JP2000104162A - Formation of sputtered laminated film - Google Patents

Formation of sputtered laminated film

Info

Publication number
JP2000104162A
JP2000104162A JP10290049A JP29004998A JP2000104162A JP 2000104162 A JP2000104162 A JP 2000104162A JP 10290049 A JP10290049 A JP 10290049A JP 29004998 A JP29004998 A JP 29004998A JP 2000104162 A JP2000104162 A JP 2000104162A
Authority
JP
Japan
Prior art keywords
silicon carbide
target
film
refractive index
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10290049A
Other languages
Japanese (ja)
Other versions
JP4178339B2 (en
Inventor
Masahito Yoshikawa
雅人 吉川
Shingo Ono
信吾 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP29004998A priority Critical patent/JP4178339B2/en
Priority to EP99307632A priority patent/EP0992604B1/en
Priority to US09/407,703 priority patent/US6666958B1/en
Priority to DE69939044T priority patent/DE69939044D1/en
Publication of JP2000104162A publication Critical patent/JP2000104162A/en
Priority to US10/647,251 priority patent/US6921465B2/en
Application granted granted Critical
Publication of JP4178339B2 publication Critical patent/JP4178339B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To easily and surely form a thin film different in refractive indexes along the thickness direction by executing sputtering in such a manner that silicon carbide is used as a target, and the electric power to be supplied to the target is continuously or intermittently changed. SOLUTION: Preferably, the concn. of reactive gas is continuously or intermittently changed as well, moreover, as a silicon carbide target, a silicon carbide sintered body having >=2.9 g/cm3 density and obtd. by sintering a mixture in which silicon carbide powder and a nonmetallic sintering assistant are homogeneously mixed is used, and the sputtered laminated film is the one for a reflection preventing film. Since the SiC target using the silicon carbide sintered body has electric conductivity, DC sputtering or DC magnetron sputtering is desirably executed, and, as the base material, an inorganic material such as glass, ceramics, a metallic material, an organic material such as PMMA, PET can be used. In this way, a laminated film having an optional refractive index change in the thickness direction in the range of 1.4 to 2.8 refractive index can surely be formed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、屈折率の異なる薄
層が厚み方向に沿って積層、形成され、光学フィルター
等として好適に用いられるスパッタ積層膜の作製方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sputtered laminated film in which thin layers having different refractive indices are laminated and formed along the thickness direction, and which is suitably used as an optical filter or the like.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
ある屈折率を持つ透明膜を得るために酸化物皮膜が一般
に用いられているが、酸化物皮膜は、酸素分率を変えて
も屈折率は大きく変化しない。このため、得られる屈折
率の値が限られており、要求に応じて屈折率を任意に変
えた積層膜を自由に得ることは難しい。
2. Description of the Related Art
An oxide film is generally used to obtain a transparent film having a certain refractive index, but the refractive index of the oxide film does not change significantly even when the oxygen fraction is changed. For this reason, the value of the obtained refractive index is limited, and it is difficult to freely obtain a laminated film having a refractive index arbitrarily changed as required.

【0003】本発明は、上記事情に鑑みなされたもの
で、厚み方向に沿って任意に屈折率が変化するスパッタ
積層膜を簡単かつ確実に作製する方法を提供することを
目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method for easily and reliably producing a sputtered laminated film whose refractive index changes arbitrarily along a thickness direction.

