JPH11236262A - Low thermal expansion ceramic structural member and member for semiconductor device producing apparatus using the same - Google Patents

Low thermal expansion ceramic structural member and member for semiconductor device producing apparatus using the same

Info

Publication number
JPH11236262A
JPH11236262A JP10040811A JP4081198A JPH11236262A JP H11236262 A JPH11236262 A JP H11236262A JP 10040811 A JP10040811 A JP 10040811A JP 4081198 A JP4081198 A JP 4081198A JP H11236262 A JPH11236262 A JP H11236262A
Authority
JP
Japan
Prior art keywords
thermal expansion
structural member
ceramic structural
crystal phase
low thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10040811A
Other languages
Japanese (ja)
Inventor
Masahiro Sato
政宏 佐藤
Hirohisa Sechi
啓久 瀬知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10040811A priority Critical patent/JPH11236262A/en
Priority to US09/177,977 priority patent/US6265334B1/en
Priority to DE19861434A priority patent/DE19861434B4/en
Priority to DE19849340A priority patent/DE19849340B4/en
Publication of JPH11236262A publication Critical patent/JPH11236262A/en
Priority to US10/124,067 priority patent/USRE39120E1/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a low thermal expansion and high rigidity ceramic structural member suitable for a member for a semiconductor device producing apparatus capable of precisely producing a precise circuit board. SOLUTION: The ceramic structural member is based on a cordierite crystal phase, contains 0.5-10 wt.% (expressed in terms of oxide) at least one selected from the group of the groups IIa, IIIb and IVb elements of the Periodic Table with the exception of Mg, Al and Si, further contains a silicate compd. crystal phase contg. groups IIa and IIIb elements and an aluminum silicate crystal phase, optionally contains <=20 wt.% (expressed in terms of oxide) rare earth element and <=30 wt.% silicon nitride, silicon carbide, silicon oxynitride, etc., and has >=30 GPa relative density, <=0.5×10<-6> / deg.C coefft. of thermal expansion at room temp. and >=130 GPa Young's modulus.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、真空装置構造体、
サセプタ、静電チャック、真空チャックまたはステッパ
ーなどの半導体製造プロセスにおける製造装置用部材に
適したコージェライトを主体とする低熱膨張セラミック
ス構造部材およびそれを用いた半導体素子製造装置用部
材に関する。
TECHNICAL FIELD The present invention relates to a vacuum device structure,
The present invention relates to a low thermal expansion ceramic structural member mainly composed of cordierite suitable for a member for a manufacturing apparatus in a semiconductor manufacturing process such as a susceptor, an electrostatic chuck, a vacuum chuck, or a stepper, and a member for a semiconductor element manufacturing apparatus using the same.

【0002】[0002]

【従来技術】従来より、コージェライト系焼結体は、低
熱膨張のセラミックス構造部材として知られており、フ
ィルター、ハニカム、耐火物などに応用されている。こ
のコージェライト系焼結体は、コージェライト粉末、あ
るいはコージェライトを形成するMgO、Al2 3
SiO2 粉末を配合して、これに焼結助剤として、希土
類元素酸化物や、SiO2 、CaO、MgOなどを添加
し、所定形状に成形後、1000℃〜1400℃の温度
で焼結する事によって作製される。(特公昭57−36
29号、特開平2−229760号)。
2. Description of the Related Art Conventionally, cordierite-based sintered bodies have been known as low thermal expansion ceramic structural members, and have been applied to filters, honeycombs, refractories, and the like. The cordierite-based sintered body is made of cordierite powder or MgO, Al 2 O 3 ,
By blending SiO 2 powder, as a sintering aid thereto, and rare earth element oxides, SiO 2, CaO, MgO and the like were added, after molding into a predetermined shape and sintered at a temperature of 1000 ° C. to 1400 ° C. Created by things. (Special Publication 57-36
No. 29, JP-A-2-229760).

【0003】一方、LSIなどの半導体集積回路素子の
製造工程において、シリコンウエハに微細配線を形成す
る工程において、ウエハを支持または保持するためのサ
セプタ、静電チャックや絶縁リング、シリコンウエハへ
の回路形成のための露光装置のXYテーブル、あるいは
その他の各種半導体製造装置用の治具として、これまで
に主にアルミナや窒化珪素などのセラミックスが比較的
に安価で、化学的にも安定であるため広く用いられてい
る。
On the other hand, in a process of manufacturing a semiconductor integrated circuit device such as an LSI, in a process of forming fine wiring on a silicon wafer, a susceptor for supporting or holding the wafer, an electrostatic chuck or an insulating ring, and a circuit for forming a silicon wafer. Ceramics such as alumina and silicon nitride have been relatively inexpensive and chemically stable as jigs for XY tables of exposure equipment for forming or other various semiconductor manufacturing equipment. Widely used.

