JPH11209171A - Dense low thermal expansion ceramics, its production and member for semiconductor producing device - Google Patents

Dense low thermal expansion ceramics, its production and member for semiconductor producing device

Info

Publication number
JPH11209171A
JPH11209171A JP10009720A JP972098A JPH11209171A JP H11209171 A JPH11209171 A JP H11209171A JP 10009720 A JP10009720 A JP 10009720A JP 972098 A JP972098 A JP 972098A JP H11209171 A JPH11209171 A JP H11209171A
Authority
JP
Japan
Prior art keywords
thermal expansion
less
weight
cordierite
low thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10009720A
Other languages
Japanese (ja)
Inventor
Hirohisa Sechi
啓久 瀬知
Masahiro Sato
政宏 佐藤
Hiroshi Aida
比呂史 会田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10009720A priority Critical patent/JPH11209171A/en
Priority to US09/177,977 priority patent/US6265334B1/en
Priority to DE19861434A priority patent/DE19861434B4/en
Priority to DE19849340A priority patent/DE19849340B4/en
Publication of JPH11209171A publication Critical patent/JPH11209171A/en
Priority to US10/124,067 priority patent/USRE39120E1/en
Pending legal-status Critical Current

Links

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain dense low thermal expansion ceramics almost free from voids. SOLUTION: Powdery starting material having a compsn. contg. 80-99 wt.% cordierite and 1-20 wt.% oxide of a rare earth element is compacted in a prescribed shape, sintered to >=90% relative density and heat-treated at 900-1,400 deg.C in an atmosphere under >=100 atm pressure to obtain the objective dense low thermal expansion ceramic having <=0.1% porosity, <=5 μm max. void diameter and <=1×10<-6> / deg.C coefft. of thermal expansion at 10-40 deg.C. The ceramic is applied to parts for a semiconductor producing device such as a vacuum chuck for an exposure system and a stage position measuring mirror.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、真空装置構造体、
サセプタ、真空チャック、静電チャックあるいは露光装
置におけるステージや、ステージ位置測定用ミラー、あ
るいはそれらの支持部材、さらには半導体製造プロセス
における各種治具などに適したコージェライトを主体と
する低熱膨張セラミックスとその製造方法に関する。
TECHNICAL FIELD The present invention relates to a vacuum device structure,
Low thermal expansion ceramics mainly composed of cordierite suitable for susceptors, vacuum chucks, electrostatic chucks, exposure stage mirrors, stage position measurement mirrors, or their supporting members, and various jigs in the semiconductor manufacturing process It relates to the manufacturing method.

【0002】[0002]

【従来技術】従来より、コージェライト系焼結体は、低
熱膨張のセラミックスとして知られており、フィルタ
ー、ハニカム、耐火物などに応用されている。このコー
ジェライト系焼結体は、一般には、コージェライト粉
末、あるいはコージェライトを形成するMgO、Al2
3 、SiO2 粉末を配合して、これに焼結助剤とし
て、希土類元素酸化物や、SiO2 、CaO、MgOな
どを添加し、所定形状に成形後、1000〜1400℃
の温度で焼成することによって作製される(特公昭57
−3629号、特開平2−229760号)。
2. Description of the Related Art Conventionally, cordierite-based sintered bodies have been known as ceramics having low thermal expansion, and have been applied to filters, honeycombs, refractories, and the like. This cordierite-based sintered body is generally made of cordierite powder or MgO, Al 2 which forms cordierite.
O 3 and SiO 2 powders are mixed, and a rare earth element oxide, SiO 2 , CaO, MgO, etc. are added thereto as a sintering aid, and after forming into a predetermined shape, 1000-1400 ° C.
It is produced by firing at the temperature of
-3629, JP-A-2-229760).

【0003】一方、LSIなどの半導体装置の製造工程
において、シリコンウエハに配線を形成する工程におい
て、ウエハを支持または保持するためのサセプタ、真空
チャック、静電チャックや絶縁リングとしてあるいはそ
の他の治具等として、これまでアルミナや窒化珪素が比
較的に安価で、化学的にも安定であるため広く用いられ
ている。また、露光装置のXYテーブル等としても従来
よりアルミナや窒化珪素などのセラミックスも用いられ
ている。
On the other hand, in a process of manufacturing a semiconductor device such as an LSI, in a process of forming wiring on a silicon wafer, a susceptor for supporting or holding the wafer, a vacuum chuck, an electrostatic chuck, an insulating ring, or another jig. For example, alumina and silicon nitride have been widely used because they are relatively inexpensive and chemically stable. Also, ceramics such as alumina and silicon nitride have been conventionally used as an XY table of an exposure apparatus.

