JPH06300907A - Parts for optical purpose and x-ray formed by using silicon carbide sintered compact and their production - Google Patents

Parts for optical purpose and x-ray formed by using silicon carbide sintered compact and their production

Info

Publication number
JPH06300907A
JPH06300907A JP5112420A JP11242093A JPH06300907A JP H06300907 A JPH06300907 A JP H06300907A JP 5112420 A JP5112420 A JP 5112420A JP 11242093 A JP11242093 A JP 11242093A JP H06300907 A JPH06300907 A JP H06300907A
Authority
JP
Japan
Prior art keywords
silicon carbide
boron
sintered body
carbon
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5112420A
Other languages
Japanese (ja)
Inventor
Shuji Asada
修司 浅田
Hidemi Nakayama
秀實 中山
Seiji Kiyono
省二 清野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5112420A priority Critical patent/JPH06300907A/en
Publication of JPH06300907A publication Critical patent/JPH06300907A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an optical parts or parts for X-rays having a high thermal conductivity, high rigidity and high corrosion resistance and having a high reflectivity at need by using a silicon carbide sintered body which is sintered with boron or a compd. of the boron and carbon or a compd. of the carbon as a sintering assistant, is substantially the single phase of the silicon carbide after sintering and has a high density. CONSTITUTION:The optical parts formed to a required shape by polishing by using the silicon carbide sintered body which is sintered with 0.15 to 1.0wt.% boron or the compd. of the boron in terms of boron and 0.3 to 5wt.% carbon as the sintering assistant, is substantially the single phase of the silicon carbide and has >=2.9g/cm<3> density. The surface of at least a part of this sintered compact 2 is smoothly worked, by which the optical parts and the parts for X-rays having the high thermal conductivity, the high rigidity and the high corrosion resistance are obtd. The smooth surface is coated with a reflection film 1 at need, by which the high reflectivity is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭化珪素質焼結体の光
学用及びX線用部品に関する。本発明の炭化珪素焼結体
は可視光やレーザー光及びX線等の反射ミラーやその基
材として有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical and X-ray component of a silicon carbide sintered body. INDUSTRIAL APPLICABILITY The silicon carbide sintered body of the present invention is useful as a reflection mirror for visible light, laser light, X-rays, etc., and its base material.

【0002】[0002]

【従来の技術】従来は光学用及びX線用部品としての反
射用ミラーやその基材としては、ガラスや金属が多く用
いられてきた。
2. Description of the Related Art Conventionally, glass or metal has been often used as a reflecting mirror as an optical or X-ray component or its base material.

【0003】しかし、産業のハイテク化とともに高精度
が要求され、経時変化が無く高剛性と高熱伝導率を持
ち、形状精度を保てる材料が求められるようになりつつ
ある。
However, with the industrialization of high technology, high precision is required, and there is a growing demand for a material that has high rigidity and high thermal conductivity without change over time and can maintain shape precision.

【0004】すなわち、従来のガラス製部材では、熱膨
張率の比較的大きなガラスは安価であるが、温度変動に
対して形状の変動が大きく、光学部品として不適である
一方、熱膨張率の小さなガラスは製造が難しく、高価で
ある。
That is, in the conventional glass member, glass having a relatively large coefficient of thermal expansion is inexpensive, but its shape is largely changed with respect to temperature fluctuation, which makes it unsuitable as an optical component, while the coefficient of thermal expansion is small. Glass is difficult to manufacture and expensive.

【0005】また、金属製部材は一般に熱膨張率が大き
くさらに経時変化があるため形状安定性に劣る。
Further, the metal member generally has a large coefficient of thermal expansion and is further deteriorated with time, so that it is inferior in shape stability.

【0006】本発明者らはこれらの要求に対して、セラ
ミックスを適用することを検討した結果、窒化珪素セラ
ミックスやサイアロンセラミックス,アルミナセラミッ
クス及び炭化珪素セラミックスが有用であることを見い
だした。
As a result of studying application of ceramics to these requirements, the present inventors have found that silicon nitride ceramics, sialon ceramics, alumina ceramics and silicon carbide ceramics are useful.