【0004】また最近では、コージェライトの低熱膨張
性を利用し、コージェライト系焼結体を半導体製造装置
部品として応用することが、特開平1−191422号
や、特公平6−97675号に提案されている。特開平
1−191422号によれば、X線マスクにおけるマス
ク基板に接着する補強リングとして、SiO2 、インバ
ーなどに加え、コージェライトによって形成し、メンブ
レンの応力を制御することが提案されている。また、特
公平6−97675号では、ウエハを載置する静電チャ
ック用基板としてアルミナやコージェライト系焼結体を
使用することが提案されている。
Recently, it has been proposed in Japanese Patent Application Laid-Open No. Hei 1-191422 and Japanese Patent Publication No. 6-97675 that a cordierite-based sintered body is applied as a semiconductor manufacturing device part by utilizing the low thermal expansion property of cordierite. Have been. According to Japanese Patent Application Laid-Open No. 1-191422, it is proposed that a reinforcing ring bonded to a mask substrate in an X-ray mask is formed of cordierite in addition to SiO 2 , invar, and the like to control the stress of the membrane. Japanese Patent Publication No. Hei 6-97675 proposes using an alumina or cordierite-based sintered body as a substrate for an electrostatic chuck on which a wafer is mounted.

【0005】[0005]

【発明が解決しようとする課題】近年、LSIなどにお
ける高集積化にともない、回路の微細化が急速に進めら
れ、その回路の線幅もサブミクロンオーダーのレベルま
で高集積化しつつある。そして、シリコンウエハに高精
密回路を形成するための露光装置に対して高い精度が要
求され、例えば露光装置のステージ用部材においては1
00nm(0.1μm)以下の位置決め精度が要求さ
れ、露光の位置合わせ誤差が製品の品質向上や歩留まり
向上に大きな影響を及ぼしているのが現状である。
In recent years, as the degree of integration in LSIs and the like has increased, the miniaturization of circuits has been rapidly advanced, and the line width of the circuits has been increasing to the level of the submicron order. A high precision is required for an exposure apparatus for forming a high-precision circuit on a silicon wafer.
At present, a positioning accuracy of 00 nm (0.1 μm) or less is required, and at present, an exposure alignment error has a great effect on the improvement of product quality and the yield.

【0006】半導体製造装置用として一般に用いられて
きたアルミナ、窒化珪素などのセラミックスは、金属に
比べて熱膨張率は小さいものの、10〜40℃の熱膨張
率はそれぞれ、5.2×10-6/℃、1.5×10-6
℃であり、雰囲気温度が0.1℃変化すると数100n
m(0.1μm )の変形が発生することになり、露光等
の精密な工程ではこの変化が大きな問題となり、従来の
セラミックスでは精度が低く、生産性の低下をもたらし
ている。
[0006] Semiconductor manufacturing device generally alumina has been used for the ceramics such as silicon nitride, although the thermal expansion coefficient is smaller than that of the metal, each thermal expansion coefficient of 10~40 ℃, 5.2 × 10 - 6 /℃,1.5×10 -6 /
° C, and several hundred n when the ambient temperature changes by 0.1 ° C
m (0.1 .mu.m), and this change becomes a serious problem in precision steps such as exposure, and the conventional ceramics have low accuracy and lower productivity.

【0007】これに対して、コージェライト系焼結体
は、熱膨張率が0.2×10-6/℃程度と、アルミナや
窒化珪素に比較して熱膨張率が低く、上記のような露光
精度に対する問題はある程度解決される。
On the other hand, the cordierite-based sintered body has a coefficient of thermal expansion of about 0.2 × 10 −6 / ° C., which is lower than that of alumina or silicon nitride. The problem of exposure accuracy is solved to some extent.

【0008】ところが、露光装置用ステージのように、
シリコンウエハを載置した支持体が露光処理を施す位置
まで高速移動を伴うような場合には、移動後の支持体自
体が所定位置に停止後も振動しており、そのために、そ
の振動した状態で露光処理を施すと露光精度が低下する
という問題があった。これは露光によって形成する配線
が細くなるほど顕著であり、高精密な配線回路を形成す
る上では致命的な問題となっていた。
However, like a stage for an exposure apparatus,
In the case where the support on which the silicon wafer is mounted moves at a high speed to the position where the exposure processing is performed, the support itself after the movement is still vibrating even after stopping at the predetermined position. However, there is a problem that the exposure accuracy decreases when the exposure process is performed. This becomes more remarkable as the wiring formed by exposure becomes thinner, and has become a fatal problem in forming a highly precise wiring circuit.

【0009】このような振動は、部材自体の剛性が低い
ことによって引き起こされるものであることから、これ
らの部材に対しては高い剛性、即ち高ヤング率が要求さ
れている。
Since such vibrations are caused by the low rigidity of the members themselves, high rigidity, that is, high Young's modulus is required for these members.

【0010】従って、本発明の目的は、それ自体低熱膨
張を有するとともに、高剛性を有する低熱膨張性を有す
る低熱膨張セラミックス構造部材を提供するにある。ま
た、本発明の他の目的は、高集積回路素子などの半導体
素子を製造するための装置に適用され、精密な配線回路
を精度よく製造することのできる半導体素子製造装置用
部材を提供するにある。
Accordingly, an object of the present invention is to provide a low-thermal-expansion ceramic structural member which has low thermal expansion and high rigidity and low thermal expansion. Another object of the present invention is to provide a member for a semiconductor element manufacturing apparatus which is applied to an apparatus for manufacturing a semiconductor element such as a highly integrated circuit element and can manufacture a precise wiring circuit with high accuracy. is there.