【0004】また、最近では、コージェライト等の低熱
膨張セラミックスを半導体製造装置用部品として応用す
ることが特開平1−191422号や特公平6−976
75号にて提案されている。特開平1−191422号
によれば、X線マスクにおけるマスク基板に接着する補
強リングとして、SiO2 、インバーなどに加え、コー
ジェライトによって形成しメンブレンの応力を制御する
ことが提案されている。また、特公平6−97675号
では、ウエハを載置する静電チャック用基盤としてアル
ミナやコージェライト系焼結体を使用することが提案さ
れている。
Recently, low-thermal-expansion ceramics such as cordierite have been applied to parts for semiconductor manufacturing equipment as disclosed in Japanese Patent Application Laid-Open No. 1-1191422 and Japanese Patent Publication No. 6-976.
No. 75. According to Japanese Patent Application Laid-Open No. 1-1191422, it is proposed that a reinforcing ring to be bonded to a mask substrate in an X-ray mask is formed of cordierite in addition to SiO 2 , invar and the like to control the stress of the membrane. Japanese Patent Publication No. 6-97675 proposes using an alumina or cordierite-based sintered body as a base for an electrostatic chuck on which a wafer is placed.

【0005】[0005]

【発明が解決しようとする課題】近年、LSIなどにお
ける高集積化に伴い、回路の微細化が急速に進められ、
その線幅もサブミクロンオーダーのレベルまで高精密化
しつつある。そしてSiウエハに高精密回路を形成する
ための露光装置に対して高い精度が要求され、たとえば
露光装置のステージ用部材においては100nm(0.
1μm)以下の位置決め精度が要求され、露光の位置合
わせ誤差が製品の品質向上や歩留まり向上に大きな影響
を及ぼしているのが現状である。
In recent years, with high integration in LSIs and the like, circuit miniaturization has been rapidly advanced,
The line width is also being refined to a submicron order. High accuracy is required for an exposure apparatus for forming a high-precision circuit on a Si wafer. For example, a stage member of an exposure apparatus requires a 100 nm (0.
At present, a positioning accuracy of 1 μm or less is required, and a positioning error of exposure has a great influence on improvement of product quality and yield.

【0006】半導体製造装置用として一般に用いられて
きたアルミナ、窒化珪素などのセラミックスは、金属に
比べて熱膨張率が小さいものの、10〜40℃の熱膨張
率はそれぞれ5.2×10-6/℃、1.5×10-6/℃
であり、雰囲気温度が0.1℃変化すると数100nm
(0.1μm)の変形が発生することになり、露光等の
精密な工程ではこの変化が大きな問題となり、従来のセ
ラミックスでは精度が低く、生産性の低下をもたらして
いる。
Ceramics such as alumina and silicon nitride, which are generally used for semiconductor manufacturing equipment, have a smaller coefficient of thermal expansion than metals, but have a coefficient of thermal expansion of 5.2 × 10 -6 at 10 to 40 ° C. / ° C, 1.5 × 10 -6 / ° C
Several hundred nm when the ambient temperature changes by 0.1 ° C.
(0.1 .mu.m), and this change becomes a serious problem in precise steps such as exposure, and the conventional ceramics have low accuracy and lower productivity.

【0007】これに対して、コージェライト系焼結体
は、熱膨張率が0.2×10-6/℃程度と、アルミナや
窒化珪素に比較して熱膨張率が低く、上記のような露光
精度に対する問題はある程度解決される。
On the other hand, the cordierite-based sintered body has a coefficient of thermal expansion of about 0.2 × 10 −6 / ° C., which is lower than that of alumina or silicon nitride. The problem of exposure accuracy is solved to some extent.

【0008】ところが、従来のコージェライトは緻密化
が難しく、ボイドの多いものしか得られていない。その
ため、露光装置の位置測定用ミラーや表面コーティング
が必要な部材のように表面の平滑性が必要となる場合に
は、ボイド等の凹凸の存在は測距用レーザーの乱反射の
原因となり、位置測定に致命的な問題となっていた。こ
のようなボイドは、部材自体の相対密度が低いことによ
って引き起こされるものであることから、これらの部材
に対しては材料の緻密性が要求されている。
However, conventional cordierite is difficult to densify, and only a cordierite having a large number of voids is obtained. Therefore, when surface smoothness is required, such as a mirror for position measurement of an exposure device or a member that requires a surface coating, the presence of irregularities such as voids causes irregular reflection of the laser for distance measurement. Was a fatal problem. Since such voids are caused by the low relative density of the members themselves, these members are required to have a dense material.

【0009】従って、本発明は、それ自体低熱膨張を有
するとともに、ボイドの少ない緻密質の低熱膨張セラミ
ックスとその製造方法を提供することを目的とするもの
である。また、本発明は、ステージ位置測定用ミラーを
はじめとする表面コーティングが必要な部材の表面平滑
性に優れた、緻密質な半導体製造用部材を提供すること
を目的とするものである。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a dense low-thermal-expansion ceramic having a low thermal expansion itself and having few voids, and a method for producing the same. Another object of the present invention is to provide a dense semiconductor manufacturing member excellent in surface smoothness of a member requiring a surface coating such as a stage position measuring mirror.

