JPH03126671A - Composite material - Google Patents

Composite material

Info

Publication number
JPH03126671A
JPH03126671A JP1264309A JP26430989A JPH03126671A JP H03126671 A JPH03126671 A JP H03126671A JP 1264309 A JP1264309 A JP 1264309A JP 26430989 A JP26430989 A JP 26430989A JP H03126671 A JPH03126671 A JP H03126671A
Authority
JP
Japan
Prior art keywords
silicon carbide
composite material
face
vapor deposition
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1264309A
Other languages
Japanese (ja)
Other versions
JPH0832591B2 (en
Inventor
Kichiya Yano
谷野 吉弥
Yasuhiro Akune
阿久根 安博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP1264309A priority Critical patent/JPH0832591B2/en
Priority to US07/672,907 priority patent/US5106687A/en
Priority to DE4112114A priority patent/DE4112114C1/de
Publication of JPH03126671A publication Critical patent/JPH03126671A/en
Publication of JPH0832591B2 publication Critical patent/JPH0832591B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0891Ultraviolet [UV] mirrors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31Surface property or characteristic of web, sheet or block

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Ceramic Products (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain the composite material with the surface of its vapor- deposited layer capable of being easily polished with high precision by chemically vapor-depositing the silicon carbide with the crystal faces oriented to the (200) face indicated by Miller indices on the surface of a substrate consisting of sintered silicon carbide, etc. CONSTITUTION:The composite material is obtained by chemically vapor- depositing high-purity beta-silicon carbide on the surface of a substrate. In the vapor deposition, the (111) face and other faces indicated by Miller indices are oriented to the (220) face. In this case, the X-ray diffraction intensity ratio of the (220) face to the (111) face and other faces is preferably controlled to >=99 at the peak intensity. Meanwhile, the vapor deposition is preferably conducted at 1300-1500 deg.C and at the vapor deposition rate of ten to several ten mum/h in a nonoxidizing atmosphere. Sintered silicon carbide is preferably used as the material constituting the substrate to exhibit the inherent characteristic of the CVD-SiC to a maximum.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、例えば高密度エネルギ光反射Il!(高出力
レーザ反射鏡、X線レーザ反射鏡、SOR光用レーザ反
射鏡等)の構成相等として好適に使用される複合相であ
って、特に、基体の表面に炭化珪素の化学蒸着層を形成
してなる複合材に関するものである。
(Industrial Application Field) The present invention is applicable to, for example, high-density energy light reflection Il! A composite phase that is suitably used as a constituent phase of (high-power laser reflector, X-ray laser reflector, SOR laser reflector, etc.), and in particular forms a chemical vapor deposition layer of silicon carbide on the surface of the substrate. The present invention relates to a composite material made of

【従来の技術】[Conventional technology]