【0011】[0011]

【課題を解決するための手段】本発明者等は、上記課題
に対して鋭意研究を重ねた結果、コージェライト結晶相
を主相とするセラミックス中に、Mg、AlおよびSi
以外の周期律表第2a、3bおよび4b族元素の群から
選ばれる少なくとも1種を所定の比率で含有せしめるこ
とにより、熱膨張率を低下できるとともに、さらにヤン
グ率を向上できることを見いだした。
Means for Solving the Problems The present inventors have conducted intensive studies on the above problems and found that Mg, Al and Si were contained in ceramics having a cordierite crystal phase as a main phase.
It has been found that, by including at least one element selected from the group of elements of Groups 2a, 3b and 4b of the periodic table other than the above at a predetermined ratio, the coefficient of thermal expansion can be reduced and the Young's modulus can be further improved.

【0012】即ち、本発明は、コージェライト結晶相を
主体とし、周期律表第2a、3bおよび4b族元素の群
(但し、Mg、AlおよびSiを除く。)から選ばれる
少なくとも1種を酸化物換算で0.5〜10重量%含
み、相対密度が95%以上、室温での熱膨張率が0.5
×10-6/℃以下、ヤング率が130GPa以上の低熱
膨張セラミックス構造部材であり、特に、前記セラミッ
クス中に、前記周期律表第2aおよび3b族元素の群か
ら選ばれる少なくとも1種の元素を含有するシリケート
化合物結晶相、あるいはアルミニウムシリケート結晶相
を含むこと、希土類元素を酸化物換算で20重量%以下
の割合で含有すること、窒化珪素、炭化珪素、酸窒化珪
素の中から選ばれる少なくとも1種を30重量%以下の
割合で含有することが望ましい。
That is, the present invention mainly comprises a cordierite crystal phase and oxidizes at least one element selected from the group of elements of Groups 2a, 3b and 4b of the periodic table (excluding Mg, Al and Si). Containing 0.5 to 10% by weight in terms of material, having a relative density of 95% or more, and a thermal expansion coefficient of 0.5 at room temperature.
A low-thermal-expansion ceramic structural member having a temperature of × 10 −6 / ° C. or less and a Young's modulus of 130 GPa or more. In particular, in the ceramics, at least one element selected from the group consisting of the elements in Groups 2a and 3b of the periodic table Containing a silicate compound crystal phase or an aluminum silicate crystal phase, containing a rare earth element in a proportion of 20% by weight or less in terms of oxide, and at least one selected from silicon nitride, silicon carbide, and silicon oxynitride. It is desirable to contain the seed in a proportion of 30% by weight or less.

【0013】また、本発明によれば、上記低熱膨張セラ
ミックス構造部材を半導体素子製造装置用部材として用
いることにより、上記目的が達成される。
According to the present invention, the above object is achieved by using the low thermal expansion ceramic structural member as a member for a semiconductor device manufacturing apparatus.

【0014】[0014]

【発明の実施の形態】本発明におけるセラミック焼結体
は、コージェライト結晶相を主相とし、周期律表第2
a、3bおよび4b族元素の群(但し、Mg、Alおよ
びSiを除く。)から選ばれる少なくとも1種を酸化物
換算で0.5〜10重量%、好ましくは2〜8重量%の
割合で含有することが重要である。
BEST MODE FOR CARRYING OUT THE INVENTION The ceramic sintered body according to the present invention has a cordierite crystal phase as a main phase and has a second phase in the periodic table.
At least one element selected from the group of elements a, 3b and 4b (excluding Mg, Al and Si) in a proportion of 0.5 to 10% by weight, preferably 2 to 8% by weight in terms of oxide. It is important to include.

【0015】周期律表第2a、3bおよび4b族元素の
群(但し、Mg、AlおよびSiを除く。)から選ばれ
る少なくとも1種を添加することにより、単独では緻密
化しにくいコージェライトの焼結性を改善できる上、高
ヤング率化、低熱膨張化を促進することができる。周期
律表第2a、3bおよび4b族元素の群(但し、Mg、
AlおよびSiを除く。)から選ばれる少なくとも1種
の元素としては、Ca,Sr,Ba,B,Ge,In,
Sn等が好適である。
By adding at least one element selected from the group of elements of groups 2a, 3b and 4b of the periodic table (excluding Mg, Al and Si), sintering of cordierite by itself is difficult to densify. Properties can be improved, and a higher Young's modulus and a lower thermal expansion can be promoted. Group of elements of groups 2a, 3b and 4b of the periodic table (provided that Mg,
Excluding Al and Si. )), At least one element selected from Ca, Sr, Ba, B, Ge, In,
Sn and the like are preferred.