【0007】これらのセラミックスのなかでも、焼結体
製造のしやすさ・加工性の良さ及び熱伝導率の観点から
炭化珪素セラミックスが有用であると考えられる。
Among these ceramics, silicon carbide ceramics are considered to be useful from the viewpoints of ease of manufacturing a sintered body, good workability, and thermal conductivity.

【0008】一方、従来よりレーザー用反射鏡として黒
鉛の表面に炭化珪素膜を被覆して使用することが行なわ
れている。しかしこの方法ではレーザー照射による繰り
返し熱衝撃により、炭化珪素膜が黒鉛基材より剥離する
恐れがある。
On the other hand, it has been conventionally practiced to coat the surface of graphite with a silicon carbide film as a laser reflecting mirror. However, in this method, the silicon carbide film may be peeled off from the graphite substrate due to repeated thermal shock due to laser irradiation.

【0009】炭化珪素焼結体を当該用途として用いるこ
とも提案されている。特願平4―6151号は、炭化珪
素を焼結助剤無添加で焼結した炭化珪素焼結体を用いる
レーザー用反射鏡であるが、当該製造方法では製造コス
トが高くかつ焼結助剤無添加で焼成するのは工業的に極
めて難しく有用でない。
It has also been proposed to use a silicon carbide sintered body for this purpose. Japanese Patent Application No. 4-6151 is a reflecting mirror for a laser which uses a silicon carbide sintered body obtained by sintering silicon carbide without adding a sintering aid. However, the manufacturing cost is high and the sintering aid is used in the manufacturing method. It is industrially extremely difficult and not useful to fire without addition.

【0010】また一般に焼結助剤無添加の炭化珪素焼結
体は気孔が多く、反射率が低い欠点がある。
Further, in general, a silicon carbide sintered body containing no sintering aid has many defects such as a large number of pores and a low reflectance.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、緻密
質の炭化珪素焼結体を用い、これにより炭化珪素焼結体
が本来持つ高い熱伝導特性、高剛性、高耐食性、加工の
しやすさを有する光学用及びX線用部品を得ることが出
来ると同時に、必要に応じて反射面には反射膜をコーテ
ィングすることにより、高い反射率を得、かつ不純物の
放散を抑制することが可能となる。
SUMMARY OF THE INVENTION An object of the present invention is to use a dense silicon carbide sintered body, which allows the silicon carbide sintered body to have high thermal conductivity, high rigidity, high corrosion resistance, and good workability. It is possible to obtain an optical component and an X-ray component that are easy to obtain, and at the same time, a reflective film is coated on the reflective surface, if necessary, to obtain a high reflectance and suppress the diffusion of impurities. It will be possible.

【0012】[0012]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく鋭意研究した結果、ボロンもしくはボロン
の化合物をボロン換算で0.15〜1.0wt%,及び
炭素を0.3〜5wt%焼結助剤として焼結し、焼結後
に実質的に炭化珪素単一相であって、密度2.9g/c
3以上である炭化珪素焼結体を用いて、研磨により必
要な形状となして光学部品を得た。
Means for Solving the Problems As a result of intensive studies to achieve the above object, the present inventors have found that boron or a compound of boron is 0.15 to 1.0 wt% in terms of boron and carbon is 0.3%. ˜5 wt% Sintered as a sintering aid and after sintering is essentially a silicon carbide single phase with a density of 2.9 g / c
Using a silicon carbide sintered body of m 3 or more, an optical component was obtained by polishing into a required shape.

【0013】この焼結体の少なくとも一部の表面を平滑
に加工して、高熱伝導性、高剛性、高耐食性をもつ光学
用及びX線用部品を得た。
At least a part of the surface of this sintered body was processed to be smooth to obtain an optical and X-ray component having high thermal conductivity, high rigidity and high corrosion resistance.

【0014】また、必要に応じて平滑面に反射膜をコー
ティングして高い反射率を得ることが可能となった。
Further, it has become possible to obtain a high reflectance by coating a reflecting film on a smooth surface, if necessary.

【0015】以下、本発明の光学用及びX線用部品をそ
の製造方法に基づいて詳細に説明する。
The optical and X-ray components of the present invention will be described in detail below based on the manufacturing method thereof.