【0010】[0010]

【課題を解決するための手段】本発明者等は、上記課題
に対し鋭意研究を重ねた結果、コージェライトに希土類
元素酸化物を所定の比率で添加した組成物を用いて作製
した緻密体に、さらに高温加圧処理を行うことにより、
低熱膨張特性を阻害することなく相対密度を高め、焼結
体中のボイドを低減させることができることを見いだ
し、本発明に至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies on the above-mentioned problems, and as a result, have found that a dense body prepared using a composition obtained by adding a rare earth element oxide to cordierite at a predetermined ratio is used. , By further performing high-temperature pressing
The present inventors have found that the relative density can be increased without impairing the low thermal expansion characteristics and the voids in the sintered body can be reduced, and the present invention has been achieved.

【0011】即ち、本発明の緻密質低熱膨張セラミック
スは、コージェライトを80重量%以上含有し、気孔率
が0.1%以下、最大ボイド径5μm以下、10〜40
℃における熱膨張係数1×10-6/℃以下であることを
特徴とするものであり、かかるセラミックスの製造方法
として、コージェライトを80重量%以上含有する原料
粉末を所定形状に成形後、相対密度90%以上に焼結
し、さらに900℃〜1400℃の温度で100気圧以
上の加圧雰囲気で熱処理することを特徴とするものであ
る。
That is, the dense low thermal expansion ceramics of the present invention contains cordierite in an amount of 80% by weight or more, a porosity of 0.1% or less, a maximum void diameter of 5 μm or less, and 10 to 40%.
The coefficient of thermal expansion at 1 ° C. is 1 × 10 −6 / ° C. or less. As a method for producing such a ceramic, a raw material powder containing 80% by weight or more of cordierite is molded into a predetermined shape, It is characterized by sintering to a density of 90% or more and heat treatment at a temperature of 900 ° C. to 1400 ° C. in a pressurized atmosphere of 100 atm or more.

【0012】さらに、本発明によれば、かかる緻密質低
熱膨張セラミックスを半導体製造装置用部材として用い
ることを特徴とするものである。
Further, according to the present invention, such a dense and low thermal expansion ceramic is used as a member for a semiconductor manufacturing apparatus.

【0013】なお、上記緻密質低熱膨張セラミックスに
おいては、いずれも希土類元素を酸化物換算で1〜20
重量%含有することが望ましい。
In each of the above-mentioned dense low thermal expansion ceramics, the rare earth element is 1 to 20 in terms of oxide.
Desirably, it is contained by weight.

【0014】[0014]

【発明の実施の形態】本発明の低熱膨張セラミックス
は、一般式2MgO・2Al2 3 ・5SiO2 で表さ
れるコージェライトの複合酸化物を主体とするものであ
る。このコージェライト結晶は、平均粒径が1〜10μ
mの結晶粒子として存在する。このコージェライトは、
焼結体中に80重量%以上、特に85重量%以上の割合
で存在する。
BEST MODE FOR CARRYING OUT THE INVENTION The low thermal expansion ceramic of the present invention is mainly composed of cordierite composite oxide represented by the general formula 2MgO.2Al 2 O 3 .5SiO 2 . This cordierite crystal has an average particle size of 1 to 10 μm.
exists as crystal grains of m. This cordierite is
It is present in the sintered body in a proportion of 80% by weight or more, especially 85% by weight or more.

【0015】また、この焼結体中には、副成分として希
土類元素を酸化物換算で1〜20重量%、特に5〜15
重量%の割合で含有することが望ましい。コージェライ
トが100重量%であっても、ある程度の緻密化が可能
であっても、その焼成温度が高く、その焼成可能温度領
域が±5℃と非常に狭いために量産には不向きである。
これに対して、希土類元素を1重量%以上含有すると、
焼成時にコージェライトの成分と反応し、液相を生成す
ることから焼結性を高める作用が発揮され、低温焼成化
とともに、焼成可能温度領域を±25℃程度まで拡げる
ことができるために量産性を高めることができる。従っ
て、上記希土類元素量が1重量%よりも少ないと焼結性
が低下し、20重量%を越えると熱膨張係数が大きくな
り、1.0×10-6/℃以下の特性が達成できない。
The sintered body contains a rare earth element as an auxiliary component in an amount of 1 to 20% by weight, especially 5 to 15% in terms of oxide.
It is desirable to contain it in a proportion of weight%. Even if cordierite is 100% by weight or can be densified to some extent, its firing temperature is high and its firing temperature range is extremely narrow at ± 5 ° C., which is not suitable for mass production.
On the other hand, when the rare earth element is contained at 1% by weight or more,
It reacts with the components of cordierite during firing to produce a liquid phase, which has the effect of enhancing sinterability. It can be fired at low temperatures and the firing temperature range can be expanded to about ± 25 ° C, resulting in mass productivity. Can be increased. Therefore, when the amount of the rare earth element is less than 1% by weight, the sinterability is reduced. When the amount exceeds 20% by weight, the coefficient of thermal expansion increases, and characteristics of 1.0 × 10 −6 / ° C. or less cannot be achieved.