【0016】上記成分の含有量を上記のように限定した
のは、周期律表第2a、3bおよび4b族元素の群(但
し、Mg、AlおよびSiを除く。)から選ばれる少な
くとも1種の酸化物換算量が0.5重量%未満では、焼
結性の改善、高ヤング率、低熱膨張化の効果が期待でき
ず、10重量%を超えると、熱膨張率が0.5×10-6
/℃を超えてしまい、本発明の目的に適さなくなるため
である。
The content of the above components is limited as described above because at least one element selected from the group of elements of Groups 2a, 3b and 4b of the periodic table (excluding Mg, Al and Si). If the oxide equivalent is less than 0.5% by weight, the effect of improving sinterability, high Young's modulus and lowering thermal expansion cannot be expected. If it exceeds 10% by weight, the coefficient of thermal expansion is 0.5 × 10 −. 6
/ ° C, which is not suitable for the purpose of the present invention.

【0017】本発明の低熱膨張セラミックス構造部材
は、コージェライト結晶相を主相とするものであるが、
ヤング率を高める上では、周期律表第2aおよび3b族
元素の群(但し、Mg、AlおよびSiを除く。)から
選ばれる少なくとも1種(M)が、シリケート化合物結
晶相、あるいはアルミニウムシリケート結晶相を形成し
ていることが望ましい。具体的なシリケート化合物結晶
相としてはM2 Si2 7 、アルミニウムシリケート結
晶相としては、MAl2 Si2 8 等が挙げられる。
The low thermal expansion ceramic structural member of the present invention has a cordierite crystal phase as a main phase.
In order to increase the Young's modulus, at least one type (M) selected from the group of elements of Groups 2a and 3b of the periodic table (excluding Mg, Al and Si) is composed of a silicate compound crystal phase or an aluminum silicate crystal. Desirably, a phase is formed. Specific examples of the silicate compound crystal phase include M 2 Si 2 O 7 , and examples of the aluminum silicate crystal phase include MAl 2 Si 2 O 8 .

【0018】また、かかるセラミックス中には、希土類
元素を酸化物換算で20重量%以下、特に、1〜10重
量%の割合で含有せしめることにより、さらに焼結性を
改善でき、低温で高密度のセラミックスを得ることがで
きる。用いる希土類元素としては、Y、Yb、Er、S
m、Dy等が挙げられ、これらは焼結体中に酸化物とし
て結晶相の粒界に非晶質相もしくはシリケート結晶相と
して存在する。
In addition, the sinterability can be further improved by incorporating a rare earth element in an amount of 20% by weight or less, particularly 1 to 10% by weight, in terms of oxide in such ceramics, whereby the sinterability can be further improved, and Ceramics can be obtained. The rare earth elements used include Y, Yb, Er, S
m, Dy, etc., which are present as oxides in the sintered body at the grain boundaries of the crystal phase as an amorphous phase or a silicate crystal phase.

【0019】なお、希土類元素の酸化物換算量が20重
量%を超えると、セラミックスの熱膨張率が熱膨張率が
0.5×10-6/℃を超えてしまい本発明の目的に適さ
なくなる。
If the amount of the rare earth element in terms of oxide exceeds 20% by weight, the coefficient of thermal expansion of the ceramic exceeds 0.5 × 10 −6 / ° C., which is not suitable for the purpose of the present invention. .

【0020】本発明によれば、セラミックス中に、それ
自体、高ヤング率を有する窒化珪素、炭化珪素および酸
窒化珪素の群から選ばれる少なくとも1種を30重量%
以下、特に10〜20重量%の割合で含有せしめること
により、低熱膨張性を維持しつつ、さらに高ヤング率の
セラミックス構造部材を得ることができる。
According to the present invention, at least one member selected from the group consisting of silicon nitride, silicon carbide and silicon oxynitride having a high Young's modulus is contained in the ceramic in an amount of 30% by weight.
In the following, it is possible to obtain a ceramic member having a higher Young's modulus while maintaining a low thermal expansion property, particularly by adding the component in a ratio of 10 to 20% by weight.

【0021】これらの成分は、セラミックス中に結晶粒
子として存在する。これらの中でも窒化珪素が最も効果
的である。なお、酸窒化珪素とは、Si−N−O系化合
物であり、例えばSi2 2 Oである。 上記窒化珪
素、炭化珪素、酸窒化珪素の合計量が30重量%を超え
ると、セラミックスの熱膨張率が熱膨張率が0.5×1
-6/℃を超えてしまい、本発明の目的に適さなくな
る。
These components exist as crystal grains in the ceramic. Among them, silicon nitride is most effective. Note that the silicon oxynitride is a Si-N-O based compound, for example, Si 2 N 2 O. When the total amount of the silicon nitride, silicon carbide, and silicon oxynitride exceeds 30% by weight, the coefficient of thermal expansion of the ceramic is 0.5 × 1.
It exceeds 0 -6 / ° C, and is not suitable for the purpose of the present invention.

【0022】また、本発明のセラミックスは、相対密度
が95%以上であることも重要である。これは、相対密
度が95%よりも小さいと、130GPa以上の高ヤン
グ率が達成されないためである。相対密度はさらに高い
ことが望ましく、96%以上、さらには97%以上であ
ることがヤング率を高める上で望ましい。
It is also important that the ceramic of the present invention has a relative density of 95% or more. This is because if the relative density is smaller than 95%, a high Young's modulus of 130 GPa or more cannot be achieved. The relative density is desirably higher, and is desirably 96% or more, and desirably 97% or more, in order to increase the Young's modulus.