【0016】平均粒径が0.1〜10μmの炭化珪素粉
末と、ボロンもしくはボロンの化合物をボロン換算で
0.15〜1.0wt%,及び炭素を0.3〜5wt%
焼結助剤として混合し、原料混合物とする。原料粉末は
望ましくは1μm以下であることが望ましい。
Silicon carbide powder having an average particle diameter of 0.1 to 10 μm, boron or a compound of boron in an amount of 0.15 to 1.0 wt% in terms of boron, and carbon in an amount of 0.3 to 5 wt%.
Mix as a sintering aid to obtain a raw material mixture. The raw material powder is desirably 1 μm or less.

【0017】ボロンもしくはボロンの化合物は望ましく
はボロン換算で0.3〜0.6wt%の添加が最適であ
り、この範囲外では製造条件によって緻密化が難しくな
る可能性がある。
Boron or a boron compound is preferably added in an amount of 0.3 to 0.6 wt% in terms of boron, and if it is out of this range, densification may be difficult depending on manufacturing conditions.

【0018】カーボンは炭化珪素原料に含まれる酸素量
によって最適値が異なるが、0.3〜5wt%程度の添
加により十分緻密化する。
Although the optimum value of carbon varies depending on the amount of oxygen contained in the silicon carbide raw material, carbon is sufficiently densified by adding about 0.3 to 5 wt%.

【0019】その後、上記原料混合物を所望の形状に成
形し得られた成形体を1900℃〜2800℃で焼成し
て焼結体を得、もしくは上記原料混合物をホットプレス
によって焼結体を得る。
Then, the above-mentioned raw material mixture is formed into a desired shape, and the obtained green body is fired at 1900 ° C. to 2800 ° C. to obtain a sintered body, or the above raw material mixture is obtained by hot pressing to obtain a sintered body.

【0020】成形にあたっては、プレス成形・押し出し
成形・射出成形などの従来からの公知の方法をとること
が出来る。
For molding, conventionally known methods such as press molding, extrusion molding and injection molding can be employed.

【0021】この場合、成形用のバインダーや分散剤と
して有機高分子等の公知の物質を用いても良い。
In this case, a known substance such as an organic polymer may be used as a molding binder or a dispersant.

【0022】焼結については、常圧焼結・ホットプレス
焼結・雰囲気加圧焼結・熱間静水圧焼結(HIP)やそ
れらの組合せの焼成方法が可能であるが、炭化珪素焼結
体の密度は2.9g/cm3以上、望ましくは密度3.
1g/cm3以上であり、さもなくば焼結体中に空孔が
多く存在し、反射用ミラー基材等に使用した場合、反射
率が低下するため、より高密度とするためにホットプレ
ス焼結またはHIPを用いるのがよい。
As for sintering, atmospheric pressure sintering, hot press sintering, atmospheric pressure sintering, hot isostatic pressing (HIP), or a combination thereof can be used, but silicon carbide sintering is possible. The body has a density of 2.9 g / cm 3 or more, preferably a density of 3.
1g / cm 3 or more, otherwise there are many pores in the sintered body, and when used as a mirror substrate for reflection, etc., the reflectance decreases, so hot pressing for higher density It is better to use sintering or HIP.

【0023】焼結温度については、1900℃未満では
焼結密度が不足し、2300℃より高い場合では炭化珪
素の分解が発生しやすくなる。
Regarding the sintering temperature, if the temperature is lower than 1900 ° C., the sintered density is insufficient, and if it is higher than 2300 ° C., decomposition of silicon carbide is likely to occur.

【0024】焼結体中の空孔を極小とするためには21
00℃〜2250℃で焼成することが望ましい。
To minimize the pores in the sintered body, 21
It is desirable to bake at 00 ° C to 2250 ° C.

【0025】このようにして得られた焼結体は、研削加
工やラップ加工などの公知の方法によって所定の形状お
よび表面粗度に加工して、光学用及びX線用部品とす
る。
The thus-obtained sintered body is processed into a predetermined shape and surface roughness by a known method such as grinding or lapping to obtain optical and X-ray parts.

【0026】反射面の表面粗度がRa50nm以下、望
ましくはRa10nm以下でないと反射ミラーとして十
分な反射率を得ることは困難である。
It is difficult to obtain a sufficient reflectance as a reflecting mirror unless the surface roughness of the reflecting surface is Ra 50 nm or less, preferably Ra 10 nm or less.

【0027】また、レーザー用ミラー等として使用され
る場合は、研磨を行なって反射面を平滑にしても所定の
反射率が得られない場合は、反射面に反射膜をコーティ
ングすることで所定の反射率を得ることが出来る。
In the case of being used as a mirror for a laser or the like, if a predetermined reflectance cannot be obtained even if the reflecting surface is smoothed by polishing, the reflecting surface is coated with a reflecting film. The reflectance can be obtained.

【0028】反射膜にはアルミニウムもしくは金もしく
は銅もしくは白金の少なくとも1種を主成分とした膜を
用いるが、用途に応じて炭化珪素の蒸着等でも良い。
As the reflective film, a film containing at least one of aluminum, gold, copper, and platinum as a main component is used, but vapor deposition of silicon carbide or the like may be used depending on the application.

【0029】[0029]

【実施例】【Example】

【0030】[0030]

【実施例1】B 4C 0.45wt%(ボロン換算0.3
4wt%)及びカーボン2.0wt%をβ型炭化珪素粉
末と炭化珪素製ボールミルを用いてノルマルヘキサン中
で24時間混合し、乾燥・造粒後に、400kg/cm
2の負荷圧力下で2200℃でホットプレス焼成を行な
った。
Example 1 B FourC 0.45 wt% (Boron conversion 0.3
4 wt%) and carbon 2.0 wt% β-type silicon carbide powder
Powder and silicon carbide ball mill in normal hexane
After mixing for 24 hours, drying and granulating, 400 kg / cm
2Hot press firing at 2200 ℃ under the load pressure of
It was.

【0031】サンプルの密度は3.15g/cm3であ
った。このサンプルを切り出し、ダイヤモンド砥石で平
面研削の後、遊離砥粒を使用してラップ加工を行なっ
た。
The density of the sample was 3.15 g / cm 3 . This sample was cut out, subjected to surface grinding with a diamond grindstone, and then lapping was performed using free abrasive grains.

【0032】ラップ後のラップ面の表面粗度はRa2n
mであった。ラップ面の反射率は波長1μm〜5μmの
範囲で反射率約30%であった。
The surface roughness of the lap surface after lapping is Ra2n.
It was m. The reflectance of the lap surface was about 30% in the wavelength range of 1 μm to 5 μm.

【0033】さらに、このサンプルのラップ面にアルミ
ニウムを蒸着して同様に反射率を測定したら、反射率約
95%であった。
Further, when aluminum was vapor-deposited on the lap surface of this sample and the reflectance was measured in the same manner, the reflectance was about 95%.

【0034】[0034]

【実施例2】B4C 0.45wt%(ボロン換算0.3
4wt%)及びカーボン2.0wt%をβ型炭化珪素粉
末と炭化珪素製ボールミルを用いてノルマルヘキサン中
で24時間混合し、乾燥・造粒後に約60mm角の形状
に成して5.0ton/cm2で冷間静水圧プレスを行
ない、成形体を得た。
[Example 2] B 4 C 0.45 wt% (boron conversion 0.3
4 wt%) and carbon 2.0 wt% are mixed with β-type silicon carbide powder in normal hexane for 24 hours using a ball mill made of silicon carbide, dried and granulated to form a square of about 60 mm and 5.0 ton / Cold isostatic pressing was performed at cm 2 to obtain a molded body.

【0035】この成形体を2200℃で常圧焼成し、さ
らにArガスの1800気圧雰囲気下で2000℃で熱
間静水圧焼成(HIP)を行なった。
This compact was fired at 2200 ° C. under atmospheric pressure, and further hot isostatic pressing (HIP) was performed at 2000 ° C. in an atmosphere of Ar gas at 1800 atm.

【0036】サンプルの密度は3.1g/cm3であっ
た。このサンプルを切り出し、ダイヤモンド砥石で平面
研削の後、遊離砥粒を使用してラップ加工を行なった。
The density of the sample was 3.1 g / cm 3 . This sample was cut out, subjected to surface grinding with a diamond grindstone, and then lapping was performed using free abrasive grains.

【0037】ラップ後のラップ面の表面粗度はRa3n
mであった(図3)。ラップ面の反射率は波長1μm〜
5μmの範囲で反射率約30%であった。
The surface roughness of the lap surface after lapping is Ra3n.
m (FIG. 3). The reflectance of the lap surface is from 1 μm wavelength
The reflectance was about 30% in the range of 5 μm.

【0038】炭化珪素の鏡面研磨面のアルミニウム蒸着
後の反射率を図4に示す。
The reflectance of the mirror-polished surface of silicon carbide after aluminum deposition is shown in FIG.

【0039】表面に炭化珪素を蒸着しているため、アル
ミニウムが約800nmの波長の光を吸収するため、こ
の箇所で反射率が落ちている。それ以外の箇所は、炭化
珪素の表面粗度が良く反射率は85%以上である。
Since silicon carbide is vapor-deposited on the surface, aluminum absorbs light having a wavelength of about 800 nm, so that the reflectance is lowered at this portion. In the other portions, the surface roughness of silicon carbide is good and the reflectance is 85% or more.

【0040】また、使用する波長が800nmに近い場
合はアルミニウム以外の蒸着膜を用いることで反射率は
改善される。
When the wavelength used is close to 800 nm, the reflectance can be improved by using a vapor deposition film other than aluminum.

【0041】レーザー反射用ミラーとして用いる場合
は、反射率85%程度が必要最小限であり、上記の反射
率はこれを満たしている。
When used as a mirror for laser reflection, a reflectance of about 85% is the minimum necessary, and the above reflectance satisfies this.

【0042】つまり、炭化珪素本来の特性である高熱伝
導率、高剛性、高耐食性を有し、かつ必要に応じて高反
射率の部材が製造可能となった。
That is, a member having high thermal conductivity, high rigidity, high corrosion resistance, which are the original characteristics of silicon carbide, and a high reflectance can be manufactured as required.

【0043】[0043]

【発明の効果】本発明の製造方法によって、高熱伝導
率、高剛性、高耐食性を有し、必要に応じて高反射率を
有する光学部品もしくはX線用部品が得られた。
According to the manufacturing method of the present invention, an optical component or an X-ray component having high thermal conductivity, high rigidity, high corrosion resistance and, if necessary, high reflectance can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の断面図を示す。FIG. 1 shows a cross-sectional view of the present invention.

【図2】従来品の断面図を示すFIG. 2 shows a cross-sectional view of a conventional product

【図3】炭化珪素の鏡面研磨面の表面粗度を示す図。FIG. 3 is a diagram showing the surface roughness of a mirror-polished surface of silicon carbide.

【図4】炭化珪素の鏡面研磨面のアルミニウム蒸着後の
反射率と光の波長の関係図。
FIG. 4 is a diagram showing the relationship between the reflectance and the wavelength of light after vapor deposition of aluminum on the mirror-polished surface of silicon carbide.

【符号の説明】 1 アルミニウム蒸着 2 炭化珪素焼結体 3 ガラス[Explanation of Codes] 1 Aluminum vapor deposition 2 Silicon carbide sintered body 3 Glass

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ボロンもしくはボロンの化合物及び炭素
もしくは炭素の化合物を焼結助剤として焼結されてな
り、焼結後に実質的に炭化珪素単一相であって、密度
2.9g/cm3以上である炭化珪素焼結体を用いた光
学用及びX線用部品。
1. Boron or a compound of boron and carbon or a compound of carbon is sintered as a sintering aid, and after sintering, it is substantially a silicon carbide single phase and has a density of 2.9 g / cm 3. An optical component and an X-ray component using the above silicon carbide sintered body.
【請求項2】 請求項1記載の光学部品において密度を
3.1g/cm3以上とし少なくとも1箇所以上が表面
粗度Ra50nmより良い、望ましくは表面粗度Ra1
0nmより良い表面粗度をもち、かつ当該箇所に反射膜
をコーティングしてなる光学用及びX線用部品。
2. The optical component according to claim 1, wherein the density is 3.1 g / cm 3 or more, and at least one location is better than surface roughness Ra50 nm, preferably surface roughness Ra1.
An optical and X-ray component having a surface roughness of better than 0 nm and having a reflective film coated on the location.
【請求項3】 請求項2記載の光学部品において反射膜
がアルミニウムもしくは金もしくは銅もしくは白金の少
なくとも1種を含むことを特徴とする光学用及びX線用
部品。
3. An optical component and an X-ray component according to claim 2, wherein the reflective film contains at least one of aluminum, gold, copper and platinum.
【請求項4】 請求項2記載の光学部品において反射膜
が炭化珪素膜であることを特徴とする光学用及びX線用
部品。
4. An optical component and an X-ray component according to claim 2, wherein the reflective film is a silicon carbide film.
【請求項5】 平均粒径が0.1〜10μm、望ましく
は0.3〜1.0μmの炭化珪素粉末を用い、ボロンも
しくはボロンの化合物をボロン換算で0.15〜1.0
wt%,望ましくは0.3〜0.6wt%,及び炭素を
0.3〜5wt%を焼結助剤として添加し、成形した
後、1900℃〜2250℃で焼成して炭化珪素焼結体
を得、この焼結体を光学用及びX線用部品とすることを
特徴とする光学用及びX線用部品の製造方法。
5. A silicon carbide powder having an average particle size of 0.1 to 10 μm, preferably 0.3 to 1.0 μm is used, and boron or a compound of boron is converted into boron in an amount of 0.15 to 1.0.
wt%, preferably 0.3 to 0.6 wt%, and carbon to 0.3 to 5 wt% are added as a sintering aid, and after molding, a silicon carbide sintered body is obtained by firing at 1900 ° C to 2250 ° C. And a sintered body is used as an optical component and an X-ray component, and a method for manufacturing an optical component and an X-ray component.
JP5112420A 1993-04-16 1993-04-16 Parts for optical purpose and x-ray formed by using silicon carbide sintered compact and their production Pending JPH06300907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5112420A JPH06300907A (en) 1993-04-16 1993-04-16 Parts for optical purpose and x-ray formed by using silicon carbide sintered compact and their production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5112420A JPH06300907A (en) 1993-04-16 1993-04-16 Parts for optical purpose and x-ray formed by using silicon carbide sintered compact and their production

Publications (1)

Publication Number Publication Date
JPH06300907A true JPH06300907A (en) 1994-10-28

Family

ID=14586209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5112420A Pending JPH06300907A (en) 1993-04-16 1993-04-16 Parts for optical purpose and x-ray formed by using silicon carbide sintered compact and their production

Country Status (1)

Country Link
JP (1) JPH06300907A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003146757A (en) * 2001-11-08 2003-05-21 Bridgestone Corp Method for cleaning silicon carbide sintered compact and cleaning solution
JP2005314157A (en) * 2004-04-28 2005-11-10 National Institute For Materials Science Silicon carbide sintered compact and semiconductor using the same, and member for liquid crystal-manufacturing apparatus
JP2006182641A (en) * 2004-12-01 2006-07-13 Kyocera Corp Silicon carbide-based sintered compact, its producing method, and member for semiconductor production device using the same
WO2008130031A1 (en) * 2007-04-19 2008-10-30 Mitsubishi Materials Corporation Conductive reflecting film and method for manufacturing the same
JP2010537235A (en) * 2007-08-20 2010-12-02 オプトシク ゲーエムベーハー Silicon carbide scanning and optical mirror manufacturing and processing method
US8816193B2 (en) 2006-06-30 2014-08-26 Mitsubishi Materials Corporation Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method
US8822814B2 (en) 2006-10-11 2014-09-02 Mitsubishi Materials Corporation Composition for electrode formation and method for forming electrode by using the composition
JP2019133119A (en) * 2018-02-01 2019-08-08 日本電信電話株式会社 Diffraction element
CN112479716A (en) * 2020-12-14 2021-03-12 山田研磨材料有限公司 Extrusion molding process for pressureless sintering silicon carbide

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003146757A (en) * 2001-11-08 2003-05-21 Bridgestone Corp Method for cleaning silicon carbide sintered compact and cleaning solution
JP2005314157A (en) * 2004-04-28 2005-11-10 National Institute For Materials Science Silicon carbide sintered compact and semiconductor using the same, and member for liquid crystal-manufacturing apparatus
JP2006182641A (en) * 2004-12-01 2006-07-13 Kyocera Corp Silicon carbide-based sintered compact, its producing method, and member for semiconductor production device using the same
US8816193B2 (en) 2006-06-30 2014-08-26 Mitsubishi Materials Corporation Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method
US9620668B2 (en) 2006-06-30 2017-04-11 Mitsubishi Materials Corporation Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method
US9312404B2 (en) 2006-06-30 2016-04-12 Mitsubishi Materials Corporation Composition for manufacturing electrode of solar cell, method of manufacturing same electrode, and solar cell using electrode obtained by same method
US8822814B2 (en) 2006-10-11 2014-09-02 Mitsubishi Materials Corporation Composition for electrode formation and method for forming electrode by using the composition
WO2008130031A1 (en) * 2007-04-19 2008-10-30 Mitsubishi Materials Corporation Conductive reflecting film and method for manufacturing the same
US8758891B2 (en) 2007-04-19 2014-06-24 Mitsubishi Materials Corporation Conductive reflective film and production method thereof
JP2008288568A (en) * 2007-04-19 2008-11-27 Mitsubishi Materials Corp Conductive reflecting film and method of manufacturing the same
US10020409B2 (en) 2007-04-19 2018-07-10 Mitsubishi Materials Corporation Method for producing a conductive reflective film
JP2010537235A (en) * 2007-08-20 2010-12-02 オプトシク ゲーエムベーハー Silicon carbide scanning and optical mirror manufacturing and processing method
JP2019133119A (en) * 2018-02-01 2019-08-08 日本電信電話株式会社 Diffraction element
CN112479716A (en) * 2020-12-14 2021-03-12 山田研磨材料有限公司 Extrusion molding process for pressureless sintering silicon carbide

Similar Documents

Publication Publication Date Title
US4720362A (en) Transparent aluminum oxynitride and method of manufacture
US5591685A (en) Superplastic silicon carbide sintered body
US5152940A (en) Method of producing a light-transmitting spinel sintered body
EP1205452B1 (en) Black ceramic sinter with low thermal expansion and high specific rigidity and process for producing the same
WO2004007398A1 (en) Transparent ploycrystalline aluminium oxide
KR100459296B1 (en) A material of low volume resistivity, an aluminum nitride sintered body and a member used for the production of semiconductors
US20150115507A1 (en) Method of making high purity polycrystalline aluminum oxynitride bodies useful in semiconductor process chambers
JPH06300907A (en) Parts for optical purpose and x-ray formed by using silicon carbide sintered compact and their production
JPH11209171A (en) Dense low thermal expansion ceramics, its production and member for semiconductor producing device
JP3147977B2 (en) Substrate for reflecting mirror made of sintered silicon carbide and method of manufacturing the same
KR20060063667A (en) Ceramics for a glass mold
JPS5874577A (en) Transparent aluminum oxynitride and manufacture
KR0154520B1 (en) Ceramic mirror and method of manufacturing the same
JP4540598B2 (en) Ceramics for glass molds
JPS63285175A (en) Production of ceramic sintered material
JPH06300908A (en) Parts for optical purpose and parts for x-rays formed by using silicon nitride or sialon and their production
JP2000154064A (en) Electrically conductive silicon nitride-base sintered compact and its production
JP3153518B2 (en) Silicon carbide carbon composite ceramics
JPH0753256A (en) Aluminous composite sintered compact and its production
JP2566737B2 (en) Method for producing translucent aluminum magnesium oxynitride sintered body
JPH07108815B2 (en) Method for manufacturing silicon nitride sintered body
JP2005314157A (en) Silicon carbide sintered compact and semiconductor using the same, and member for liquid crystal-manufacturing apparatus
JP2001130983A (en) Silicon nitride sintered compact
JPH05237827A (en) Mold and its manufacture
JPH0517210A (en) Production of alumina-based composite sintered body and the sintered body

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010417