【0004】[0004]

【課題を解決するための手段及び発明の実施の形態】本
発明者は、上記目的を達成するため鋭意検討を行った結
果、炭化ケイ素(SiC)をスパッタリング法における
ターゲットとして用い、このターゲットに対する投入電
力を変化させることにより、この投入電力に応じ、1.
4〜2.8の屈折率範囲(測定温度:25℃)で任意の
屈折率を有する薄膜を形成でき、またこの場合、更にス
パッタリングを酸素ガスや窒素ガス等の反応性ガスの濃
度を変化させて行うことにより、更に効果的に任意の屈
折率を有するSiCを主体とする薄膜を形成できること
を知見し、本発明をなすに至った。
Means for Solving the Problems and Embodiments of the Invention The present inventors have made intensive studies to achieve the above object, and as a result, used silicon carbide (SiC) as a target in a sputtering method, and introduced the target to this target. By changing the power, according to this input power:
A thin film having an arbitrary refractive index can be formed in a refractive index range of 4 to 2.8 (measuring temperature: 25 ° C.). In this case, sputtering is further performed by changing the concentration of a reactive gas such as oxygen gas or nitrogen gas. The present inventors have found that a thin film mainly composed of SiC having an arbitrary refractive index can be formed more effectively by performing the method described above, and have accomplished the present invention.

【0005】そして、そのようにスパッタリングを行う
場合、上記ターゲットに対する投入電力を連続的に又は
間欠的に変化させることにより、場合によっては更に反
応性ガスの濃度を連続的に又は間欠的に変化させること
により、得られるスパッタ皮膜が、その厚み方向に沿っ
て矩形波状、三角波状、サイン波状等の任意の波状形態
で屈折率が変化し、従って、任意の帯域をパスできるフ
ィルターとして用いられ、例えば、可視光反射防止膜等
の反射防止膜として有用な積層膜を簡単に形成すること
ができることを知見し、本発明をなすに至ったものであ
る。
When such sputtering is performed, the power supplied to the target is changed continuously or intermittently, and in some cases, the concentration of the reactive gas is further changed continuously or intermittently. Thereby, the obtained sputtered film has a refractive index that changes in an arbitrary wave form such as a rectangular wave, a triangular wave, and a sine wave along its thickness direction, and is therefore used as a filter that can pass an arbitrary band. It has been found that a laminated film useful as an antireflection film such as a visible light antireflection film can be easily formed, and the present invention has been accomplished.

【0006】即ち、本発明は、下記のスパッタ積層膜の
作製方法を提供する。 請求項1:炭化ケイ素をターゲットとしてターゲットへ
の投入電力を連続的に又は間欠的に変化させてスパッタ
リングを行うことにより、厚み方向に沿って屈折率の異
なる薄膜を析出、形成することを特徴とするスパッタ積
層膜の作製方法。 請求項2:更に反応性ガス濃度を連続的に又は間欠的に
変化させるようにした請求項1記載の方法。 請求項3:炭化ケイ素ターゲットとして密度が2.9g
/cm3以上であり、且つ炭化ケイ素粉末と非金属系焼
結助剤とが均質に混合された混合物を焼結することによ
り得られた炭化ケイ素焼結体を用いた請求項1又は2記
載の方法。 請求項4:スパッタ積層膜が反射防止膜用である請求項
1、2又は3記載の方法。
That is, the present invention provides the following method for producing a sputtered laminated film. Claim 1: Depositing and forming a thin film having a different refractive index along the thickness direction by performing sputtering while continuously or intermittently changing the input power to the target using silicon carbide as a target. Method of producing a sputtered laminated film. In a preferred embodiment, the reactive gas concentration is changed continuously or intermittently. Claim 3: 2.9 g density as silicon carbide target
3. A silicon carbide sintered body obtained by sintering a mixture in which a silicon carbide powder and a nonmetallic sintering aid are homogeneously mixed, wherein the silicon carbide powder and the nonmetallic sintering aid are homogeneously mixed. the method of. In a preferred embodiment, the sputtered laminated film is for an anti-reflection film.

【0007】以下、本発明につき更に詳しく説明する。Hereinafter, the present invention will be described in more detail.

【0008】本発明のスパッタ積層膜の作製方法は、炭
化ケイ素をターゲットとして基材にスパッタリングを行
うものである。
In the method for producing a sputtered laminated film of the present invention, a substrate is sputtered using silicon carbide as a target.