【0023】本発明における上記のような低熱膨張セラ
ミックス構造部材を作製するには、平均粒径10μm以
下のコージェライト粉末を主体とし、平均粒径10μm
以下の周期律表第2a、3bおよび4b族元素の群(但
し、Mg、AlおよびSiを除く。)から選ばれる少な
くとも1種の化合物を酸化物に換算して0.5〜10重
量%の割合で添加する。化合物としては、酸化物、炭化
物、水酸化物、炭酸塩等いずれでもかまわない。
In order to produce the low thermal expansion ceramic structural member as described above in the present invention, cordierite powder having an average particle size of 10 μm or less is mainly used, and the average particle size is 10 μm.
At least one compound selected from the group of elements of Groups 2a, 3b and 4b (excluding Mg, Al and Si) in the following periodic table is converted to oxide in an amount of 0.5 to 10% by weight. Add in proportions. The compound may be any of oxides, carbides, hydroxides, carbonates and the like.

【0024】さらには、平均粒径10μm以下の希土類
元素酸化物を20重量%以下、平均粒径10μm以下の
窒化珪素、炭化珪素、酸窒化珪素の中から少なくとも1
種を30重量%以下の割合で適宜配合した後、ボールミ
ルなどにより十分混合し、所定の形状に所望の成形手
段、例えば、金型プレス、冷間静水圧プレス、押し出し
成形、鋳込み成形等に成形する。
Further, at least one of silicon nitride, silicon carbide, and silicon oxynitride having a rare earth element oxide having an average particle size of 10 μm or less at 20% by weight or less and an average particle size of 10 μm or less is selected.
The seeds are appropriately mixed at a ratio of 30% by weight or less, and then sufficiently mixed by a ball mill or the like, and formed into a predetermined shape by a desired forming means, for example, a die press, a cold isostatic press, an extrusion molding, a casting molding, and the like. I do.

【0025】その後、この成形体を1200〜1500
℃、特に1300〜1400℃の範囲で1〜10時間程
度焼結することにより緻密化する。また、焼成温度を上
記のように限定したのは1200℃より低いと、緻密体
が得られず、1500℃を超えると、溶解してしまうた
めである。
Then, the molded body is put in a range of 1200 to 1500
C., especially at 1300-1400 ° C. for about 1-10 hours for densification. In addition, the reason why the firing temperature is limited as described above is that if the temperature is lower than 1200 ° C., a dense body cannot be obtained, and if the temperature exceeds 1500 ° C., the material is dissolved.

【0026】焼成にあたり、成形体中に窒化珪素、炭化
珪素、酸窒化珪素等を含む場合は、これらの成分が酸化
しないように窒素、アルゴン等の不活性ガス中で焼成す
ることが望ましい。
In the case of firing, when silicon nitride, silicon carbide, silicon oxynitride or the like is contained in the compact, it is preferable to fire in an inert gas such as nitrogen or argon so that these components are not oxidized.

【0027】また、周期律表第2aおよび3b族元素の
群(但し、Mg、AlおよびSiを除く。)から選ばれ
る少なくとも1種のシリケート化合物結晶相、あるいは
アルミニウムシリケート結晶相を析出させる上では、焼
成温度から1000℃までの降温過程を300℃/hr
以下で徐冷することによって積極的に結晶相を析出させ
ることができる。
In order to precipitate at least one silicate compound crystal phase or aluminum silicate crystal phase selected from the group of elements of Groups 2a and 3b of the periodic table (excluding Mg, Al and Si). The temperature decreasing process from the firing temperature to 1000 ° C. is performed at 300 ° C./hr.
By slowly cooling below, a crystalline phase can be positively precipitated.

【0028】なお、本発明の低熱膨張セラミックス構造
部材は、優れた低熱膨張特性を維持しつつ、高い剛性、
即ち、高ヤング率を有することから、低熱膨張特性が要
求される各種産業機械用構造部材に好適に使用される。
とりわけ、微細な回路を形成するためのウエハに露光処
理を行うなどの半導体素子製造装置用部材、例えば、露
光装置用ステージや、光学系支持体などとして用いるこ
とにより、雰囲気の温度変化に対しても寸法の変化がな
く、優れた精度が得られるとともに、振動に伴う精度の
低下をも防止することができ、半導体素子製造の品質と
量産性を高めることができる。
It should be noted that the low thermal expansion ceramic structural member of the present invention has high rigidity, while maintaining excellent low thermal expansion characteristics.
That is, since it has a high Young's modulus, it is suitably used for structural members for various industrial machines that require low thermal expansion characteristics.
In particular, by using as a member for a semiconductor device manufacturing apparatus such as performing an exposure process on a wafer for forming a fine circuit, for example, a stage for an exposure apparatus, an optical system support, etc., it is possible to prevent a change in ambient temperature Also, there is no change in dimensions, excellent accuracy can be obtained, and a decrease in accuracy due to vibration can be prevented, so that the quality and mass productivity of semiconductor device manufacturing can be improved.

【0029】また、本発明の低熱膨張セラミックス構造
部材は、さらに、真空装置構造体、サセプタ、静電チャ
ック、真空チャックまたはステッパーなどの半導体素子
製造プロセスにおける各種構造部材としても使用するこ
とにより同様な効果が期待できる。
Further, the low thermal expansion ceramic structural member of the present invention can be used similarly as various structural members in a semiconductor device manufacturing process such as a vacuum device structure, a susceptor, an electrostatic chuck, a vacuum chuck or a stepper. The effect can be expected.

【0030】[0030]

【実施例】コージェライト粉末(平均粒径2μm、BE
T比表面積2m2 /g)と、平均粒径1μmの表1に示
す各種周期律表第2a、3bおよび4b族元素化合物、
平均粒径が0.6μmの窒化珪素、炭化珪素、酸窒化珪
素粉末と、平均粒径が1μmの各種の希土類元素酸化物
粉末を用いて、表1〜4に示す組成になるように調合
後、1t/cm2 で金型成形した。そして、成形体を炭
化珪素質の匣鉢に入れて表1〜4の条件で焼成した。な
お、試料No.3〜6、11、15〜20、23、32、
33、35、38については1000℃まで200℃/
hrで徐冷し、その他は500℃/hrの冷却速度で降
温した。
EXAMPLES Cordierite powder (average particle size 2 μm, BE
T specific surface area 2 m 2 / g) and various periodic table 2a, 3b and 4b group element compounds shown in Table 1 having an average particle diameter of 1 μm;
Using silicon nitride, silicon carbide, and silicon oxynitride powder having an average particle diameter of 0.6 μm and various rare earth element oxide powders having an average particle diameter of 1 μm, and blended to have the compositions shown in Tables 1 to 4. Molding was performed at 1 t / cm 2 . Then, the compact was placed in a silicon carbide sagger and fired under the conditions shown in Tables 1 to 4. In addition, sample No. 3-6, 11, 15-20, 23, 32,
For 33, 35, and 38, 200 ° C /
The temperature was gradually cooled at a rate of 500 ° C./hr.

【0031】得られた焼結体を研磨し、3×4×14m
mの試料を作製した。これを用いて、アルキメデス法に
基づき相対密度を算出し、さらに室温の熱膨張係数を測
定した。また、超音波パルス法により、室温でのヤング
率を測定した。また、X線回折測定を行い、コージェラ
イト以外の結晶相を同定した。
The obtained sintered body is polished and 3 × 4 × 14 m
m samples were prepared. Using this, the relative density was calculated based on the Archimedes method, and the coefficient of thermal expansion at room temperature was measured. The Young's modulus at room temperature was measured by the ultrasonic pulse method. Further, X-ray diffraction measurement was performed to identify a crystal phase other than cordierite.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【表4】 [Table 4]

【0036】表1〜4の結果から明らかなように、周期
律表第2a、3bおよび4b族元素(但し、Mg、Al
およびSiを除く。)を全く添加しないもしくはその添
加量が少ない試料No.1、2、41はヤング率が低い。
また、第2a、3bおよび4b族元素量が10重量%よ
りも多い試料No.9、45、希土類酸化物量が20重量
%よりも多い試料No.14、窒化珪素量が30重量%よ
りも多い試料No.27は、いずれも熱膨張率が0.5×
10-6/℃を超えるものであった。また、焼成温度が1
500℃よりも高い試料No.21は溶解してしまい、焼
成温度が1200℃よりも低い試料No.17では、緻密
化が不足した。
As is clear from the results of Tables 1 to 4, the elements of Groups 2a, 3b and 4b of the periodic table (however, Mg, Al
And Si. Samples Nos. 1, 2, and 41 in which no or no) is added have a low Young's modulus.
Samples Nos. 9 and 45 in which Group 2a, 3b and 4b elements are more than 10% by weight, Sample No. 14 in which the amount of rare earth oxide is more than 20% by weight, and Samples No. 14 in which the amount of silicon nitride is more than 30% by weight Sample No. 27 had a coefficient of thermal expansion of 0.5 ×
It exceeded 10 -6 / ° C. When the firing temperature is 1
Sample No. 21 having a temperature higher than 500 ° C. was melted, and densification was insufficient in sample No. 17 having a firing temperature lower than 1200 ° C.

【0037】これらの比較例に対して、本発明に基づく
試料は、いずれも熱膨張率が0.5×10-6/℃以下の
低熱膨張特性を示し、さらには130GPa以上のヤン
グ率を示した。これらの中でも窒化珪素、炭化珪素、酸
窒化珪素を添加した試料No.24〜26、28〜31、
35、36、40、48、54は、ヤング率を160G
Pa以上に高めることができた。
In contrast to these comparative examples, the samples according to the present invention all exhibited low thermal expansion characteristics with a thermal expansion coefficient of 0.5 × 10 −6 / ° C. or less, and further exhibited a Young's modulus of 130 GPa or more. Was. Among these, samples No. 24 to 26, 28 to 31, to which silicon nitride, silicon carbide and silicon oxynitride were added,
35, 36, 40, 48 and 54 have a Young's modulus of 160G.
Pa could be increased to Pa or more.

【0038】また、周期律表第2aおよび3b族元素を
含むシリケート結晶相、あるいはアルミニウムシリケー
ト結晶相を析出させた試料No.3〜6、11、15〜1
6、18〜20、23、32、33、35、37、38
では、いずれもヤング率を140GPa以上に高めるこ
とができ、これらを組み合わせた試料No.35では、ヤ
ング率を170GPa以上に高めることができた。
Samples Nos. 3 to 6, 11, 15 to 15 in which a silicate crystal phase containing an element from Groups 2a and 3b of the periodic table or an aluminum silicate crystal phase were precipitated.
6, 18-20, 23, 32, 33, 35, 37, 38
In any case, the Young's modulus could be increased to 140 GPa or more, and in Sample No. 35 in which these were combined, the Young's modulus could be increased to 170 GPa or more.

【0039】[0039]

【発明の効果】以上詳述したとおり、本発明の低熱膨張
セラミックス構造部材は、コージェライトの優れた低熱
膨張特性を維持しつつ、剛性、即ち、ヤング率を高める
ことができる。その結果、この低熱膨張セラミックス構
造部材を高微細な回路を形成するためのウエハに露光処
理を行うなどの半導体素子製造装置用部品、例えば、露
光装置用ステージなどとして用いることにより、雰囲気
の温度変化に対しても寸法の変化がなく、優れた精度が
得られるとともに、振動に伴う精度の低下をも防止する
ことができ、半導体素子製造の品質と量産性を高めるこ
とができる。
As described in detail above, the low thermal expansion ceramic structural member of the present invention can increase rigidity, that is, Young's modulus, while maintaining excellent low thermal expansion characteristics of cordierite. As a result, by using this low thermal expansion ceramic structural member as a part for a semiconductor device manufacturing apparatus such as performing exposure processing on a wafer for forming a fine circuit, for example, a stage for an exposure apparatus, the temperature change of the atmosphere can be achieved. In this case, there is no change in dimensions, excellent accuracy can be obtained, and a decrease in accuracy due to vibration can be prevented, so that the quality and mass productivity of semiconductor device manufacturing can be improved.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】コージェライト結晶相を主体とし、周期律
表第2a、3bおよび4b族元素の群(但し、Mg、A
lおよびSiを除く。)から選ばれる少なくとも1種を
酸化物換算で0.5〜10重量%含み、相対密度が95
重量%以上、室温での熱膨張率が0.5×10-6/℃以
下、ヤング率が130GPa以上の低熱膨張セラミック
ス構造部材。
1. A group consisting of elements of Groups 2a, 3b and 4b of the Periodic Table (wherein Mg, A
Excluding l and Si. ) In an amount of 0.5 to 10% by weight in terms of oxide and a relative density of 95%.
A low-thermal-expansion ceramic structural member having a thermal expansion coefficient at room temperature of 0.5 × 10 −6 / ° C. or lower and a Young's modulus of 130 GPa or higher.
【請求項2】前記周期律表第2aおよび3b族元素の群
から選ばれる少なくとも1種の元素を含有するシリケー
ト化合物結晶相、あるいはアルミニウムシリケート結晶
相を含むことを特徴とする請求項1記載の低熱膨張セラ
ミックス構造部材。
2. The method according to claim 1, comprising a silicate compound crystal phase or an aluminum silicate crystal phase containing at least one element selected from the group consisting of Group 2a and 3b elements of the periodic table. Low thermal expansion ceramic structural member.
【請求項3】希土類元素を酸化物換算で20重量%以下
の割合で含有する請求項1記載の低熱膨張セラミックス
構造部材。
3. The low-thermal-expansion ceramic structural member according to claim 1, comprising a rare earth element in a proportion of 20% by weight or less in terms of oxide.
【請求項4】窒化珪素、炭化珪素、酸窒化珪素の中から
選ばれる少なくとも1種を30重量%以下の割合で含有
する請求項1記載の低熱膨張セラミックス構造部材。
4. The low thermal expansion ceramic structural member according to claim 1, wherein at least one selected from silicon nitride, silicon carbide, and silicon oxynitride is contained in a proportion of 30% by weight or less.
【請求項5】前記請求項1乃至請求項4のうちのいずれ
か1つの低熱膨張セラミックス構造部材からなる半導体
素子製造装置用部材。
5. A member for a semiconductor device manufacturing apparatus, comprising a low thermal expansion ceramic structural member according to any one of claims 1 to 4.
JP10040811A 1997-10-24 1998-02-23 Low thermal expansion ceramic structural member and member for semiconductor device producing apparatus using the same Pending JPH11236262A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP10040811A JPH11236262A (en) 1998-02-23 1998-02-23 Low thermal expansion ceramic structural member and member for semiconductor device producing apparatus using the same
US09/177,977 US6265334B1 (en) 1997-10-24 1998-10-22 Ceramic sintered product and process for producing the same
DE19861434A DE19861434B4 (en) 1997-10-24 1998-10-26 An article of low thermal expansion ceramic material and its use
DE19849340A DE19849340B4 (en) 1997-10-24 1998-10-26 Ceramic sintered product and process for its production
US10/124,067 USRE39120E1 (en) 1997-10-24 2002-04-16 Ceramic sintered product and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10040811A JPH11236262A (en) 1998-02-23 1998-02-23 Low thermal expansion ceramic structural member and member for semiconductor device producing apparatus using the same

Publications (1)

Publication Number Publication Date
JPH11236262A true JPH11236262A (en) 1999-08-31

Family

ID=12591043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10040811A Pending JPH11236262A (en) 1997-10-24 1998-02-23 Low thermal expansion ceramic structural member and member for semiconductor device producing apparatus using the same

Country Status (1)

Country Link
JP (1) JPH11236262A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001077042A1 (en) * 2000-04-07 2001-10-18 Ngk Insulators, Ltd. Cordierite ceramic honeycomb of low thermal expansion and method for manufacturing the same
WO2001077043A1 (en) * 2000-04-07 2001-10-18 Ngk Insulators, Ltd. Method for manufacturing cordierite ceramic honeycomb
JP2002167268A (en) * 2000-11-29 2002-06-11 Kyocera Corp Cordierite sintered compact and method of manufacturing it
JP2002173366A (en) * 2000-12-06 2002-06-21 Nippon Tungsten Co Ltd Cordierite based ceramic material
JP2002179458A (en) * 2000-12-11 2002-06-26 Hitachi Chem Co Ltd Low thermal expansion high rigidity ceramic material and method for manufacturing the same
JP2003137644A (en) * 2001-11-05 2003-05-14 Nippon Tungsten Co Ltd Low thermal expansion ceramic, members for ultra- precise machine structure, measuring instrument and semiconductor manufacturing equipment using the same, and method of producing low thermal expansion ceramic

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001077042A1 (en) * 2000-04-07 2001-10-18 Ngk Insulators, Ltd. Cordierite ceramic honeycomb of low thermal expansion and method for manufacturing the same
WO2001077043A1 (en) * 2000-04-07 2001-10-18 Ngk Insulators, Ltd. Method for manufacturing cordierite ceramic honeycomb
US6783724B2 (en) 2000-04-07 2004-08-31 Ngk Insulators, Ltd. Method of producing cordierite ceramic honeycomb
JP2002167268A (en) * 2000-11-29 2002-06-11 Kyocera Corp Cordierite sintered compact and method of manufacturing it
JP2002173366A (en) * 2000-12-06 2002-06-21 Nippon Tungsten Co Ltd Cordierite based ceramic material
JP2002179458A (en) * 2000-12-11 2002-06-26 Hitachi Chem Co Ltd Low thermal expansion high rigidity ceramic material and method for manufacturing the same
JP2003137644A (en) * 2001-11-05 2003-05-14 Nippon Tungsten Co Ltd Low thermal expansion ceramic, members for ultra- precise machine structure, measuring instrument and semiconductor manufacturing equipment using the same, and method of producing low thermal expansion ceramic

Similar Documents

Publication Publication Date Title
JP4416191B2 (en) Low thermal expansion ceramics, manufacturing method thereof, and semiconductor manufacturing component
US6265334B1 (en) Ceramic sintered product and process for producing the same
JP5657210B2 (en) A member for semiconductor manufacturing equipment comprising a cordierite sintered body
JP4261631B2 (en) Manufacturing method of ceramic sintered body
JPH11343168A (en) Low thermal expansion black ceramics, its production and member for semiconductor producing apparatus
JPH11209171A (en) Dense low thermal expansion ceramics, its production and member for semiconductor producing device
JP3676552B2 (en) Low thermal expansion ceramics and method for producing the same
JPH11236262A (en) Low thermal expansion ceramic structural member and member for semiconductor device producing apparatus using the same
JP4429288B2 (en) Low thermal expansion ceramics and members for semiconductor manufacturing equipment using the same
JP4025455B2 (en) Composite oxide ceramics
JP3574560B2 (en) Semiconductor exposure apparatus support member and semiconductor exposure apparatus
JPH11100275A (en) Low thermal expansion ceramic and its preparation
JP3469513B2 (en) Exposure apparatus and support member used therein
JP3805119B2 (en) Method for producing low thermal expansion ceramics
JP3537241B2 (en) Method for producing silicon nitride sintered body
JP3260340B2 (en) Composite ceramic and method for producing the same
JP2001302338A (en) Composite ceramic and manufacturing method thereof
JP2001039764A (en) Cordierite ceramics and its production
JP2002167267A (en) Low thermal expansion ceramic and method of manufacturing it
JP2000182945A (en) Member for semiconductor aligner
JP5011609B2 (en) Dense cordierite ceramics and method for producing the same
JP2002160972A (en) High rigidity and low thermal expansion ceramic and its manufacturing method
JP2000247732A (en) Low-resistance ceramic, its production and member for semiconductor producing apparatus
JP2003137644A (en) Low thermal expansion ceramic, members for ultra- precise machine structure, measuring instrument and semiconductor manufacturing equipment using the same, and method of producing low thermal expansion ceramic
JP2004140132A (en) Testpiece mounting stage

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060929

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061101

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20061215