一般に、レーザ反射鏡としては、銅等からなる基材を鏡
面研磨し、その上に金を蒸着させたもの、基材上に使用
波長から算記、設計t、た膜厚の杏層膜をコーティング
して、干e酌果を利用するようにしたもの等が良く知ら
れている。しかし、かかるレーザ反射鏡は、比較的エネ
ルギ密度が小さく月6つ長波長の領域(例えば、可視光
線、赤外線)で使用する場合はともかく、短波長域の高
密度エネルギ光(例えば、真空紫外線、軟X線)を扱う
場合には鏡面の剥離、歪、無根等を招来し易く、その′
M応が極めて困難なものであった。 折時、かかる不都合を生じない1ノ一ザ反射鏡として、
焼4’!炭化珪素又はカーボンからなる残棒の表面に高
1lili度の炭化珪素を化学蒸2C”しτなる複合材
を使用したものがi]望11(、さ1t、ている。すか
わち、この1ノ一ザ反射鏡は、炭(t; ”v よt、
の化学蒸着層(CV D −Si C)を超平m面(R
M:: 1 o A 以下) +:1表面研磨して製作
されるもの1あイ)が、CV D −SiCが劇熱性、
熱伝導性、堅牟11算の物理的性質に優れ[1つ長波長
域で高圧1・j率4示ずどい−〕ノー光学的性質に優れ
るものである。:)−か14)、短波長域の高密度エネ
ルギ光を扱う場合にも、上記した不都合を生じることが
ないのである。 このように、上記複合材は耐熱性、熱伝導性。 堅牢性等に極めて優れた表面層を有するものであるとこ
ろから、高密度エネルギ光用反射鏡の構成材等としての
使用価値が極めて高いものである。
In general, laser reflecting mirrors are made by mirror-polishing a base material made of copper or the like and depositing gold on it, or by depositing an apricot layer film on the base material with a thickness calculated from the wavelength to be used. It is well known that it is coated with dried eel to make use of it. However, such a laser reflector is not suitable for use in a relatively low energy density and long wavelength region (e.g. visible light, infrared light), but it also uses high-density energy light in a short wavelength region (e.g. vacuum ultraviolet light, infrared light). When handling soft X-rays, it is easy to cause peeling, distortion, rootlessness, etc.
It was extremely difficult to respond. Occasionally, as a single reflector that does not cause such inconvenience,
Grilled 4'! A composite material made by chemically vaporizing high 1lili silicon carbide 2C'' on the surface of the remaining rod made of silicon carbide or carbon is desired. The nozzle reflector is made of charcoal (t; ”v yot,
The chemical vapor deposited layer (CVD-SiC) of ultra-flat m-plane (R
M:: 1 o A (below)
It has excellent physical properties such as thermal conductivity and physical properties [high pressure 1.j ratio of 4 in the long wavelength region, which is difficult to measure], and no optical properties. :)-14) The above-mentioned disadvantages do not occur even when dealing with high-density energy light in a short wavelength range. In this way, the above composite material is heat resistant and thermally conductive. Since it has a surface layer with extremely excellent robustness, it has extremely high utility value as a constituent material of a reflecting mirror for high-density energy light.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、従来の複合材にあっては、高純度のCV
D−8iCが一般に高結晶性で極めて硬いものであるこ
とから、前記した如き超平滑面に表面研磨するためには
多大な労力を必要とする。また、・極めて高い研磨エネ
ルギを必要とすることから、研磨面が損傷し易く、高精
度の平滑面を得ることが困難であった。 そこで、本発明者は種々の試験、研究を繰返すことによ
り、従来の複合材における表面研磨の困難性が炭化珪素
蒸着層の結晶面が無配向となっていることに起因するこ
とを究明し、炭化珪素蒸着層における結晶面を一定の面
に配向させ、臂開面を揃えることによって、より少ない
研磨エネルギで損傷の発生を極力防ぎながら超平滑面に
表面研磨できることを知得した。 本発明は、二のような試験、研究の成果に基づいてなさ
れたもので、炭化珪素の化学蒸着層を容易に且つ高精度
に表面研磨しうる複合材を提供することを目的とするも
のである。
However, in conventional composite materials, high purity CV
Since D-8iC is generally highly crystalline and extremely hard, a great deal of effort is required to polish the surface to the ultra-smooth surface described above. In addition, since extremely high polishing energy is required, the polished surface is easily damaged and it is difficult to obtain a highly accurate smooth surface. Therefore, by repeating various tests and research, the present inventor found that the difficulty in surface polishing of conventional composite materials is due to the non-oriented crystal plane of the silicon carbide deposited layer, We have learned that by orienting the crystal planes in the deposited silicon carbide layer in a certain plane and aligning the opening planes, it is possible to polish the surface to an ultra-smooth surface with less polishing energy while minimizing damage. The present invention has been made based on the results of the tests and research mentioned above, and aims to provide a composite material that allows surface polishing of a chemical vapor deposited silicon carbide layer with ease and high precision. be.

【課題を解決するための手段】[Means to solve the problem]