【0009】この場合、スパッタリング法としては、使
用するSiCターゲットの導電性によるが、導電性が低
い場合は高周波スパッタリング、高周波マグネトロンス
パッタリング等の方法が、導電性が高い場合はDCスパ
ッタリング、DCマグネトロンスパッタリング等の方法
が用いられるが、特に後述する炭化ケイ素焼結体を用い
たSiCターゲット材は導電性があるため、DCスパッ
タリング、DCマグネトロンスパッタリングが好まし
い。なお、基材としてはガラス、セラミックス等の無機
材料、金属材料、PMMA、PET等の有機材料を用い
ることができる。
In this case, the sputtering method depends on the conductivity of the SiC target to be used. If the conductivity is low, a method such as high-frequency sputtering or high-frequency magnetron sputtering is used. If the conductivity is high, DC sputtering or DC magnetron sputtering is used. In particular, DC sputtering and DC magnetron sputtering are preferable because a SiC target material using a silicon carbide sintered body described later has conductivity. Note that an inorganic material such as glass and ceramics, a metal material, and an organic material such as PMMA and PET can be used as the base material.

【0010】ここで、炭化ケイ素としては、密度が2.
9g/cm3以上であり、且つ炭化ケイ素粉末と非金属
系焼結助剤とが均質に混合された混合物を焼結すること
により得られた炭化ケイ素焼結体で形成されたものが好
ましい。この場合、この炭化ケイ素焼結体に含まれる不
純物元素の総含有量は1ppm以下であることが好まし
い。なお、非金属系焼結助剤は、加熱により炭素を生成
する有機化合物、例えばコールタールピッチ、フェノー
ル樹脂、フラン樹脂、エポキシ樹脂やグルコース、蔗
糖、セルロース、デンプンなどが挙げられ、特にフェノ
ール樹脂であることが好ましい。また、上記非金属系焼
結助剤は炭化ケイ素粉末表面を被覆していることがよ
い。上記炭化ケイ素焼結体は、上記混合物を非酸化性雰
囲気下でホットプレスすることにより得ることができ
る。
Here, silicon carbide has a density of 2.
It is preferably 9 g / cm 3 or more and formed of a silicon carbide sintered body obtained by sintering a mixture in which silicon carbide powder and a nonmetallic sintering aid are homogeneously mixed. In this case, the total content of impurity elements contained in the silicon carbide sintered body is preferably 1 ppm or less. The non-metallic sintering aid is an organic compound that generates carbon by heating, such as coal tar pitch, phenolic resin, furan resin, epoxy resin, glucose, sucrose, cellulose, starch, and the like. Preferably, there is. Further, the nonmetallic sintering aid preferably covers the surface of the silicon carbide powder. The silicon carbide sintered body can be obtained by hot-pressing the mixture under a non-oxidizing atmosphere.

【0011】なお、この炭化ケイ素焼結体の製造に用い
る炭化ケイ素粉末としては、少なくとも1種以上の液状
のケイ素化合物を含むケイ素源と、加熱により炭素を生
成する少なくとも1種以上の液状の有機化合物を含む炭
素源と、重合又は架橋触媒とを混合して得られた混合物
を固化して固形物を得る固化工程と、得られた固形物を
非酸化性雰囲気下で加熱炭化した後、更に非酸化性雰囲
気で焼成する焼成工程とを含む製造方法により得られた
ものであることが好ましい。
The silicon carbide powder used for producing the silicon carbide sintered body includes a silicon source containing at least one or more liquid silicon compounds and at least one or more liquid organic compounds that generate carbon by heating. After solidifying the mixture obtained by mixing the carbon source containing the compound and the polymerization or cross-linking catalyst to obtain a solid, and heating and carbonizing the obtained solid in a non-oxidizing atmosphere, It is preferably obtained by a manufacturing method including a firing step of firing in a non-oxidizing atmosphere.

【0012】この炭化ケイ素焼結体は、炭化ケイ素粉末
を焼結するに当たり、焼結助剤としてホウ素、アルミニ
ウム、ベリリウム等の金属やその化合物である金属系焼
結助剤や、カーボンブラック、グラファイト等の炭素系
焼結助剤等は用いずに、非金属系焼結助剤のみを用いる
ため、焼結体の純度が高く、また結晶粒界での異物が少
なく、熱伝導性に優れ、且つ炭化ケイ素本来の性質とし
て炭素材料に比し耐汚染性、耐摩耗性に優れた、各種電
子デバイス部品の保護膜や機能性膜に適する薄膜、及び
各種治工具等の耐久性を向上させるために有用な表面処
理薄膜等を形成し得る。
In sintering the silicon carbide powder, the silicon carbide sintered body includes, as sintering aids, metals such as boron, aluminum and beryllium and metal-based sintering aids which are compounds thereof, carbon black, graphite, and the like. Since only non-metallic sintering aids are used without using a carbon-based sintering aid, etc., the purity of the sintered body is high, and there are few foreign substances at the crystal grain boundaries, and the thermal conductivity is excellent. In addition, to improve the durability of various types of jigs and tools, as well as thin films suitable for protective films and functional films of various electronic device parts, which are superior in contamination resistance and wear resistance compared to carbon materials as the intrinsic properties of silicon carbide. A useful surface-treated thin film or the like can be formed.

【0013】従って、本発明においては、上記炭化ケイ
素焼結体をターゲットとして用いることが好ましい。
Therefore, in the present invention, it is preferable to use the silicon carbide sintered body as a target.

【0014】ここで、炭化ケイ素をターゲットとしてス
パッタリングを行う場合、本発明においては、このター
ゲットに対する投入電力を連続的に又は間欠的に変化さ
せてスパッタリングを行うものである。
Here, when sputtering is performed using silicon carbide as a target, in the present invention, the sputtering is performed by continuously or intermittently changing the input power to the target.

【0015】この場合、投入電力としてはターゲットの
大きさにより異なるが、100mmφの場合50〜20
00W、ターゲット投入電力密度で表わすと0.5〜3
0W/cm2の範囲で選定することができる。
In this case, the input power varies depending on the size of the target.
00W, 0.5 to 3 in terms of target input power density
It can be selected in the range of 0 W / cm 2 .

【0016】上記スパッタリングは、アルゴン等の不活
性ガス雰囲気で行うことができ、不活性ガス流量は、真
空チャンバー、排気ポンプの容量等で異なるが、例えば
5〜30ml/min、特に10〜25ml/minと
することができるが、本発明においては、更に反応性ガ
スを混入して行うことができ、反応性ガス濃度を連続的
に又は間欠的に変化させてスパッタリングを行うことに
より、薄膜の屈折率をより有利にコントロールすること
ができる。この場合、反応性ガスとしては不活性ガス以
外では特に制限はないが、酸素を含む酸素ガス、一酸化
炭素ガス、二酸化炭素ガスなどや、窒素を含む窒素ガ
ス、一酸化窒素ガス、二酸化窒素ガス、アンモニアガス
などを用いることができる。これらのガスは単独でも、
混合でも、また酸素を含むものと窒素を含むものを混合
して用いてもかまわない。これらの反応性ガスのみを真
空チャンバーに流す場合は真空チャンバー、排気ポンプ
の容量により異なるが、本発明で用いた装置では0〜1
00ml/minの範囲で濃度コントロールすることが
望ましい。また、反応性ガスの不活性ガスに対する比率
[反応性ガス流量/(反応性ガス流量+不活性ガス流
量)×100]を0〜50%の範囲とすることが望まし
い。
The sputtering can be performed in an atmosphere of an inert gas such as argon. The flow rate of the inert gas varies depending on the capacity of the vacuum chamber and the exhaust pump, but is, for example, 5 to 30 ml / min, particularly 10 to 25 ml / min. min, but in the present invention, it can be performed by further mixing a reactive gas, and by performing the sputtering while continuously or intermittently changing the reactive gas concentration, the refraction of the thin film is performed. The rate can be controlled more advantageously. In this case, the reactive gas is not particularly limited except for the inert gas. However, oxygen gas containing oxygen, carbon monoxide gas, carbon dioxide gas, and the like, nitrogen gas containing nitrogen, nitrogen monoxide gas, and nitrogen dioxide gas are used. And ammonia gas. These gases alone,
Mixing or mixing of those containing oxygen and those containing nitrogen may be used. When only these reactive gases are allowed to flow into the vacuum chamber, it depends on the capacity of the vacuum chamber and the exhaust pump.
It is desirable to control the concentration within the range of 00 ml / min. Further, the ratio of the reactive gas to the inert gas [reactive gas flow rate / (reactive gas flow rate + inert gas flow rate) × 100] is desirably in the range of 0 to 50%.

