JPH0462362B2 - - Google Patents

Info

Publication number
JPH0462362B2
JPH0462362B2 JP20895782A JP20895782A JPH0462362B2 JP H0462362 B2 JPH0462362 B2 JP H0462362B2 JP 20895782 A JP20895782 A JP 20895782A JP 20895782 A JP20895782 A JP 20895782A JP H0462362 B2 JPH0462362 B2 JP H0462362B2
Authority
JP
Japan
Prior art keywords
silicon carbide
reflectance
mirror
crystal
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20895782A
Other languages
Japanese (ja)
Other versions
JPS5999401A (en
Inventor
Hideo Nagashima
Akio Karita
Hideyasu Matsuo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP20895782A priority Critical patent/JPS5999401A/en
Publication of JPS5999401A publication Critical patent/JPS5999401A/en
Publication of JPH0462362B2 publication Critical patent/JPH0462362B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5053Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials non-oxide ceramics
    • C04B41/5057Carbides
    • C04B41/5059Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/80Optical properties, e.g. transparency or reflexibility

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は反射率の高い特に高エネルギービー
ムに適したミラーに関するものである。 一般にミラーは通常の板ガラスの背面にアルミ
あるいは銀膜を形成し、これを塗料等で裏止めを
行なつたものである。このようなミラーはガラス
が耐蝕、耐熱性に乏しく、特殊な雰囲気下では使
用できない。一方、炭化ケイ素等のセラミツク材
料は耐蝕、耐熱の高いものが多いが、一般に反射
率が低く、高精度ミラーとしてはそのままでは使
用できないものが多かつた。反射率を高めるため
には表面状態を平滑に研磨することが好ましい
が、従来の炭化ケイ素にあつては気孔、結晶性、
大きさ等の点でミラーとして適したものは存在し
得なかつた。 本発明者等は材質的に適している炭化ケイ素に
ついて、又、ミラーとして好ましい条件について
検討した結果、この発明がなされたもので、従来
の炭化ケイ素はホツトプレス法、自焼結法、
CVD法等によつて製造されるもので、特にホツ
トプレス法、自焼結法による場合不純物及び気孔
の存在が多くミラーとして適していない。又
CVD法によるものでも反射率60%以上のものは
見られない。これは炭化ケイ素結晶が微細でかつ
結晶性が悪く、これが反射率を向上せしめ得ない
原因となつていることを見い出したものである。 本発明においては化学蒸着法(CVD法)によ
つて得られる炭化ケイ素の結晶が、その製造条件
を種々変えた時、反射率との間に密接な関係があ
ることが明らかとなつた。即ち、この反射率は得
られた炭化ケイ素結晶の結晶性及びその大きさに
ほぼ比例する。結晶性、大きさはX線回折によつ
て測定し得るもので、次式で関係づけられる。 β・cosθ/λ=Ι/ε+η・sinθ/λ ここでβは半値巾、θはブラツグ角、λは特性
X線の波長、εは結晶子の大きさ、ηは格子の有
効歪である。 そして半値巾βの値が小さい程反射率が良くな
りミラー特性がよくなることがわかつた。又蒸着
面を研摩し、エツチングして研摩面における結晶
形状を明瞭にし、各粒子の最大巾を測定して20μ
以上の粒子の占める面積を測定した。その結果を
反射率との関供において比較したところ結晶の大
きい(20μ以上のもの)粒子の面積が研摩面の20
%以上を占めるものは反射率が高いことが明らか
となつた。 以下にこの発明の実施例につき説明する。 実施例 1 高純度処理を行つたカーボン板の表面にCVD
法により条件を変えて4種の炭化ケイ素膜を形成
せしめた。この表面を同一研摩条件で鏡面に仕上
げた。それらの鏡面をX線回折装置でCu−Kα線
による(200)面の回折線の平値巾を求めた結果
第1図に示すような結晶性を示すミラーが得られ
た。それぞれ可視光線による反射率を求めた結果
は表−1の如くであつた。
The present invention relates to a mirror having a high reflectance and particularly suitable for high energy beams. Generally, mirrors are made by forming an aluminum or silver film on the back surface of an ordinary plate glass, and backing this with paint or the like. Such mirrors cannot be used in special atmospheres because the glass has poor corrosion resistance and heat resistance. On the other hand, many ceramic materials such as silicon carbide have high corrosion resistance and heat resistance, but generally have low reflectance, and many of them cannot be used as they are as high-precision mirrors. In order to increase the reflectance, it is preferable to polish the surface to make it smooth, but conventional silicon carbide has pores, crystallinity,
There was no suitable mirror in terms of size, etc. The present inventors have made this invention as a result of studying silicon carbide, which is suitable as a material, and the conditions preferable for mirrors.
It is manufactured by a CVD method, etc., and especially when it is produced by a hot press method or a self-sintering method, it is not suitable as a mirror because of the presence of many impurities and pores. or
Even when using the CVD method, reflectances of 60% or higher are not observed. This is based on the discovery that silicon carbide crystals are fine and have poor crystallinity, which is the reason why the reflectance cannot be improved. In the present invention, it has been revealed that silicon carbide crystals obtained by chemical vapor deposition (CVD) have a close relationship with reflectance when the manufacturing conditions are varied. That is, this reflectance is approximately proportional to the crystallinity and size of the obtained silicon carbide crystal. Crystallinity and size can be measured by X-ray diffraction and are related by the following formula. β·cosθ/λ=Ι/ε+η·sinθ/λ where β is the half-width, θ is the Bragg angle, λ is the wavelength of the characteristic X-ray, ε is the crystallite size, and η is the effective strain of the lattice. It was also found that the smaller the value of the half width β, the better the reflectance and the better the mirror characteristics. In addition, the deposited surface was polished and etched to clarify the crystal shape on the polished surface, and the maximum width of each particle was measured to be 20 μm.
The area occupied by the above particles was measured. Comparing the results with the reflectance, it was found that the area of large crystal particles (20μ or more) was 20% of the polished surface.
% or more, it became clear that the reflectance was high. Examples of the present invention will be described below. Example 1 CVD on the surface of a high-purity treated carbon plate
Four types of silicon carbide films were formed by changing the conditions according to the method. This surface was polished to a mirror finish under the same polishing conditions. The average width of the diffraction line of the (200) plane using Cu-Kα rays was determined using an X-ray diffractometer for these mirror surfaces, and as a result, a mirror exhibiting crystallinity as shown in FIG. 1 was obtained. Table 1 shows the results of determining the reflectance of each visible light beam.

【表】 この結果、0.40°を越えるような半値巾を有す
るものは反射率が急激に低下することが明らかと
なつた。 実施例 2 高純度処理を行つたカーボン板の表面にCVD
法により条件を変えて6種の炭化ケイ素膜を形成
せしめた。この表面を同一研摩条件で鏡面に仕上
げた。それらの鏡面における結晶粒子の最大巾を
測定し、20μ以上である粒子の面積を求めたとこ
ろ、その面積は5%、9%、15%、20%、25%、
30%であつた。これらにつきそれぞれ可視光線に
よる反射率を求めた結果を表−2に示す。
[Table] As a result, it became clear that the reflectance of a material with a half-width exceeding 0.40° decreases rapidly. Example 2 CVD on the surface of a high-purity treated carbon plate
Six types of silicon carbide films were formed by changing the conditions according to the method. This surface was polished to a mirror finish under the same polishing conditions. When we measured the maximum width of the crystal grains on those mirror surfaces and determined the area of the grains that were 20μ or more, the areas were 5%, 9%, 15%, 20%, 25%,
It was 30%. Table 2 shows the results of determining the reflectance by visible light for each of these.

【表】 この結果、20μ以上の粒子の面積比が20%より
少なくなると反射率が著しく低下することが明ら
かとなつた。なお、上記実施例においては可視光
線による反射率を測定したが、赤外線、X線等の
各波長の場合も反射率については可視光線の場合
と同様の傾向を示した。又、CVD法の条件と結
晶の大きさとは必ずしも一致しない。少なくとも
半値巾の比較的小さいものは結晶中の原子の配列
が良好となるばかりでなく、研摩に際してもその
結晶性が、加工性に良い効果をもたらしているも
のと思われる。上記実施例においては高純度カー
ボンの表面に炭化ケイ素を形成せしめた場合で行
つたが、基材は必ずしもカーボンに限定されず、
例えば炭化ケイ素、アルミナ等他の材料でもよ
い。
[Table] As a result, it became clear that when the area ratio of particles of 20μ or more was less than 20%, the reflectance decreased significantly. In the above examples, the reflectance of visible light was measured, but the reflectance of each wavelength such as infrared rays and X-rays showed the same tendency as that of visible light. Furthermore, the conditions of the CVD method and the size of the crystal do not necessarily match. It is thought that a crystal with a relatively small half-width at least has a good arrangement of atoms in the crystal, and that its crystallinity also has a good effect on workability during polishing. In the above example, silicon carbide was formed on the surface of high-purity carbon, but the base material is not necessarily limited to carbon.
For example, other materials such as silicon carbide and alumina may be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は炭化ケイ素質ミラーのX線回折図形を
示すものである。
FIG. 1 shows an X-ray diffraction pattern of a silicon carbide mirror.

Claims (1)

【特許請求の範囲】 1 化学蒸着法によつて形成されたβ型炭化ケイ
素表面よりなりかつ研磨面における炭化ケイ素結
晶の(200)面のX線回折による半値巾が0.40度
以下であることを特徴とする炭化ケイ素質ミラ
ー。 2 研摩面における結晶境界の最大巾が20μ以上
を有する結晶が面積比で20%以上であることを特
徴とする特許請求の範囲第1項記載の炭化ケイ素
質ミラー。
[Claims] 1. The half-width of the (200) plane of the silicon carbide crystal on the polished surface, which is composed of a β-type silicon carbide surface formed by chemical vapor deposition, is 0.40 degrees or less according to X-ray diffraction. Characteristic silicon carbide mirror. 2. The silicon carbide mirror according to claim 1, wherein the area ratio of crystals having a maximum width of crystal boundaries of 20 μ or more on the polished surface is 20% or more.
JP20895782A 1982-11-29 1982-11-29 Silicon carbide mirror Granted JPS5999401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20895782A JPS5999401A (en) 1982-11-29 1982-11-29 Silicon carbide mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20895782A JPS5999401A (en) 1982-11-29 1982-11-29 Silicon carbide mirror

Publications (2)

Publication Number Publication Date
JPS5999401A JPS5999401A (en) 1984-06-08
JPH0462362B2 true JPH0462362B2 (en) 1992-10-06

Family

ID=16564944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20895782A Granted JPS5999401A (en) 1982-11-29 1982-11-29 Silicon carbide mirror

Country Status (1)

Country Link
JP (1) JPS5999401A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2536491B2 (en) * 1986-08-25 1996-09-18 三菱マテリアル株式会社 Composite brazing member for reflector
JPS64267A (en) * 1987-02-26 1989-01-05 Mitsui Eng & Shipbuild Co Ltd Member with sic film
JP4043003B2 (en) * 1998-02-09 2008-02-06 東海カーボン株式会社 SiC molded body and manufacturing method thereof
JP3857446B2 (en) * 1998-12-01 2006-12-13 東海カーボン株式会社 SiC molded body
JP2001203190A (en) * 2000-01-20 2001-07-27 Ibiden Co Ltd Component for semiconductor manufacturing machine and the machine

Also Published As

Publication number Publication date
JPS5999401A (en) 1984-06-08

Similar Documents

Publication Publication Date Title
US5106687A (en) Composite material with chemically vapor deposited layer of silicon carbide formed thereon
Tcheliebou et al. On the microstructure and optical properties of Ba0. 5Sr0. 5TiO3 films
JPS6359985B2 (en)
JP2639121B2 (en) Method for producing fine α-alumina powder
Karoui et al. Optical properties of nanostructured TiO2 thin films
WO2019189378A1 (en) Aluminum nitride sheet
JP2918860B2 (en) Specular
JPH0462362B2 (en)
US3803044A (en) Polycrystalline chalcogenide spinels
EP0219345B1 (en) Process of producing an X-ray lens
Nishida et al. Oblique incidence effect on the crystal structure of thin vacuum-deposited chromium films
Hsu et al. Structure of the α-Al2O3 (1120) surfaces: facets and reconstruction
Porter et al. Silicon/corundum epitaxy
McCarty et al. Raman microprobe analysis of Tl-Ca-Ba-Cu-O polycrystals
JPH06300907A (en) Parts for optical purpose and x-ray formed by using silicon carbide sintered compact and their production
JPH04114971A (en) Composite material
Le Bellac et al. Angular‐selective optical transmittance of highly transparent Al‐oxide‐based films made by oblique‐angle sputtering
EP0559917B1 (en) Method of manufacturing a ceramic mirror
Larbi et al. Structural, Morphological and Optical Properties of Sn 3 Sb 2 S 6 Thin Films Synthesized by Oblique Angle Deposition
Abe et al. A microporous structure of a thin film made of an ion-exchangeable layered compound
Musselman et al. Single-crystal polarized specular-reflectance spectra of barium tetracyanonickelate tetrahydrate. A one-dimensional solid-state effect
JP3220315B2 (en) Covering member
Vlasse et al. The crystal structure of thallium oxyfluoride TlOF
RU2000171C1 (en) Method for manufacture of polyacrylic surface on powder-metallurgy beryllium
Jain et al. Disorder phenomenon in cadmium iodide crystals