この課題を解決した本発明の複合材は、炭化珪素の化学
蒸着層において、特に、結晶面をミラー指数表示におけ
る(220)面に配向せしめるようにしたものである。 具体的には、この複合材は基体の表面に高純度のβ型炭
化珪素を化学蒸着して得られるが、その蒸着を行う上に
おいて、ミラー指数表示における(111)面及びその
他の面が(220)面に配向せしめられるように調製し
たものである。このとき、(220)面の(1,11)
面及びその他の面に対するX線回折強度比が、そのピー
ク強度において99以上となるようにしておくことが好
ましい。蒸着は、例えば蒸着温度1300〜1500°
C9蒸着速度10−数10 p m / h +非酸化
雰囲気の条件下で行うことが好ましい。なお、基体の構
成材料としては、カーボン等を任意に選択することがで
きるが、CVD−8iC本来の特性を最大限有効に発揮
させるためには、焼結炭化珪素を使用することが好まし
い。 [実施例] 焼結炭化珪素からなる基体の表面に純粋のβ型炭化珪素
を化学蒸着し、その蒸着を調製することによって第1図
及び第2図に示す表面形態、X線回折パターンを呈する
複合材を得た。なお、蒸着は非酸化雰囲気で行い、蒸着
温度は1350’Cであった。 この実施例の複合材では、第1図及び第2図に示す如く
、炭化珪素蒸着層における結晶面が(220)面に強制
的に配向せしめられている。第1図は蒸着層表面をノマ
ルスキー顕微鏡により800倍に拡大したものであり、
突起して見える部分は(111)面である。第2図は炭
化珪素蒸着層(7)X線回折パター?/ (CuK a
 : 30KVX 30mA、=4 フルスケール: 50KCPS、スリット: 1−1−
0.3.2θ: 2’ /win、チャート: 20m
m/min、メインビーク強度: 27KCPS )を
示しているが、このパターン図から明らかなように、(
2,20)面の(111)面及びその他の面に対するX
線回折強度比が、そのピーク強度において99以上とな
っている。 また比較例として、蒸着条件を異にする以外は上記実施
例と同様にして、第3図及び第4図に示す表面形態、X
線回折パターン(CuKα:30KVX30mA、フル
スケール: 5KCPS、スリット:1−1−0.3.
2θ: 2″/min、チャート:20mm/win、
メインビーク強度: 1.2KCPS)を呈する複合材
を得た。この複合材は、レーザ反射鏡の構成材として使
用されている従来公知のものである。 この複合材の炭化珪素蒸着層における結晶面は第3図及
び第4図に示す如く無配向となっている。 そして、両複合材の表面における物理的性質及び光学的
性質並びに表面研磨性について比較試験を行ったところ
、耐熱性等の物理的性質及び長波長域での反射率等の光
学的性質については差異は認められなかったが、表面研
磨性については明らかな差異が生じた。すなわち、実施
例のものでは、所定の平滑面(RMS 10Å以下)に
研磨するに要した研磨エネルギ、時間等の労力が極めて
少なかったが、比較例のものでは、冒頭に述べた如く高
研磨エネルギを必要とし、多大の労力を要した。 しかも、実施例のものでは、研磨エネルギが小さいこと
から、研磨面には殆ど損傷が認められなかったが、比較
例のものでは研磨面に明瞭な損傷が認められた。 なお、炭化珪素の蒸着層における結晶面を(220)面
以外の面に配向させたものについても、表面研磨性につ
いて同様の試験を行ったが、上記実施例のものにおける
ような効果は認められなかった・
The composite material of the present invention that solves this problem is one in which the crystal plane in the chemical vapor deposition layer of silicon carbide is oriented to the (220) plane in Miller index representation. Specifically, this composite material is obtained by chemical vapor deposition of high-purity β-type silicon carbide on the surface of a substrate. 220) plane. At this time, (1,11) of (220) plane
It is preferable that the X-ray diffraction intensity ratio of the surface and other surfaces be 99 or more at its peak intensity. For example, the deposition temperature is 1300 to 1500°.
It is preferable to carry out the C9 deposition rate under conditions of 10-several 10 pm/h + non-oxidizing atmosphere. Note that carbon or the like can be arbitrarily selected as the constituent material of the base, but in order to maximize the original characteristics of CVD-8iC, it is preferable to use sintered silicon carbide. [Example] Pure β-type silicon carbide is chemically deposited on the surface of a substrate made of sintered silicon carbide, and the vapor deposition is prepared to exhibit the surface morphology and X-ray diffraction pattern shown in FIGS. 1 and 2. Obtained composite material. Note that the vapor deposition was performed in a non-oxidizing atmosphere, and the vapor deposition temperature was 1350'C. In the composite material of this example, as shown in FIGS. 1 and 2, the crystal plane in the deposited silicon carbide layer is forcibly oriented in the (220) plane. Figure 1 shows the surface of the deposited layer magnified 800 times using a Nomarski microscope.
The part that appears to protrude is the (111) plane. Figure 2 shows silicon carbide deposited layer (7) X-ray diffraction pattern? / (CuKa
: 30KVX 30mA, = 4 Full scale: 50KCPS, Slit: 1-1-
0.3.2θ: 2'/win, chart: 20m
m/min, main peak strength: 27KCPS), but as is clear from this pattern diagram, (
2,20) plane with respect to the (111) plane and other planes
The linear diffraction intensity ratio is 99 or more at its peak intensity. In addition, as a comparative example, the surface morphology shown in FIGS. 3 and 4,
Linear diffraction pattern (CuKα: 30KVX30mA, full scale: 5KCPS, slit: 1-1-0.3.
2θ: 2″/min, chart: 20mm/win,
A composite material exhibiting main beak strength: 1.2KCPS was obtained. This composite material is a conventionally known material used as a component of a laser reflecting mirror. The crystal planes in the silicon carbide vapor deposited layer of this composite material are non-oriented as shown in FIGS. 3 and 4. Comparative tests were conducted on the physical properties, optical properties, and surface abrasiveness of the surfaces of both composite materials, and it was found that there were differences in physical properties such as heat resistance and optical properties such as reflectance in the long wavelength range. However, there was a clear difference in surface polishability. That is, in the example, the amount of polishing energy, time, and effort required to polish to a predetermined smooth surface (RMS 10 Å or less) was extremely low, but in the comparative example, as mentioned at the beginning, high polishing energy was required. , and required a lot of effort. Furthermore, in the examples, almost no damage was observed on the polished surfaces because the polishing energy was small, but in the comparative examples, clear damage was observed on the polished surfaces. A similar test for surface polishing properties was also conducted for silicon carbide vapor deposited layers whose crystal planes were oriented in planes other than the (220) plane, but no effects similar to those in the above examples were observed. There wasn't.

【発明の効果】【Effect of the invention】

以上の説明から容易に理解されるように、本発明の複合
材は、従来の複合材に比して、より少ない研磨エネルギ
により極めて容易に表面研磨する− ことができ、研磨面に与える損傷を極力少なくしながら
高精度の平滑面を得ることができるものである。したが
って、本発明によれば、高密度エネルギ光用反射鏡の構
成材等として極めて実用性に富む複合材を提供すること
ができる。
As can be easily understood from the above explanation, the composite material of the present invention can be surface-polished extremely easily with less polishing energy than conventional composite materials, and can reduce damage to the polished surface. It is possible to obtain a highly accurate smooth surface while minimizing the number of parts. Therefore, according to the present invention, it is possible to provide a composite material that is highly practical as a constituent material of a reflecting mirror for high-density energy light.

【図面の簡単な説明】[Brief explanation of the drawing]

第工図は本発明に係る複合材の表面を800倍に拡大し
て示すノマルスキー顕微鏡写真、第2図はそのX線回折
パターン図であり、第3図は従来の複合材の表面を80
0倍に拡大して示すノマルスキー顕微鏡写真、第4図は
そのX線回折パターン図である。 8− 手続補 正 1天 日 (方式) 1、事件の表示 平成1年特許願第264309号 2、発明の名称 複合材 3、補正をする者 事件との関係
The construction drawing is a Nomarski micrograph showing the surface of the composite material according to the present invention magnified 800 times, FIG. 2 is its X-ray diffraction pattern, and FIG.
A Nomarski micrograph shown at 0x magnification, and FIG. 4 is an X-ray diffraction pattern. 8- Procedural amendment 1 day (method) 1. Indication of the case 1999 Patent Application No. 264309 2. Name of the invention Composite material 3. Person making the amendment Relationship with the case

Claims (1)

【特許請求の範囲】[Claims]  焼結炭化珪素等からなる基体の表面に炭化珪素を化学
蒸着してなる複合材であって、炭化珪素の化学蒸着層に
おいては、結晶面がミラー指数表示における(220)
面に配向せしめられていることを特徴とする複合材。
A composite material made by chemical vapor deposition of silicon carbide on the surface of a substrate made of sintered silicon carbide, etc. In the chemical vapor deposited layer of silicon carbide, the crystal plane is (220) in the Miller index representation.
A composite material characterized by being oriented in a plane.
JP1264309A 1989-10-11 1989-10-11 Composite material Expired - Fee Related JPH0832591B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1264309A JPH0832591B2 (en) 1989-10-11 1989-10-11 Composite material
US07/672,907 US5106687A (en) 1989-10-11 1991-03-21 Composite material with chemically vapor deposited layer of silicon carbide formed thereon
DE4112114A DE4112114C1 (en) 1989-10-11 1991-04-10

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1264309A JPH0832591B2 (en) 1989-10-11 1989-10-11 Composite material

Publications (2)