【0017】なお、スパッタリングのその他の条件とし
ては公知の通常の条件を採用し得る。
As other conditions for sputtering, known ordinary conditions can be adopted.

【0018】この場合、ターゲットに対する投入電力量
の変化、更に必要に応じて行われる上記反応性ガスの濃
度(流量)変化は、連続的に行っても、適宜間隔毎に行
ってもよく、要求する屈折率変動に応じてコントロール
され、屈折率が厚み方向に沿って矩形波状、三角波状、
サイン波状等、任意の所望の波状に変動する屈折率変動
皮膜を得ることができる。
In this case, the change in the amount of electric power supplied to the target, and the change in the concentration (flow rate) of the reactive gas as required, may be performed continuously or at appropriate intervals. The refractive index is controlled according to the refractive index fluctuation, and the refractive index is rectangular, triangular,
It is possible to obtain a refractive index varying film that fluctuates in any desired wave shape such as a sine wave shape.

【0019】また、上記スパッタ皮膜の膜厚は適宜選定
され、通常、1nm〜100μm、特に5nm〜10μ
mの膜厚に形成することができる。
The thickness of the sputtered film is appropriately selected, and is usually 1 nm to 100 μm, particularly 5 nm to 10 μm.
m.

【0020】このようにして得られたスパッタ皮膜は、
上記反応性ガスが酸素ガスの場合はSiCxy(x,y
は任意の数)の単独膜、又はSiC、SiO、Si
2、SiCxyの混合物皮膜となり、窒素ガスの場合
はSiCxy(x,yは任意の数)の単独膜、又はSi
C、Si34、SiN、SiCxyの混合物皮膜となる
が、これら反応性ガス濃度に応じ、炭素分率がコントロ
ールされて、屈折率1.4〜2.8、特に1.46〜
2.67の屈折率範囲で深さ方向に沿って任意の屈折率
変動を有するSiCを主体とする薄膜である。
The sputtered film thus obtained is
When the reactive gas is oxygen gas, SiC x O y (x, y
Is an arbitrary number) of single films or SiC, SiO, Si
It becomes a mixture film of O 2 and SiC x O y , and in the case of nitrogen gas, a single film of SiC x N y (x and y are arbitrary numbers) or Si
A mixture film of C, Si 3 N 4 , SiN, and SiC x N y is formed. The carbon fraction is controlled according to the concentration of the reactive gas, and the refractive index is 1.4 to 2.8, particularly 1.46. ~
This is a thin film mainly composed of SiC having an arbitrary refractive index variation along the depth direction within a refractive index range of 2.67.

【0021】この薄膜は、屈折率1.4〜2.8の間で
屈折率が深さ方向に分布を有するため、ある波長範囲で
透過率の高い又は反射率の高い光学フィルターを形成で
き、SiC特有の強靱さも兼ね備えており、耐摩耗性、
耐擦傷性に優れた固いハードコート膜を得ることがで
き、反射防止膜、各種光学フィルター、透明耐摩耗膜、
ハーフミラー膜等として有効である。
Since the refractive index of the thin film has a distribution in the depth direction between 1.4 and 2.8, an optical filter having a high transmittance or a high reflectance in a certain wavelength range can be formed. It also has the toughness unique to SiC,
A hard hard coat film with excellent scratch resistance can be obtained, and an anti-reflection film, various optical filters, a transparent wear-resistant film,
It is effective as a half mirror film or the like.