【0016】なお、セラミックス中に含有される希土類
元素としては、Y、Yb、Lu、Er、Ce、Nd、S
m等が挙げられ、これらの中でも安価に入手できる点
で、Y、Ybが好適に含まれる。
The rare earth elements contained in the ceramics include Y, Yb, Lu, Er, Ce, Nd, S
m and the like, and among these, Y and Yb are preferable because they can be obtained at low cost.

【0017】上記のようなセラミックスを作製するに
は、平均粒径が10μm以下のコージェライト粉末80
〜99重量%、特に85〜95重量%に対して、平均粒
径が10μm以下の希土類元素酸化物粉末を1〜20重
量%、特に5〜15重量%の割合で添加する。上記の比
率で各成分を配合した後、ボールミルなどにより十分に
混合し、所定形状に所望の成形手段、例えば、金型プレ
ス、冷間静水圧プレス、押出し成形等により任意の形状
に成形する。この時の成形体は、相対密度55%以上で
あることが望ましく、成形体密度が55%よりも低い
と、その後の焼結過程で相対密度90%以上の緻密体を
作製することが困難となる。
In order to produce such ceramics, cordierite powder 80 having an average particle size of 10 μm or less is used.
A rare earth element oxide powder having an average particle diameter of 10 μm or less is added in an amount of 1 to 20% by weight, particularly 5 to 15% by weight, to 99 to 99% by weight, particularly 85 to 95% by weight. After blending the respective components in the above ratio, the components are sufficiently mixed by a ball mill or the like, and formed into a desired shape by a desired forming means, for example, a die press, a cold isostatic press, an extrusion or the like. The compact at this time is desirably at a relative density of 55% or more. If the compact density is lower than 55%, it is difficult to produce a dense body having a relative density of 90% or more in the subsequent sintering process. Become.

【0018】次に、上記のようにして作製した成形体を
相対密度90%以上、好ましくは95%以上に焼成す
る。相対密度90%以上に緻密化するには、上記の組成
からなる成形体を大気あるいは不活性ガス雰囲気中で1
300〜1450℃で1〜10時間程度焼成することに
より作製することができる。なお、この焼成にあたって
は、成形体を炭化珪素質またはアルミナ質の匣鉢内に収
納して焼成することが望ましい。
Next, the molded body produced as described above is fired to a relative density of 90% or more, preferably 95% or more. In order to densify to a relative density of 90% or more, a compact having the above composition is placed in air or an inert gas atmosphere.
It can be manufactured by firing at 300 to 1450 ° C. for about 1 to 10 hours. In this firing, it is desirable that the compact be housed in a silicon carbide or alumina sagger and fired.

【0019】得られた焼結体にガス中、例えばN2 ,A
r,Airなどのガスにより100気圧以上の加圧雰囲
気で熱処理する。次に、この加圧熱処理は、900〜1
400℃の温度範囲、好ましくは1100〜1200℃
で1〜5時間程度行うことにより相対密度99.9%以
上、気孔率0.1%以下、最大ボイド径5μm以下に緻
密化することができる。つまり、処理温度が900℃よ
りも低いとボイドを低減することができず、1400℃
を越えると試料の一部が溶融する。
In the obtained sintered body, for example, N 2 , A
Heat treatment is performed with a gas such as r or Air in a pressurized atmosphere of 100 atm or more. Next, the pressure heat treatment is performed at 900 to 1
400 ° C. temperature range, preferably 1100-1200 ° C.
For about 1 to 5 hours, the density can be reduced to a relative density of 99.9% or more, a porosity of 0.1% or less, and a maximum void diameter of 5 μm or less. That is, if the processing temperature is lower than 900 ° C., the void cannot be reduced, and
When the temperature exceeds, a part of the sample melts.

【0020】なお、上記の高圧雰囲気中での熱処理を施
す前の焼結体の相対密度が90%未満では、焼結体中の
気孔中に高圧ガスがトラップされてしまい、その後の高
圧雰囲気中での熱処理を施してもボイドを減少すること
ができないためである。
If the relative density of the sintered body before the heat treatment in the high-pressure atmosphere is less than 90%, the high-pressure gas is trapped in the pores in the sintered body, and the high-pressure gas in the high-pressure atmosphere thereafter is trapped. This is because the voids cannot be reduced even if the heat treatment is performed.

【0021】上記のような製造方法によって最終的に、
気孔率が0.1%以下、特に0.08%以下、最大ボイ
ド径5μm以下、特に4.5μm以下の緻密質の低熱膨
張のセラミックスを作製することができる。
According to the manufacturing method as described above, finally,
Dense, low thermal expansion ceramics having a porosity of 0.1% or less, particularly 0.08% or less, and a maximum void diameter of 5 μm or less, particularly 4.5 μm or less can be produced.

【0022】なお、かかる低熱膨張セラミックスにおい
ては、気孔率が0.1%以下、最大ボイド径5μm以
下、10〜40℃における熱膨張係数1×10-6/℃以
下の特性を満足することを条件に、上記のコージェライ
ト成分および希土類元素化合物以外に、製造上の不可避
的不純物や、焼結性や特性向上のために他の成分を含有
してもよい。例えば、W、Mo、Ni、Fe、Zr、S
r等が挙げられる。
It is to be noted that such low thermal expansion ceramics must satisfy the characteristics of a porosity of 0.1% or less, a maximum void diameter of 5 μm or less, and a thermal expansion coefficient of 1 × 10 −6 / ° C. or less at 10 to 40 ° C. In addition to the cordierite component and the rare-earth element compound described above, the composition may contain unavoidable impurities in production and other components for improving sinterability and characteristics. For example, W, Mo, Ni, Fe, Zr, S
r and the like.

【0023】そして、かかる緻密質低熱膨張セラミック
スは、半導体素子を製造する際に用いられる真空装置構
造体、サセプタ、真空チャック、静電チャックあるいは
露光装置におけるステージや、ステージ位置測定用ミラ
ー、あるいはそれらの支持部材、さらには半導体製造プ
ロセスにおける各種治具などに好適に使用される。特
に、そのセラミック表面に、コーティングが施されるよ
うな部材、例えば、真空チャック、ステージ位置測定用
ミラーに最も好適に使用される。
Such a dense low-thermal-expansion ceramic is a stage in a vacuum apparatus structure, a susceptor, a vacuum chuck, an electrostatic chuck, an exposure apparatus, or a stage position measuring mirror, or a stage position measuring mirror used in manufacturing a semiconductor element. It is suitably used as a support member, and various jigs in a semiconductor manufacturing process. In particular, it is most suitably used for a member whose ceramic surface is coated, for example, a vacuum chuck and a stage position measuring mirror.

【0024】かかる場合、セラミックスの表面に施され
るコーティングとしては、TiN、、Al2 3 、ダイ
ヤモンド、ダイヤモンドライクカーボン(DLC)等が
0.1〜10μmの膜厚で被覆される。
In such a case, as the coating applied to the surface of the ceramic, TiN, Al 2 O 3 , diamond, diamond-like carbon (DLC) or the like is coated in a thickness of 0.1 to 10 μm.

【0025】このようなコーティングが施される部材に
おいては、気孔率が0.1%以下、最大ボイド径5μm
以下であることが必要であり、気孔率が0.1%を越え
たり、最大ボイド径が5μmを越えると、均質がコーテ
ィングが形成されず、半導体製造装置用部材に適さない
ためである。
The member to which such a coating is applied has a porosity of 0.1% or less and a maximum void diameter of 5 μm.
When the porosity exceeds 0.1% or when the maximum void diameter exceeds 5 μm, a homogeneous coating is not formed and is not suitable for a member for a semiconductor manufacturing apparatus.

【0026】[0026]

【実施例】純度99%以上、平均粒径が3μmのコージ
ェライト粉末に対して、平均粒径が1μmのY2 3
Yb2 3 、Er2 3 、CeO2 の各希土類元素酸化
物粉末を表1および表2に示す割合で調合後、ボールミ
ルで24時間混合した。その後、この混合粉末を1t/
cm2 の圧力で金型成形して、相対密度58%の成形体
を作製した。
EXAMPLE A cordierite powder having a purity of 99% or more and an average particle size of 3 μm was prepared by using Y 2 O 3 having an average particle size of 1 μm
Yb 2 O 3 , Er 2 O 3 , and CeO 2 rare earth element oxide powders were mixed at the ratios shown in Tables 1 and 2, and then mixed in a ball mill for 24 hours. Then, the mixed powder was added to 1 t /
Molding was performed at a pressure of cm 2 to produce a molded article having a relative density of 58%.

【0027】そして、その成形体を炭化珪素質またはア
ルミナ質の匣鉢に入れて大気雰囲気中で表1、表2に示
す温度で5時間焼成した。得られた焼結体に対してアル
キメデス法によって相対密度を測定しその結果を表1、
表2に示した。
The compact was placed in a silicon carbide or alumina sagger and fired in an air atmosphere at the temperatures shown in Tables 1 and 2 for 5 hours. The relative density of the obtained sintered body was measured by the Archimedes method, and the results were shown in Table 1,
The results are shown in Table 2.

【0028】上記の焼成後、さらに、表1、表2の条件
で高圧雰囲気中での熱処理を1時間施した。なお、加圧
処理条件を表1、表2のように変化させて実施して、種
々のセラミックスを作製した。
After the above firing, a heat treatment in a high-pressure atmosphere was further performed for one hour under the conditions shown in Tables 1 and 2. Various ceramics were produced by changing the pressure treatment conditions as shown in Tables 1 and 2.

【0029】得られたセラミックスを研磨し、3×4×
15mmの大きさに研削加工し、このセラミックスの1
0〜40℃までの熱膨張係数を測定した。また、室温で
のボイド率を測定した。結果は表1、表2に示した。
The obtained ceramic is polished and 3 × 4 ×
Grinding to a size of 15mm, this ceramic 1
The coefficient of thermal expansion from 0 to 40 ° C was measured. The void ratio at room temperature was measured. The results are shown in Tables 1 and 2.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】表1,2にみられるように、本発明に基づ
き、コージェライトを80重量%以上含み、相対密度9
0%以上の焼結体を、100気圧以上の900〜140
0℃の条件で加圧処理することにより、相対密度の向上
ならびに気孔率の低減化を図り、気孔率0.1%以下を
達成し、相対密度が高くなる傾向が見られた。
As shown in Tables 1 and 2, according to the present invention, cordierite is contained in an amount of 80% by weight or more and the relative density is 9%.
0% or more of the sintered body is 900 to 140 atm.
By performing the pressure treatment at 0 ° C., the relative density was improved and the porosity was reduced, the porosity was 0.1% or less, and the relative density tended to increase.

【0033】しかし、高圧処理時の処理温度が1400
℃を越える試料No.22では、試料の一部が溶融し、ま
た、加圧処理温度が900℃よりも低い試料No.1は、
気孔率が0.1%を越えるものであった。また、希土類
元素酸化物の添加量が20重量%より多い試料No.36
は、熱膨張係数が大きくなり、1.0×10-6/℃以下
の特性が達成できず、希土類元素酸化物量が1重量%未
満の試料No.30では、特性上では問題ないものの、焼
成可能温度領域が±5℃と非常に狭いものであった。
However, the processing temperature during high pressure processing is 1400
In Sample No. 22 exceeding 100 ° C., part of the sample was melted, and in Sample No. 1 in which the pressure treatment temperature was lower than 900 ° C.,
The porosity exceeded 0.1%. Sample No. 36 in which the amount of rare earth element oxide added was more than 20% by weight.
In Sample No. 30, which has a large coefficient of thermal expansion and cannot achieve a characteristic of 1.0 × 10 −6 / ° C. or less, and has a rare earth oxide content of less than 1% by weight, there is no problem in the characteristics. The possible temperature range was very narrow, ± 5 ° C.

【0034】さらに、高圧熱処理時の圧力が100気圧
よりも低い試料No.23ではボイド率が低下せず気孔率
0.1%以下が達成されなかった。また、加圧前の相対
密度が90%よりも低い試料No.37、38を使用する
と、高温加圧処理後の気孔率が0.1%以下、最大ボイ
ド径が5μm以下にならなかった。
Further, in Sample No. 23 in which the pressure during the high-pressure heat treatment was lower than 100 atm, the void ratio did not decrease, and a porosity of 0.1% or less was not achieved. When the samples Nos. 37 and 38 having a relative density of less than 90% before pressurization were used, the porosity after high-temperature pressurization did not become 0.1% or less, and the maximum void diameter did not become 5 μm or less.

【0035】[0035]

【発明の効果】以上詳述した通り、本発明の低熱膨張セ
ラミックスは、コージェライトの優れた低熱膨張特性を
維持しつつ、ボイド率、即ち、相対密度を高めることが
できる。その結果、この低熱膨張セラミックスを高微細
な回路を形成するためのウエハに露光処理を行うなどの
半導体製造装置用部品、例えば、露光装置用真空チャッ
ク、ステージ用ミラーなどとして用いることにより、雰
囲気の温度変化に対しても寸法の変化がなく、また、部
品表面の平滑性を向上させることができ、優れた精度が
得られ、半導体素子製造の品質と量産性を高めることが
できる。
As described in detail above, the low thermal expansion ceramic of the present invention can increase the void fraction, that is, the relative density, while maintaining the excellent low thermal expansion characteristics of cordierite. As a result, by using this low thermal expansion ceramic as a part for semiconductor manufacturing equipment such as performing exposure processing on a wafer for forming a fine circuit, for example, a vacuum chuck for an exposure apparatus, a mirror for a stage, etc. There is no dimensional change with respect to temperature change, the smoothness of the component surface can be improved, excellent accuracy can be obtained, and the quality and mass productivity of semiconductor device manufacturing can be improved.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】コージェライトを80重量%以上含有し、
気孔率が0.1%以下、最大ボイド径5μm以下、10
〜40℃における熱膨張係数1×10-6/℃以下である
ことを特徴とする緻密質低熱膨張セラミックス。
Claims: 1. A cordierite comprising at least 80% by weight,
Porosity of 0.1% or less, maximum void diameter of 5 μm or less, 10
A dense, low-thermal-expansion ceramic having a thermal expansion coefficient of 1 × 10 −6 / ° C. or less at 40 ° C.
【請求項2】希土類元素を酸化物換算で1〜20重量%
含有する請求項1記載の緻密質低熱膨張セラミックス。
2. A rare earth element in an amount of 1 to 20% by weight in terms of oxide.
The dense low thermal expansion ceramic according to claim 1, which is contained.
【請求項3】コージェライトを80重量%以上含有する
原料粉末を所定形状に成形後、相対密度90%以上に焼
結し、さらに900℃〜1400℃の温度で100気圧
以上の加圧雰囲気で熱処理することを特徴とする緻密質
低熱膨張セラミックスの製造方法。
3. A raw material powder containing cordierite of 80% by weight or more is molded into a predetermined shape, sintered to a relative density of 90% or more, and further heated at 900 ° C. to 1400 ° C. in a pressurized atmosphere of 100 atm or more. A method for producing a dense low-thermal-expansion ceramic, characterized by performing a heat treatment.
【請求項4】前記原料粉末が、希土類元素を酸化物換算
で1〜20重量%含有する請求項3記載の緻密質低熱膨
張セラミックスの製造方法。
4. The method according to claim 3, wherein said raw material powder contains 1 to 20% by weight of a rare earth element in terms of oxide.
【請求項5】コージェライトを80重量%以上含有し、
気孔率が0.1%以下、熱膨張係数1×10-6/℃以下
の緻密質低熱膨張セラミックスからなることを特徴とす
る半導体製造装置用部材。
5. It contains cordierite in an amount of 80% by weight or more,
A member for a semiconductor manufacturing apparatus comprising a dense low-thermal-expansion ceramic having a porosity of 0.1% or less and a thermal expansion coefficient of 1 × 10 −6 / ° C. or less.
【請求項6】希土類元素を酸化物換算で1〜20重量%
含有する請求項5記載の半導体製造装置用部材。
6. A rare earth element in an amount of 1 to 20% by weight in terms of oxide.
The member for a semiconductor manufacturing apparatus according to claim 5, which contains.
JP10009720A 1997-10-24 1998-01-21 Dense low thermal expansion ceramics, its production and member for semiconductor producing device Pending JPH11209171A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP10009720A JPH11209171A (en) 1998-01-21 1998-01-21 Dense low thermal expansion ceramics, its production and member for semiconductor producing device
US09/177,977 US6265334B1 (en) 1997-10-24 1998-10-22 Ceramic sintered product and process for producing the same
DE19861434A DE19861434B4 (en) 1997-10-24 1998-10-26 An article of low thermal expansion ceramic material and its use
DE19849340A DE19849340B4 (en) 1997-10-24 1998-10-26 Ceramic sintered product and process for its production
US10/124,067 USRE39120E1 (en) 1997-10-24 2002-04-16 Ceramic sintered product and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10009720A JPH11209171A (en) 1998-01-21 1998-01-21 Dense low thermal expansion ceramics, its production and member for semiconductor producing device

Publications (1)

Publication Number Publication Date
JPH11209171A true JPH11209171A (en) 1999-08-03

Family

ID=11728139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10009720A Pending JPH11209171A (en) 1997-10-24 1998-01-21 Dense low thermal expansion ceramics, its production and member for semiconductor producing device

Country Status (1)

Country Link
JP (1) JPH11209171A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001068551A1 (en) * 2000-03-13 2001-09-20 Ibiden Co., Ltd. Ceramic substrate
US6825555B2 (en) 2000-06-16 2004-11-30 Ibiden Co., Ltd. Hot plate
US7037870B2 (en) 2002-01-31 2006-05-02 Ngk Spark Plug Co., Ltd. Ceramic sintered body and process for producing the same
US7112549B2 (en) 2000-09-20 2006-09-26 Sumitomo Metal Industries, Ltd. Low thermal expansion ceramic and member for exposure system
JP2006351741A (en) * 2005-06-15 2006-12-28 Sumitomo Heavy Ind Ltd Temperature control device, movable state with temperature control function, and radiation heat transmitting device
JP2007112694A (en) * 2005-09-26 2007-05-10 Kyocera Corp Black ceramic sintered compact, optical analysis cell using the same and member for semiconductor- or liquid crystal-manufacturing apparatus
KR100805313B1 (en) * 2001-07-14 2008-02-20 에이에스엠엘 네델란즈 비.브이. Lithographic apparatus and device manufacturing method
WO2012053312A1 (en) 2010-10-21 2012-04-26 黒崎播磨株式会社 Cordierite sintered body
JP2015051921A (en) * 2014-11-19 2015-03-19 黒崎播磨株式会社 Cordierite sintered compact
WO2021154713A1 (en) * 2020-01-27 2021-08-05 Heraeus Conamic North America Llc High purity cordierite material for semiconductor applications
JPWO2021215518A1 (en) * 2020-04-24 2021-10-28

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001068551A1 (en) * 2000-03-13 2001-09-20 Ibiden Co., Ltd. Ceramic substrate
US6825555B2 (en) 2000-06-16 2004-11-30 Ibiden Co., Ltd. Hot plate
US7112549B2 (en) 2000-09-20 2006-09-26 Sumitomo Metal Industries, Ltd. Low thermal expansion ceramic and member for exposure system
KR100805313B1 (en) * 2001-07-14 2008-02-20 에이에스엠엘 네델란즈 비.브이. Lithographic apparatus and device manufacturing method
US7037870B2 (en) 2002-01-31 2006-05-02 Ngk Spark Plug Co., Ltd. Ceramic sintered body and process for producing the same
JP4558589B2 (en) * 2005-06-15 2010-10-06 住友重機械工業株式会社 Temperature control device, movable stage with temperature control function, and radiation heat transfer device
JP2006351741A (en) * 2005-06-15 2006-12-28 Sumitomo Heavy Ind Ltd Temperature control device, movable state with temperature control function, and radiation heat transmitting device
JP4707591B2 (en) * 2005-09-26 2011-06-22 京セラ株式会社 Black ceramic sintered body, optical analysis cell using the same, and semiconductor / liquid crystal manufacturing apparatus member
JP2007112694A (en) * 2005-09-26 2007-05-10 Kyocera Corp Black ceramic sintered compact, optical analysis cell using the same and member for semiconductor- or liquid crystal-manufacturing apparatus
WO2012053312A1 (en) 2010-10-21 2012-04-26 黒崎播磨株式会社 Cordierite sintered body
US20120100982A1 (en) * 2010-10-21 2012-04-26 Krosakiharima Corporation Cordierite-based sintered body
JP2012087026A (en) * 2010-10-21 2012-05-10 Kurosaki Harima Corp Cordierite-based sintered body
US8242039B2 (en) 2010-10-21 2012-08-14 Krosakiharima Corporation Cordierite-based sintered body
JP2015051921A (en) * 2014-11-19 2015-03-19 黒崎播磨株式会社 Cordierite sintered compact
WO2021154713A1 (en) * 2020-01-27 2021-08-05 Heraeus Conamic North America Llc High purity cordierite material for semiconductor applications
CN114981229A (en) * 2020-01-27 2022-08-30 贺利氏科纳米北美有限责任公司 High purity cordierite materials for semiconductor applications
JP2023508502A (en) * 2020-01-27 2023-03-02 ヘレーウス コナミック ノース アメリカ エルエルシー High purity cordierite material for semiconductor applications
JPWO2021215518A1 (en) * 2020-04-24 2021-10-28
WO2021215518A1 (en) * 2020-04-24 2021-10-28 京セラ株式会社 Mirror mounting member, position measurement mirror using same, exposure device, and charged particle beam device

Similar Documents

Publication Publication Date Title
JP4416191B2 (en) Low thermal expansion ceramics, manufacturing method thereof, and semiconductor manufacturing component
JPH11343168A (en) Low thermal expansion black ceramics, its production and member for semiconductor producing apparatus
JPH11209171A (en) Dense low thermal expansion ceramics, its production and member for semiconductor producing device
JP4890968B2 (en) Low thermal expansion ceramic joined body and manufacturing method thereof
JP4261631B2 (en) Manufacturing method of ceramic sintered body
JP3214890B2 (en) Aluminum nitride sintered body, method for producing the same, and firing jig using the same
JP4429288B2 (en) Low thermal expansion ceramics and members for semiconductor manufacturing equipment using the same
JP3676552B2 (en) Low thermal expansion ceramics and method for producing the same
JP3805119B2 (en) Method for producing low thermal expansion ceramics
JP4025455B2 (en) Composite oxide ceramics
JPH11100275A (en) Low thermal expansion ceramic and its preparation
JPH11236262A (en) Low thermal expansion ceramic structural member and member for semiconductor device producing apparatus using the same
JP3537241B2 (en) Method for producing silicon nitride sintered body
JP2001302340A (en) High density low thermal expansion ceramic and manufacturing method thereof and member for semiconductor manufacturing device
JP2000247732A (en) Low-resistance ceramic, its production and member for semiconductor producing apparatus
JP2001302338A (en) Composite ceramic and manufacturing method thereof
JP3260340B2 (en) Composite ceramic and method for producing the same
JP2003095744A (en) Silicon carbide sintered compact and member for manufacturing semiconductor using the same, member for manufacturing magnetic head, wear resistant sliding member and method of manufacturing the same
JP4761617B2 (en) Aluminum nitride sintered body, method for producing the same, and electronic component using the same
JP2003292372A (en) Ceramic sintered compact and production method therefor
JP5011609B2 (en) Dense cordierite ceramics and method for producing the same
JPH11100276A (en) Silicon nitride substrate for mounting electronic parts and its manufacture
JP4062059B2 (en) Low thermal expansion ceramic member, method for manufacturing the same, and member for semiconductor manufacturing apparatus
JP2003137644A (en) Low thermal expansion ceramic, members for ultra- precise machine structure, measuring instrument and semiconductor manufacturing equipment using the same, and method of producing low thermal expansion ceramic
JP3677360B2 (en) Method for producing silicon nitride sintered body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061006

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061127

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20061228