Publication Number Publication Date
JPH03126671A true JPH03126671A (en) 1991-05-29
JPH0832591B2 JPH0832591B2 (en) 1996-03-29

Family

ID=17401389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1264309A Expired - Fee Related JPH0832591B2 (en) 1989-10-11 1989-10-11 Composite material

Country Status (3)

Country Link
US (1) US5106687A (en)
JP (1) JPH0832591B2 (en)
DE (1) DE4112114C1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339080A (en) * 1992-06-08 1993-12-21 Nippon Pillar Packing Co Ltd Composite material
JPH06174053A (en) * 1992-12-10 1994-06-21 Honda Motor Co Ltd Slide surface constituting body
WO1999001405A1 (en) * 1997-07-02 1999-01-14 Nippon Pillar Packing Co., Ltd. SiC COMPOSITE AND METHOD OF PRODUCTION THEREOF
JP2000169298A (en) * 1998-12-01 2000-06-20 Tokai Carbon Co Ltd Silicon carbide molded article
JP2001107239A (en) * 1999-08-02 2001-04-17 Tokyo Electron Ltd CVD-SiC EXCELLENT IN CORROSION RESISTANCE, CORROSION RESISTING MEMBER USING THE SAME, AND TREATMENT DEVICE
JP2001203190A (en) * 2000-01-20 2001-07-27 Ibiden Co Ltd Component for semiconductor manufacturing machine and the machine
US6936102B1 (en) * 1999-08-02 2005-08-30 Tokyo Electron Limited SiC material, semiconductor processing equipment and method of preparing SiC material therefor
JP2013504095A (en) * 2009-09-09 2013-02-04 フラオンホファー−ゲゼルシャフト・ツア・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファオ Base material made of aluminum-silicon alloy or crystalline silicon, metal mirror, production method thereof and use thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0495570B1 (en) * 1991-01-16 1999-04-28 Sgl Carbon Composites, Inc. Silicon carbide fiber reinforced carbon composites
JPH0774839B2 (en) * 1991-09-30 1995-08-09 東芝セラミックス株式会社 Mirror for SOR
JPH07117605B2 (en) * 1992-03-13 1995-12-18 日本ピラー工業株式会社 Diffraction grating
US5425860A (en) * 1993-04-07 1995-06-20 The Regents Of The University Of California Pulsed energy synthesis and doping of silicon carbide
US5360491A (en) * 1993-04-07 1994-11-01 The United States Of America As Represented By The United States Department Of Energy β-silicon carbide protective coating and method for fabricating same
JP2918860B2 (en) * 1997-01-20 1999-07-12 日本ピラー工業株式会社 Specular
US6206531B1 (en) 1999-05-25 2001-03-27 Ultramet Lightweight precision optical mirror substrate and method of making
US6332465B1 (en) * 1999-06-02 2001-12-25 3M Innovative Properties Company Face masks having an elastic and polyolefin thermoplastic band attached thereto by heat and pressure
EP1143044A4 (en) * 1999-09-22 2009-01-21 Sumitomo Electric Industries Coated diamond, method for preparing the same and composite material comprising the same
JP3648112B2 (en) * 1999-11-26 2005-05-18 東芝セラミックス株式会社 CVD-SiC free-standing film structure and manufacturing method thereof
JP2004107096A (en) * 2002-09-13 2004-04-08 National Institute For Materials Science Oriented silicon carbide sintered body and its manufacturing process
US20060124693A1 (en) * 2004-12-15 2006-06-15 Meloni Paul A Thermally conductive polyimide film composites having high mechanical elongation useful as a heat conducting portion of an electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53146299A (en) * 1977-05-25 1978-12-20 Sharp Corp Production of silicon carbide substrate
JPS5585468A (en) * 1978-12-15 1980-06-27 Hitachi Ltd Silicon carbide sintered body
JPS63210276A (en) * 1987-02-26 1988-08-31 Mitsui Eng & Shipbuild Co Ltd Member having sic film

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075577A (en) * 1983-09-30 1985-04-27 Toshiba Corp Back ornamental article
US4608326A (en) * 1984-02-13 1986-08-26 Hewlett-Packard Company Silicon carbide film for X-ray masks and vacuum windows
EP0221531A3 (en) * 1985-11-06 1992-02-19 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha High heat conductive insulated substrate and method of manufacturing the same
JPS62197370A (en) * 1986-02-20 1987-09-01 日本碍子株式会社 Silicon nitride sintered body
DE3733311A1 (en) * 1987-10-02 1989-04-13 Philips Patentverwaltung METHOD FOR PRODUCING A MASK CARRIER FROM SIC FOR X-RAY RAY LITHOGRAPHY MASKS

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53146299A (en) * 1977-05-25 1978-12-20 Sharp Corp Production of silicon carbide substrate
JPS5585468A (en) * 1978-12-15 1980-06-27 Hitachi Ltd Silicon carbide sintered body
JPS63210276A (en) * 1987-02-26 1988-08-31 Mitsui Eng & Shipbuild Co Ltd Member having sic film

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05339080A (en) * 1992-06-08 1993-12-21 Nippon Pillar Packing Co Ltd Composite material
JPH06174053A (en) * 1992-12-10 1994-06-21 Honda Motor Co Ltd Slide surface constituting body
WO1999001405A1 (en) * 1997-07-02 1999-01-14 Nippon Pillar Packing Co., Ltd. SiC COMPOSITE AND METHOD OF PRODUCTION THEREOF
JP2000169298A (en) * 1998-12-01 2000-06-20 Tokai Carbon Co Ltd Silicon carbide molded article
JP2001107239A (en) * 1999-08-02 2001-04-17 Tokyo Electron Ltd CVD-SiC EXCELLENT IN CORROSION RESISTANCE, CORROSION RESISTING MEMBER USING THE SAME, AND TREATMENT DEVICE
US6936102B1 (en) * 1999-08-02 2005-08-30 Tokyo Electron Limited SiC material, semiconductor processing equipment and method of preparing SiC material therefor
US7410923B2 (en) 1999-08-02 2008-08-12 Tokyo Electron Limited SiC material, semiconductor device fabricating system and SiC material forming method
JP2001203190A (en) * 2000-01-20 2001-07-27 Ibiden Co Ltd Component for semiconductor manufacturing machine and the machine
JP2013504095A (en) * 2009-09-09 2013-02-04 フラオンホファー−ゲゼルシャフト・ツア・フェルデルング・デア・アンゲヴァンテン・フォルシュング・エー・ファオ Base material made of aluminum-silicon alloy or crystalline silicon, metal mirror, production method thereof and use thereof

Also Published As

Publication number Publication date
JPH0832591B2 (en) 1996-03-29
US5106687A (en) 1992-04-21
DE4112114C1 (en) 1992-04-02

Similar Documents

Publication Publication Date Title
JPH03126671A (en) Composite material
Senthilarasu et al. Characterization of zinc phthalocyanine (ZnPc) for photovoltaic applications
US5897751A (en) Method of fabricating boron containing coatings
Tcheliebou et al. On the microstructure and optical properties of Ba0. 5Sr0. 5TiO3 films
US5061574A (en) Thick, low-stress films, and coated substrates formed therefrom
Debe et al. Postdeposition growth of a uniquely nanostructured organic film by vacuum annealing
Chang et al. Structural properties of epitaxial TiO2 films grown on sapphire (110) by MOCVD
Pickering et al. Chemically vapor deposited silicon carbide (SiC) for optical applications
JP7395826B2 (en) Composite tungsten oxide film, method for producing the same, and film-forming substrate and article having the film
Chen et al. Optical absorption edge characteristics of cubic boron nitride thin films
Hübert et al. Amorphous and nanocrystalline SrTiO3 thin films
JP2023155281A (en) Composite tungsten oxide film, and film formation base material having the film, and article
Bovard Ion-assisted processing of optical coatings
JPH0832592B2 (en) Composite material
Someno et al. Preparation of AlN-Al2O3 Composite Films by Microwave Plasma Chemical Vapor Deposition
Rahchamani et al. Anisotropic optical properties of ZnS thin films with zigzag structure
Torres-Huerta et al. Characterization of ZrO2 thin films deposited by MOCVD as ceramic coatings
Lu et al. Growth of (001)-oriented SBN thin films by solid source MOCVD
JPH08290968A (en) Composite material
JP2000104163A (en) Formation of dry plated laminated film
JPH0336402B2 (en)
Atamny et al. Afm and xrd investigation of crystalline vapor-deposited C 60 films
Huang et al. Epitaxial growth and structure characterization of single-crystal Co (11⦶ 20) films on Cr (100) surfaces
JP2000104162A (en) Formation of sputtered laminated film
JP2929109B2 (en) Optical thin film and method for manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees