 10 μm was formed. Thus, a SiC molded body having a five-layer structure shown in FIG. 1 was produced.

比較例1
実施例1において、中間層3及び中間層5となるSiC被膜の形成を行わずに、すなわち、光透過層2となるSiC被膜を成膜した後、その上に光不透過層4となるSiC被膜を成膜し、次いで光透過層6を成膜した他は、全て実施例1と同じ方法により、3層構造からなるSiC成形体を製造した。
Comparative Example 1
In Example 1, without forming the SiC film to be the intermediate layer 3 and the intermediate layer 5, that is, after forming the SiC film to be the light transmission layer 2, the SiC to be the light opaque layer 4 thereon A SiC molded body having a three-layer structure was manufactured by the same method as in Example 1 except that the film was formed and then the light transmission layer 6 was formed.

このようにして製造した多層構造のSiC被膜からなるSiC成形体の、各SiC被膜の性状を表1に示した。   Table 1 shows the properties of each SiC coating of the SiC molded body made of the SiC coating having the multilayer structure manufactured as described above.

Figure 0004404703
Figure 0004404703

次に、これらのSiC成形体について、下記の方法により光透過率、耐薬品性、及び熱衝撃試験を行って、その結果を表2に示した。   Next, these SiC molded bodies were subjected to light transmittance, chemical resistance, and thermal shock test by the following methods, and the results are shown in Table 2.

光透過率の測定:
厚さ5mmの金属アルミニウム板を標準試料として、島津製作所製自記分光光度計を用いて光透過率を測定し、下記式により算出した。
T=B−A
ここで、T;SiC成形体の光透過率
A;金属アルミニウム板の光透過率測定値
B;SiC成形体の光透過率測定値
Light transmittance measurement:
The light transmittance was measured using a self-recording spectrophotometer manufactured by Shimadzu Corporation using a metal aluminum plate having a thickness of 5 mm as a standard sample, and calculated according to the following formula.
T = BA
Here, T: Light transmittance of the SiC molded body
A: Light transmittance measured value of metal aluminum plate
B: Light transmittance measured value of SiC molded body

耐薬品性の測定:
濃度49wt%のフッ酸と濃度62wt%の硝酸との混合液に、常温でSiC成形体を24時間浸漬した後、水洗、乾燥して外観を目視観察および重量変化率を測定した。目視観察は色、変形、剥離などを観察し、また、重量変化率は0.01%未満を変化無しとした。
Measurement of chemical resistance:
The SiC molded body was immersed in a mixed solution of hydrofluoric acid having a concentration of 49 wt% and nitric acid having a concentration of 62 wt% for 24 hours at room temperature, then washed with water and dried, and the appearance was visually observed and the rate of weight change was measured. In visual observation, color, deformation, peeling, etc. were observed, and the weight change rate was less than 0.01% with no change.

熱衝撃試験:
空気中で1200℃の温度に保持した電気炉内にSiC成形体を入れて、SiC成形体の温度が1200℃になった時点より2分間保持した。その後、SiC成形体を電気炉から取り出して空気中で200℃まで自然冷却した。この加熱保持、冷却する操作を繰り返し行い、最高300回まで繰り返し行った時に、SiC成形体に生じた割れ、剥離の状況を観察した。
Thermal shock test:
The SiC molded body was placed in an electric furnace maintained at a temperature of 1200 ° C. in air, and held for 2 minutes from the time when the temperature of the SiC molded body reached 1200 ° C. Thereafter, the SiC molded body was taken out from the electric furnace and naturally cooled to 200 ° C. in the air. This heating and holding operation was repeated, and when repeated up to 300 times, the state of cracks and peeling occurring in the SiC molded body was observed.

Figure 0004404703
Figure 0004404703

光透過層2、中間層3、光不透過層4、中間層5、光透過層6が順次に積層された多層構造からなる本発明の光不透過性SiC成形体の側断面図である。1 is a side sectional view of a light-impermeable SiC molded body of the present invention having a multilayer structure in which a light-transmitting layer 2, an intermediate layer 3, a light-impermeable layer 4, an intermediate layer 5, and a light-transmitting layer 6 are sequentially laminated. 図1の多層構造を、複数層に設けた本発明の光不透過性SiC成形体を例示した側断面図である。FIG. 2 is a side sectional view illustrating a light-impermeable SiC molded body of the present invention in which the multilayer structure of FIG. 1 is provided in a plurality of layers. 本発明の光不透過性SiC成形体の製造方法を例示した工程図である。It is process drawing which illustrated the manufacturing method of the light-impermeable SiC molded object of this invention. 本発明の光不透過性SiC成形体の他の製造方法を例示した工程図である。It is process drawing which illustrated the other manufacturing method of the light-impermeable SiC molded object of this invention.

符号の説明Explanation of symbols

1 光不透過性SiC成形体
2 光透過層
3 中間層
4 光不透過層
5 中間層
6 光透過層
DESCRIPTION OF SYMBOLS 1 Light impervious SiC molded object 2 Light transmissive layer 3 Intermediate layer 4 Light opacity layer 5 Intermediate layer 6 Light transmissive layer

Claims (6)

CVD法により得られるβ型結晶からなるCVD−SiC成形体であって、平均粒子径2μm以下、厚さ15〜30μmの光不透過層4、その上下両面にSiC(111)面のX線回折ピークの強度が5000cps以上に配向した厚さ5〜15μmの中間層3、5、及び、その外側に平均粒子径8〜30μm、厚さ100μm以上の光透過層2、6の多層構造からなることを特徴とする光不透過性SiC成形体。 A CVD-SiC molded body made of β-type crystal obtained by a CVD method, having an average particle diameter of 2 μm or less and a thickness of 15 to 30 μm, a light-impermeable layer 4, and an X-ray diffraction of SiC (111) surfaces on both upper and lower surfaces It consists of a multilayer structure of 5 to 15 μm thick intermediate layers 3 and 5 whose peak intensity is oriented to 5000 cps or more, and light transmission layers 2 and 6 having an average particle diameter of 8 to 30 μm and a thickness of 100 μm or more on the outer side. A light-impermeable SiC molded article characterized by 請求項1の光不透過層4、中間層3、5、及び、光透過層2、6からなる多層構造を複数層に設ける光不透過性SiC成形体。 A light-impermeable SiC molded article in which a multilayer structure comprising the light-impermeable layer 4, the intermediate layers 3, 5 and the light-transmissive layers 2 and 6 according to claim 1 is provided in a plurality of layers. 黒鉛基材面にCVD法によりSiC被膜を成膜後黒鉛基材を除去するCVD−SiC成形体の製造方法において、SiC被膜を成膜する過程でCVD反応条件を設定変更して、光透過層2、中間層3、光不透過層4、中間層5、及び、光透過層6を順次形成するSiC成膜工程からなることを特徴とする請求項1記載の光不透過性SiC成形体の製造方法。 In the method of manufacturing a CVD-SiC molded body in which a graphite film is removed after forming a SiC film on the surface of the graphite substrate, the CVD reaction conditions are changed in the process of forming the SiC film, and the light transmission layer 2. The light-impermeable SiC molded body according to claim 1, comprising a SiC film forming step of sequentially forming an intermediate layer 3, a light-impermeable layer 4, an intermediate layer 5, and a light-transmissive layer 6. Production method. 請求項3のSiC成膜工程を複数回繰り返し行う請求項2の光不透過性SiC成形体の製造方法。 The method for producing a light-opaque SiC molded body according to claim 2, wherein the SiC film-forming step according to claim 3 is repeated a plurality of times. 黒鉛基材面にCVD法により平均粒子径8〜30μm、厚さ100μm以上のSiC被膜を成膜後黒鉛基材を除去して得られたCVD−SiC成形体を光透過層2として、該光透過層2面にSiC被膜を成膜する過程でCVD反応条件を設定変更して、中間層3、光不透過層4、中間層5、及び、光透過層6を順次形成するSiC成膜工程を施すことを特徴とする請求項1記載の光不透過性SiC成形体の製造方法。 A CVD-SiC molded body obtained by forming a SiC film having an average particle diameter of 8 to 30 μm and a thickness of 100 μm or more on the surface of the graphite base material by CVD and removing the graphite base material is used as the light transmission layer 2. A SiC film forming process for sequentially forming the intermediate layer 3, the light non-transparent layer 4, the intermediate layer 5, and the light transmissive layer 6 by changing the CVD reaction conditions in the process of forming the SiC film on the surface of the transmissive layer 2. The method for producing a light-impermeable SiC molded body according to claim 1, wherein: 請求項5のSiC成膜工程を複数回繰り返し行う請求項2の光不透過性SiC成形体の製造方法。
The method for producing a light-impermeable SiC molded article according to claim 2, wherein the SiC film-forming step according to claim 5 is repeated a plurality of times.
JP2004195357A 2004-07-01 2004-07-01 Light-impermeable SiC molded body and method for producing the same Expired - Lifetime JP4404703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004195357A JP4404703B2 (en) 2004-07-01 2004-07-01 Light-impermeable SiC molded body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004195357A JP4404703B2 (en) 2004-07-01 2004-07-01 Light-impermeable SiC molded body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006016662A JP2006016662A (en) 2006-01-19
JP4404703B2 true JP4404703B2 (en) 2010-01-27

Family

ID=35791201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004195357A Expired - Lifetime JP4404703B2 (en) 2004-07-01 2004-07-01 Light-impermeable SiC molded body and method for producing the same

Country Status (1)

Country Link
JP (1) JP4404703B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5353800B2 (en) * 2010-04-07 2013-11-27 新日鐵住金株式会社 Method for manufacturing silicon carbide epitaxial film
JP5896297B2 (en) 2012-08-01 2016-03-30 東海カーボン株式会社 CVD-SiC molded body and method for producing CVD-SiC molded body
JP2016204737A (en) * 2015-04-28 2016-12-08 イビデン株式会社 Ceramic structure and method for manufacturing ceramic structure
JP2016204237A (en) * 2015-04-28 2016-12-08 イビデン株式会社 Ceramic structure, and method for producing the ceramic structure
JP2016204735A (en) * 2015-04-28 2016-12-08 イビデン株式会社 Ceramic structure and method for manufacturing ceramic structure

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3524679B2 (en) * 1996-06-21 2004-05-10 東芝セラミックス株式会社 High purity CVD-SiC semiconductor heat treatment member and method of manufacturing the same
JP3790029B2 (en) * 1997-09-30 2006-06-28 東海カーボン株式会社 SiC dummy wafer
JP4531870B2 (en) * 1997-10-14 2010-08-25 三井造船株式会社 Multilayer silicon carbide wafer
JP4043003B2 (en) * 1998-02-09 2008-02-06 東海カーボン株式会社 SiC molded body and manufacturing method thereof
JP3932154B2 (en) * 1998-10-16 2007-06-20 東海カーボン株式会社 SiC molded body and manufacturing method thereof
JP2003049270A (en) * 2001-08-07 2003-02-21 Tokai Carbon Co Ltd SiC MOLDING AND PRODUCTION METHOD THEREFOR
JP2004335151A (en) * 2003-04-30 2004-11-25 Ibiden Co Ltd Ceramic heater

Also Published As

Publication number Publication date
JP2006016662A (en) 2006-01-19

Similar Documents

Publication Publication Date Title
JP4043003B2 (en) SiC molded body and manufacturing method thereof
JPS63186422A (en) Wafer susceptor
US6515297B2 (en) CVD-SiC self-supporting membrane structure and method for manufacturing the same
Hameed et al. Optimization of preparation conditions to control structural characteristics of silicon dioxide nanostructures prepared by magnetron plasma sputtering
JP2002047066A (en) FORMED SiC AND ITS MANUFACTURING METHOD
JP4404703B2 (en) Light-impermeable SiC molded body and method for producing the same
JPH11199323A (en) Dummy wafer
JPH0127568B2 (en)
RU2684128C1 (en) Article with silicon carbide coating and method for manufacturing of article with silicon carbide coating
JP2000302577A (en) Graphite member coated with silicon carbide
JP2002003285A (en) SiC-COATED GRAPHITE MATERIAL AND ITS MANUFACTURING METHOD
JP3932154B2 (en) SiC molded body and manufacturing method thereof
Tu et al. Laser CVD Growth of Uniquely< 010>‐oriented β‐Ga2O3 Films on Quartz Substrate with Ultrafast Photoelectric Response
JP2000073171A (en) Production of chemical vapor deposition multilayer silicon carbide film
JP2011074436A (en) Silicon carbide material
JP2019112288A (en) Silicon carbide member and member for semiconductor manufacturing device
JP2002003275A (en) SiC FORMED BODY WITH HINDERING LIGHT TRANSMISSION AND ITS MANUFACTURING METHOD
JP3857446B2 (en) SiC molded body
JP7294021B2 (en) Method for surface treatment of graphite support substrate, method for depositing polycrystalline silicon carbide film, and method for manufacturing polycrystalline silicon carbide substrate
JP3790029B2 (en) SiC dummy wafer
JP4361177B2 (en) Silicon carbide material and jig for RTP device
US9194042B2 (en) Jig for semiconductor production and method for producing same
JP2003049270A (en) SiC MOLDING AND PRODUCTION METHOD THEREFOR
CN108541278B (en) Cleaning method of SiC single crystal growth furnace
JP6622912B2 (en) CVD-SiC film and composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091029

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4404703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term