【0022】[0022]

【実施例】以下、実験例及び実施例により本発明を具体
的に説明するが、本発明は下記の実施例に制限されるも
のではない。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Experimental Examples and Examples, but the present invention is not limited to the following Examples.

【0023】[実験例]下記の条件でスパッタリングを
行い、種々の屈折率を有する薄膜を形成した。結果を表
1〜3に示す。 スパッタリング装置:DCマグネトロンスパッタ装置 基材 :ガラス板 ターゲット材料 :SiC ターゲットサイズ :100mmφ 供給ガス :アルゴンガス 18ml/min 酸素ガス 表1〜3に示す流量 圧力 :5mTorr 供給電力 :表1〜3に示す流量 成膜時間 :10分 膜厚測定 :蝕針式膜厚計(テーラーボブソン社製) 屈折率測定 :エリプソメトリー(日本分光製) (測定波長:800nm)
EXPERIMENTAL EXAMPLE Sputtering was performed under the following conditions to form thin films having various refractive indexes. The results are shown in Tables 1 to 3. Sputtering apparatus: DC magnetron sputtering apparatus Base material: Glass plate Target material: SiC Target size: 100 mmφ Supply gas: Argon gas 18 ml / min Oxygen gas Flow rate shown in Tables 1 to 3 Pressure: 5 mTorr Supply power: Flow rate shown in Tables 1 to 3 Film forming time: 10 minutes Film thickness measurement: Needle type film thickness meter (manufactured by Taylor Bobson) Refractive index measurement: ellipsometry (manufactured by JASCO) (measuring wavelength: 800 nm)

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】上記実験例の結果より、ターゲットに対す
る投入電力をコントロールすることで、種々の屈折率の
薄膜を形成でき、これに加えて反応性ガスの濃度(流
量)をコントロールすることによって更に種々の屈折率
を有する薄膜を形成し得ることが認められた。
From the results of the above experimental examples, it is possible to form thin films having various refractive indices by controlling the input power to the target, and further to control the concentration (flow rate) of the reactive gas in addition to various other thin films. It was recognized that a thin film having a refractive index could be formed.

【0028】[実施例1]上記実験例において、アルゴ
ンガス(18ml/min)及び酸素ガス(5ml/m
in)を連続的に流しながら、ターゲットに対する供給
電力を図1に示すように変化させてスパッタリングを行
った。得られた皮膜の屈折率変化を図2に示す。
Example 1 In the above experimental example, argon gas (18 ml / min) and oxygen gas (5 ml / m
In), the sputtering was performed while the power supplied to the target was changed as shown in FIG. FIG. 2 shows the change in the refractive index of the obtained film.

【0029】[実施例2]図3に示すように供給電力を
変化させてスパッタリングを行った。得られた皮膜の屈
折率変化を図4に示す。
Embodiment 2 As shown in FIG. 3, sputtering was performed while changing the supplied power. FIG. 4 shows the change in the refractive index of the obtained film.

【0030】[実施例3]図5に示すように供給電力を
変化させてスパッタリングを行った。得られた皮膜の屈
折率変化を図6に示す。
Example 3 As shown in FIG. 5, sputtering was performed while changing the supplied power. FIG. 6 shows the change in the refractive index of the obtained film.

【0031】[0031]

【発明の効果】本発明によれば、屈折率1.4〜2.8
の範囲で厚さ方向に沿って任意の屈折率変化を有する積
層膜を確実に形成することができる。
According to the present invention, the refractive index is 1.4 to 2.8.
Thus, a laminated film having an arbitrary change in the refractive index along the thickness direction can be reliably formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1において、投入電力の経時的な(膜厚
の厚み方向に沿った)変化を示すグラフである。
FIG. 1 is a graph showing a change over time (along a thickness direction of a film thickness) of applied power in Example 1.

【図2】同例において、得られた積層膜の厚み方向に沿
った屈折率変化を示すグラフである。
FIG. 2 is a graph showing a change in a refractive index along a thickness direction of an obtained laminated film in the same example.

【図3】実施例2において、投入電力の経時的な変化を
示すグラフである。
FIG. 3 is a graph showing a change over time in input power in Example 2.

【図4】同例において、得られた積層膜の厚み方向に沿
った屈折率変化を示すグラフである。
FIG. 4 is a graph showing a change in a refractive index along a thickness direction of an obtained laminated film in the same example.

【図5】実施例3において、投入電力の経時的な変化を
示すグラフである。
FIG. 5 is a graph showing a change over time in input power in Example 3.

【図6】同例において、得られた積層膜の厚み方向に沿
った屈折率変化を示すグラフである。
FIG. 6 is a graph showing a change in the refractive index along the thickness direction of the obtained laminated film in the same example.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 炭化ケイ素をターゲットとしてターゲッ
トへの投入電力を連続的に又は間欠的に変化させてスパ
ッタリングを行うことにより、厚み方向に沿って屈折率
の異なる薄膜を析出、形成することを特徴とするスパッ
タ積層膜の作製方法。
1. A thin film having a different refractive index along a thickness direction is deposited and formed by performing sputtering while continuously or intermittently changing power input to a target using silicon carbide as a target. Method for producing a sputtered laminated film.
【請求項2】 更に反応性ガス濃度を連続的に又は間欠
的に変化させるようにした請求項1記載の方法。
2. The method according to claim 1, wherein the reactive gas concentration is changed continuously or intermittently.
【請求項3】 炭化ケイ素ターゲットとして密度が2.
9g/cm3以上であり、且つ炭化ケイ素粉末と非金属
系焼結助剤とが均質に混合された混合物を焼結すること
により得られた炭化ケイ素焼結体を用いた請求項1又は
2記載の方法。
3. A silicon carbide target having a density of 2.
3. A silicon carbide sintered body obtained by sintering a mixture of 9 g / cm 3 or more and a homogeneous mixture of silicon carbide powder and a nonmetallic sintering aid. The described method.
【請求項4】 スパッタ積層膜が反射防止膜用である請
求項1、2又は3記載の方法。
4. The method according to claim 1, wherein the sputtered laminated film is for an antireflection film.
JP29004998A 1998-09-28 1998-09-28 Method for producing sputtered laminated film Expired - Fee Related JP4178339B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP29004998A JP4178339B2 (en) 1998-09-28 1998-09-28 Method for producing sputtered laminated film
EP99307632A EP0992604B1 (en) 1998-09-28 1999-09-28 Method for controlling the refractive index of a dry plating film
US09/407,703 US6666958B1 (en) 1998-09-28 1999-09-28 Method for controlling a refractive index of a dry plating film and method for making a dry plating built-up film
DE69939044T DE69939044D1 (en) 1998-09-28 1999-09-28 Method for controlling the refractive index of a PVD film
US10/647,251 US6921465B2 (en) 1998-09-28 2003-08-26 Method for controlling a refractive index of a dry plating film and method for making a dry plating built-up film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29004998A JP4178339B2 (en) 1998-09-28 1998-09-28 Method for producing sputtered laminated film

Publications (2)

Publication Number Publication Date
JP2000104162A true JP2000104162A (en) 2000-04-11
JP4178339B2 JP4178339B2 (en) 2008-11-12

Family

ID=17751133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29004998A Expired - Fee Related JP4178339B2 (en) 1998-09-28 1998-09-28 Method for producing sputtered laminated film

Country Status (1)

Country Link
JP (1) JP4178339B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6800182B2 (en) 1999-10-13 2004-10-05 Asahi Glass Company, Limited Sputtering target, process for its production and film forming method
JP2009045751A (en) * 2007-08-14 2009-03-05 Innovation & Infinity Global Corp Low resistivity light attenuation reflection preventing coating layer structure having transmitting surface conductive layer and method of making the same
JP2010510946A (en) * 2006-09-27 2010-04-08 トゥー‐シックス・インコーポレイテッド Low dislocation density SiC single crystal grown by stepwise periodic perturbation technique
JP2011503364A (en) * 2007-11-20 2011-01-27 インテリジェント システム インク. Diffusion thin film deposition method and apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012000812A (en) 2010-06-15 2012-01-05 Daicel Corp Laminated film, method for producing the same and electronic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6800182B2 (en) 1999-10-13 2004-10-05 Asahi Glass Company, Limited Sputtering target, process for its production and film forming method
JP2010510946A (en) * 2006-09-27 2010-04-08 トゥー‐シックス・インコーポレイテッド Low dislocation density SiC single crystal grown by stepwise periodic perturbation technique
US8871025B2 (en) 2006-09-27 2014-10-28 Ii-Vi Incorporated SiC single crystals with reduced dislocation density grown by step-wise periodic perturbation technique
JP2009045751A (en) * 2007-08-14 2009-03-05 Innovation & Infinity Global Corp Low resistivity light attenuation reflection preventing coating layer structure having transmitting surface conductive layer and method of making the same
JP2011503364A (en) * 2007-11-20 2011-01-27 インテリジェント システム インク. Diffusion thin film deposition method and apparatus

Also Published As

Publication number Publication date
JP4178339B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
US10781102B2 (en) Coating source for producing doped carbon layers
Dong et al. Comprehensive investigation of structural, electrical, and optical properties for ZnO: Al films deposited at different substrate temperature and oxygen ambient
JPH07233469A (en) Target, its production and production of high-refractive-index film
WO2007034749A1 (en) Oxide material and sputtering target
JP6403087B2 (en) Niobium oxide sputtering target and method for producing the same
Zenkin et al. Thickness dependent wetting properties and surface free energy of HfO2 thin films
JPH03126671A (en) Composite material
Zagho et al. A brief overview of RF sputtering deposition of boron carbon nitride (BCN) thin films
AU2019265050A1 (en) Composite tungsten oxide film and method for producing same, and film-deposited base material and article each provided with said film
US6666958B1 (en) Method for controlling a refractive index of a dry plating film and method for making a dry plating built-up film
JP4178339B2 (en) Method for producing sputtered laminated film
JP2000104163A (en) Formation of dry plated laminated film
JP2000104165A (en) Method for controlling refractive index of sputtered film
Ctvrtlik et al. Mechanical properties and microstructural characterization of amorphous SiCxNy thin films after annealing beyond 1100° C
EP3812480A1 (en) Composite tungsten oxide film and production method therefor, and film formation base material and article having said film
JP2008057045A (en) Oxide sintered compact sputtering target
Ma et al. Optical properties of SrTiO3 thin films deposited by radio-frequency magnetron sputtering at various substrate temperatures
JP2000104161A (en) Method for controlling refractive index of dry plating film
JPH07232978A (en) Diamond-like carbon film-coated material and its formation
Sosnin et al. Investigation of electrical and optical properties of low temperature titanium nitride grown by rf-magnetron sputtering
Tochitsky et al. Structure and properties of carbon films prepared by pulsed vacuum arc deposition
Takahashi et al. Ultrasonic chemical vapor deposition of TiB2 thick films
Moura et al. Effect of nitrogen gas flow on amorphous Si–C–N films produced by PVD techniques
Sedira et al. Bidirectional properties of TiC, TiN and TiNC thin films deposited by radio frequency magnetron sputtering
JP2003013216A (en) Method for forming transparent thin film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080730

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees