JPS5999401A - Silicon carbide mirror - Google Patents

Silicon carbide mirror

Info

Publication number
JPS5999401A
JPS5999401A JP20895782A JP20895782A JPS5999401A JP S5999401 A JPS5999401 A JP S5999401A JP 20895782 A JP20895782 A JP 20895782A JP 20895782 A JP20895782 A JP 20895782A JP S5999401 A JPS5999401 A JP S5999401A
Authority
JP
Japan
Prior art keywords
silicon carbide
reflectance
size
mirror
crystallizability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20895782A
Other languages
Japanese (ja)
Other versions
JPH0462362B2 (en
Inventor
Hideo Nagashima
長島 秀夫
Akio Karita
刈田 昭夫
Hideyasu Matsuo
松尾 秀逸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP20895782A priority Critical patent/JPS5999401A/en
Publication of JPS5999401A publication Critical patent/JPS5999401A/en
Publication of JPH0462362B2 publication Critical patent/JPH0462362B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/80Optical properties, e.g. transparency or reflexibility

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a mirror with high reflectance suitable especially for high energy by forming a beta-form silicon carbide surface by a chemical vapor deposition method while providing specified crystallizability and size. CONSTITUTION:This silicon carbide mirror has a beta-form silicon carbide surface formed by a chemical vapor deposition method. The half-value width of the (200) faces of silicon carbide crystals in the polished surface under X-ray diffraction is <=0.40 deg.. Silicon carbide crystals obtd. by the deposition method have close relation with the reflectance when conditions during manufacture are changed in several ways, and the reflectance is practically in proportion to the crystallizability and size of the obtd. silicon carbide crystals. The crystallizability and size can be measured by X-ray diffraction, and relation represented by the equation (where beta is half-value width, theta is Bragg angle, lambda is the wavelengths of characteristic X-rays, epsilon is the size of crystallite, and eta is the effective strain of the lattice) is established.

Description

【発明の詳細な説明】 この発明は反射率の高い特に高エネルギービームに適し
たミラーに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mirror that has a high reflectance and is particularly suitable for high energy beams.

一般にミラーは通常の板ガラスの背面にアルミあるいは
銀膜を形成し、これを塗料等で美止めを行なったもので
ある。このようかミラーはガラスが耐蝕、耐熱性に乏し
く、特殊な雰囲気下では使用できない。一方、炭化ケイ
素等のセラミック材料は耐蝕、耐熱の高いものが多いが
、一般に反射率が低′<、高精度ミラーとしてはそのま
までは使用できないものが多かった0反射率を高めるた
めには表面状態を平滑に研磨することが好ましいが、従
来の炭化ケイ素にあっては気孔、結晶性、大きさ等の点
でミラーとして適したものは存在し得なかった。
Generally, mirrors are made by forming an aluminum or silver film on the back surface of an ordinary plate glass, and then applying paint or the like to make it aesthetically pleasing. Mirrors like this cannot be used in special atmospheres because the glass has poor corrosion resistance and heat resistance. On the other hand, although many ceramic materials such as silicon carbide have high corrosion and heat resistance, they generally have low reflectance and cannot be used as high-precision mirrors in many cases. It is preferable to polish the mirror to a smooth surface, but conventional silicon carbide has not been suitable for use as a mirror in terms of pores, crystallinity, size, etc.

本発明者等は材質的に適している炭化ケイ素について、
父、ミラーとして好ましい条件について検討した結果、
この発明がなされたもので。
Regarding silicon carbide, which is suitable as a material, the present inventors have
As a result of considering favorable conditions as a father and mirror,
This invention was made.

従来の炭化ケイ素は掛−ラドブレス法、自焼結法。Conventional silicon carbide is manufactured using the Kake-Radbreath method and the self-sintering method.

CVD法等によって製造されるもので、特にホットプレ
ス法、自焼結法による場合不純物及び気孔の存在が多く
ミラーとして適していない。
It is manufactured by a CVD method or the like, and in particular, when a hot press method or a self-sintering method is used, there are many impurities and pores, making it unsuitable as a mirror.

又CVD法によるものでも反射率60%以上のものは見
られない。これは炭化ケイ素結晶が微細でかつ結晶性が
悪く、これが反射率を向上せしめ得ない原因となってい
ることを見い出したものである。
Also, even when using the CVD method, no reflectance of 60% or more has been observed. This is based on the discovery that silicon carbide crystals are fine and have poor crystallinity, which is the reason why the reflectance cannot be improved.

本発明においては化学蒸着法(CVD法)によって得ら
れる炭化ケイ素の結晶が、その製造条件を種々変えた時
、反射率との間に密接な関係があることが明らかとなっ
た。即ち、この反射率は得られた炭化ケイ素結晶の結晶
性及びその大きさにほぼ比例する。結晶性、大きさはX
線回折によって測定し得るもので、次式で関係づけられ
る。
In the present invention, it has been revealed that silicon carbide crystals obtained by chemical vapor deposition (CVD) have a close relationship with reflectance when the manufacturing conditions are varied. That is, this reflectance is approximately proportional to the crystallinity and size of the obtained silicon carbide crystal. Crystallinity, size is X
It can be measured by line diffraction and is related by the following formula.

β・可θ/λ=1/ε+η・地θ/λ ここでβは半値巾、θはブラッグ角、λは特性X線の波
長、εは結晶子の大きさ、ηは格子の有効歪である。
β・possible θ/λ=1/ε+η・ground θ/λ where β is the half-width, θ is the Bragg angle, λ is the wavelength of the characteristic X-ray, ε is the crystallite size, and η is the effective strain of the lattice. be.

そして半値巾βの値が小さい程反射率が良くなシミラー
特性がよくなることがわかった。又蒸着面を研摩し、エ
ツチングして研摩面における結晶形状を明瞭にし、各粒
子の最大中を測定して20μ以上の粒子の占める面積を
測定した。
It was also found that the smaller the value of the half width β, the better the reflectance and the better the similar characteristics. Further, the deposited surface was polished and etched to clarify the crystal shape on the polished surface, and the largest diameter of each particle was measured to determine the area occupied by particles of 20 μm or more.

その結果を反射率との関供において比較したところ結晶
の大きい(20μ以上のもの)粒子の面積が研摩面の2
0%以上を占めるものは反射以下にこの発明の実施例に
つき説明する。
Comparing the results with the reflectance, it was found that the area of large crystal particles (20μ or more) was 2
What accounts for 0% or more is reflection. Examples of the present invention will be explained below.

実施例1 高純度処理を行ったカーボン板の表面にCVD法により
条件を変えて4種の炭化ケイ素膜を形成せしめた。この
表面を同一研摩条件で鏡面に仕上げた。それらの鏡面を
X線回折装置でCw−にα線による( 2 (1(1)
面の回折線の半値巾を求めた結果第1図に示すような結
晶性を示すミラーが得られた。それぞれ可視光線による
反射率を求めた結果は表−1の如くであった。
Example 1 Four types of silicon carbide films were formed on the surface of a carbon plate that had been subjected to high purity treatment by the CVD method under different conditions. This surface was polished to a mirror finish under the same polishing conditions. Using an X-ray diffractometer, these mirror surfaces were converted into Cw- by α-rays (2 (1(1)
As a result of determining the half width of the diffraction line of the surface, a mirror exhibiting crystallinity as shown in FIG. 1 was obtained. The results of determining the reflectance of each visible light beam are shown in Table 1.

表−1 この結果、0.4 (1を越えるようガ半値巾を有する
ものは反射率が急激に低下することが明らかとなった。
Table 1 As a result, it became clear that the reflectance of a sample having a half-value width exceeding 0.4 (1) decreases rapidly.

実施例2 高純度処理を行ったカーボン板の表面にCVD法によシ
条件を変えて6種の炭化ケイ素膜を形成せしめた。この
表面を同一研摩条件で鏡面に仕上げた。それらの鏡面に
おける結晶粒子の最大中を測定し、2 F1μ以上であ
る粒子の面積を求めたところ、その面積は5%、9%、
15%、20%、25%、30%であった。これらにつ
きそれぞれ可視光線による反射率を求めた結果を表−2
に示す。
Example 2 Six types of silicon carbide films were formed on the surface of a high-purity-treated carbon plate by CVD under different conditions. This surface was polished to a mirror finish under the same polishing conditions. When we measured the maximum size of the crystal grains on those mirror surfaces and determined the area of the grains with a diameter of 2F1μ or more, the areas were 5%, 9%,
They were 15%, 20%, 25%, and 30%. Table 2 shows the results of determining the reflectance by visible light for each of these.
Shown below.

表−2 この結果、20μ以上の粒子の面積比が20%より少な
くなると反射率が著しく低下することが明らかとなった
。なお、上記実施例においては可視光線による反射率を
測定したが、赤外線、X線等の各波長の場合も反射率に
ついては可視光線の場合と同様の傾向を示した。又、C
VD法の条件と結晶の大きさとは必すしも一致しない0
少なくとも半値巾の比較的小さいものは結晶中の原子の
配列が良好となるばかシでなく、研摩に際してもその結
晶性が、加工性に良い効果をもたらしているものと思わ
れる0上記実施例においては高純度カーボンの表面に炭
化ケイ素を形成せしめた場合で行ったが、基材は必ずし
もカーボンに限定されず、例えば炭化ケイ素、アルミナ
等他の材料でもよい。
Table 2 As a result, it became clear that when the area ratio of particles of 20μ or more was less than 20%, the reflectance decreased significantly. In the above examples, the reflectance of visible light was measured, but the reflectance of each wavelength such as infrared rays and X-rays showed the same tendency as that of visible light. Also, C
The conditions of the VD method and the crystal size do not necessarily match.
At least a relatively small half-width does not mean that the atoms in the crystal are arranged well, and the crystallinity seems to have a good effect on workability during polishing. Although silicon carbide was formed on the surface of high-purity carbon, the base material is not necessarily limited to carbon, and may be other materials such as silicon carbide or alumina.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は炭化ケイ素質ミラーのX線回折図形を示すもの
である。 発明者 長高 秀夫 発 明 者  刈  1)  昭  夫発明者 松尾 
秀逸
FIG. 1 shows an X-ray diffraction pattern of a silicon carbide mirror. Inventor: Hideo Nagataka Inventor: Kari 1) Akio Inventor: Matsuo
Excellent

Claims (2)

【特許請求の範囲】[Claims] (1)  化学蒸着法によって形成されたβ型炭化ケイ
素表面よシなりかつ研磨面における炭化ケイ素結晶の(
200)面のX線回折による半値中が0.40度以下で
あることを特徴とする炭化ケイ素質ミラー。
(1) Silicon carbide crystals on the polished and polished surface of β-type silicon carbide formed by chemical vapor deposition
200) A silicon carbide mirror characterized in that the mid-half value of the X-ray diffraction plane is 0.40 degrees or less.
(2)研摩面における結晶境界の最大中が20μ以上を
有する結晶が面積比で20%以上であることを特徴とす
る特許請求の範囲第一項記載の炭化ケイ素質ミラー。
(2) The silicon carbide mirror according to claim 1, wherein the area ratio of crystals having a maximum crystal boundary of 20 μ or more on the polished surface is 20% or more.
JP20895782A 1982-11-29 1982-11-29 Silicon carbide mirror Granted JPS5999401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20895782A JPS5999401A (en) 1982-11-29 1982-11-29 Silicon carbide mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20895782A JPS5999401A (en) 1982-11-29 1982-11-29 Silicon carbide mirror

Publications (2)

Publication Number Publication Date
JPS5999401A true JPS5999401A (en) 1984-06-08
JPH0462362B2 JPH0462362B2 (en) 1992-10-06

Family

ID=16564944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20895782A Granted JPS5999401A (en) 1982-11-29 1982-11-29 Silicon carbide mirror

Country Status (1)

Country Link
JP (1) JPS5999401A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353501A (en) * 1986-08-25 1988-03-07 Mitsubishi Metal Corp Composite brazing member for reflection mirror
JPS64267A (en) * 1987-02-26 1989-01-05 Mitsui Eng & Shipbuild Co Ltd Member with sic film
JPH11228233A (en) * 1998-02-09 1999-08-24 Tokai Carbon Co Ltd Sic molded product and its production
JP2000169298A (en) * 1998-12-01 2000-06-20 Tokai Carbon Co Ltd Silicon carbide molded article
JP2001203190A (en) * 2000-01-20 2001-07-27 Ibiden Co Ltd Component for semiconductor manufacturing machine and the machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353501A (en) * 1986-08-25 1988-03-07 Mitsubishi Metal Corp Composite brazing member for reflection mirror
JPS64267A (en) * 1987-02-26 1989-01-05 Mitsui Eng & Shipbuild Co Ltd Member with sic film
JPH11228233A (en) * 1998-02-09 1999-08-24 Tokai Carbon Co Ltd Sic molded product and its production
JP2000169298A (en) * 1998-12-01 2000-06-20 Tokai Carbon Co Ltd Silicon carbide molded article
JP2001203190A (en) * 2000-01-20 2001-07-27 Ibiden Co Ltd Component for semiconductor manufacturing machine and the machine

Also Published As

Publication number Publication date
JPH0462362B2 (en) 1992-10-06

Similar Documents

Publication Publication Date Title
US4142006A (en) Method of making a high power laser mirror
JP2918860B2 (en) Specular
JPH03126671A (en) Composite material
US4101707A (en) Homogeneous multilayer dielectric mirror and method of making same
JPS5999401A (en) Silicon carbide mirror
Nishida et al. Oblique incidence effect on the crystal structure of thin vacuum-deposited chromium films
Jiang et al. Research progress of optical fabrication and surface‐microstructure modification of SiC
JP2000026840A (en) Abrasive
JPH04114971A (en) Composite material
JPH06300907A (en) Parts for optical purpose and x-ray formed by using silicon carbide sintered compact and their production
JPH0692634B2 (en) mirror
Saile et al. Excitation of the Cs‐5p core level in cesium halides at 30 K
EP0559917B1 (en) Method of manufacturing a ceramic mirror
JP2738629B2 (en) Composite members
JP3220315B2 (en) Covering member
JPS63283858A (en) Hard complex powder polishing material
JP2696936B2 (en) Short wavelength mirror
JP3523614B2 (en) Reflector member
JPH04358068A (en) Member coated with sic by cvd
JP2005133105A (en) Sputtering target for depositing film having high refractive index, and its production method
JP5691046B2 (en) Porous body and method for producing the same
JP2002080966A (en) Sliding member and its production method
JPH0666400A (en) Filling container for fluorosilane gas
JP3696843B2 (en) Reflector
JP2929109B2 (en) Optical thin film and method for manufacturing the same