JP2002167268A - Cordierite sintered compact and method of manufacturing it - Google Patents

Cordierite sintered compact and method of manufacturing it

Info

Publication number
JP2002167268A
JP2002167268A JP2000363704A JP2000363704A JP2002167268A JP 2002167268 A JP2002167268 A JP 2002167268A JP 2000363704 A JP2000363704 A JP 2000363704A JP 2000363704 A JP2000363704 A JP 2000363704A JP 2002167268 A JP2002167268 A JP 2002167268A
Authority
JP
Japan
Prior art keywords
cordierite
weight
sintered body
peak intensity
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000363704A
Other languages
Japanese (ja)
Inventor
Kunihide Yomo
邦秀 四方
Toshiyuki Ihara
俊之 井原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2000363704A priority Critical patent/JP2002167268A/en
Publication of JP2002167268A publication Critical patent/JP2002167268A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a cordierite sintered compact having both high fracture toughness and high strength, and its manufacturing method. SOLUTION: The cordierite sintered compact is characterized in that the sintered compact contains cordierite as a main component, and zirconium of 2-35 wt.% in terms of oxides, at least one element selected from group 2a and 3a elements of the periodic table in 1-10 wt.% in terms of oxides, and has means pore size of <=4.0 μm, pore occupancy rate of <3%, relative density of >=97%, the strength of >=179 MPa, and the fracture toughness of >=2.4 MPa.m1/2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高強度、高破壊靱
性で、緻密なコージェライト質焼結体とその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dense cordierite sintered body having high strength, high fracture toughness, and a method for producing the same.

【0002】[0002]

【従来技術】従来から、コージェライト質焼結体は、低
熱膨張及び低熱膨張セラミックスとして知られており、
フィルター、ハニカム、耐火物、断熱材などに応用され
ている。このコージェライト質焼結体は、一般には、コ
ージェライト粉末、あるいはコージェライトを形成する
MgO、Al23、SiO2粉末を配合して、これに焼
結助剤として希土類元素酸化物や、SiO2、CaO、
MgOなどを添加し、所定形状に成形後、1000〜1
400℃の温度で焼成することによって作製される(特
開平2−229760号公報)。
2. Description of the Related Art Cordierite-based sintered bodies have been known as low thermal expansion and low thermal expansion ceramics.
It is applied to filters, honeycombs, refractories, thermal insulation, etc. This cordierite-based sintered body is generally mixed with cordierite powder or MgO, Al 2 O 3 , and SiO 2 powder that forms cordierite, and a rare earth element oxide or a sintering aid is added thereto. SiO 2 , CaO,
After adding MgO or the like and forming into a predetermined shape, 1000-1
It is produced by firing at a temperature of 400 ° C. (JP-A-2-229760).

【0003】最近では、コージェライト等の低熱膨張又
は低熱伝導セラミックスを構造材料として用いられてい
る。例えば、エンジン部品として用いることが特開平1
1−278921号公報で提案されている。
Recently, ceramics having low thermal expansion or low thermal conductivity such as cordierite have been used as structural materials. For example, Japanese Patent Application Laid-Open No.
It has been proposed in Japanese Patent Application Laid-Open No. 1-278921.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、コージ
ェライト質焼結体を構造部材として用いる場合、従来の
コージェライト質焼結体は破壊靱性または強度の少なく
とも一方が低く、破損や破壊が発生しやすいという問題
があった。例えば、特開平11−278921号公報に
記載の方法では、強度を最大で220MPaまで向上す
ることができる。しかし、破壊靭性が低いために機械的
な衝撃に弱く、クラックが発生しやすく、破損しやすい
という問題があった。
However, when a cordierite-based sintered body is used as a structural member, the conventional cordierite-based sintered body has at least one of fracture toughness and low strength, and is liable to be damaged or broken. There was a problem. For example, in the method described in JP-A-11-278921, the strength can be improved up to 220 MPa. However, there is a problem that the fracture toughness is low, so that it is susceptible to mechanical impact, cracks are liable to occur, and breakage easily occurs.

【0005】また、緻密体を得にくいため、焼結体中の
気孔を小さくするためにホットプレスや熱間静水圧プレ
ス(HIP)等の高圧焼成を行うため、製品形状が単純
形状に限定されたり、コストが高くなったりするという
問題があった。
[0005] Further, since it is difficult to obtain a dense body, high-pressure firing such as hot pressing or hot isostatic pressing (HIP) is performed to reduce pores in the sintered body, so that the product shape is limited to a simple shape. And the cost increases.

【0006】従って、本発明は、高破壊靱性と高強度を
合わせ持つコージェライト質焼結体とその製造方法を提
供することを目的とするものである。
Accordingly, an object of the present invention is to provide a cordierite-based sintered body having both high fracture toughness and high strength, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明は、低温焼成と焼
成雰囲気制御によってジルコニアをコージェライトと反
応させず、ジルコンの生成を抑制することによって、ジ
ルコニアの相変態による応力緩和作用により破壊靭性を
改善するとともに、強度向上を実現できるという知見に
基づくものである。
SUMMARY OF THE INVENTION According to the present invention, zirconia is not reacted with cordierite by low-temperature sintering and sintering atmosphere control to suppress the formation of zircon. It is based on the knowledge that the strength can be improved while improving the strength.

【0008】即ち、コージェライト質焼結体は、コージ
ェライトを主体とし、ジルコニウムを酸化物換算で2〜
35重量%、周期律表第2a族元素、第3a族元素のう
ち少なくとも1種を酸化物換算で1〜10重量%の割合
で含有するとともに、平均気孔径が4.0μm以下、気
孔占有率が3%以下、相対密度が97%以上、強度が1
70MPa以上及び破壊靱性が2.4MPa・m1/2
上であることを特徴とし、これにより、高破壊靱性と高
強度を合わせ持つコージェライト質焼結体を実現でき
る。
That is, the cordierite-based sintered body is mainly composed of cordierite, and zirconium is converted to oxide in an amount of 2 to 2 in terms of oxide.
35% by weight, at least one of Group 2a element and Group 3a element of the periodic table in a proportion of 1 to 10% by weight in terms of oxide, average pore diameter of 4.0 μm or less, pore occupancy Is 3% or less, relative density is 97% or more, and strength is 1
A cordierite sintered body having both high fracture toughness and high strength can be realized by being 70 MPa or more and fracture toughness of 2.4 MPa · m 1/2 or more.

【0009】特に、X線回折スペクトルにおいて、ジル
コン(112)面のピーク強度をI Z(112)、ジルコニア
(110)面のピーク強度をIZrO2(110)、コージェラ
イト(132)面のピーク強度をICJ(132)としたと
き、ピーク強度比IZ(112)/IC J(132)が0.05以
下、IZrO2(110)/ICJ(132)が0.05以上であること
が好ましい。これにより、破壊靭性及び強度を低下させ
る要因であるジルコンの影響を低減でき、かつジルコニ
アの存在による機械的特性の改善を図ることができる。
In particular, in the X-ray diffraction spectrum,
The peak intensity of the con (112) plane is I Z (112), Zirconia
The peak intensity of the (110) plane is IZrO2 (110), Cordillera
The peak intensity of theCJ (132)And
The peak intensity ratio IZ (112)/ IC J (132)Is 0.05 or less
Bottom, IZrO2 (110)/ ICJ (132)Is 0.05 or more
Is preferred. This reduces fracture toughness and strength
And reduce the effect of zircon
The mechanical properties can be improved due to the presence of (a).

【0010】また、本発明のコージェライト質焼結体の
製造方法は、コージェライト粉末を主体とし、ジルコニ
アを2〜35重量%、周期律表第2a族元素、第3a族
元素のうち少なくとも1種の酸化物を1〜10重量%を
含有する混合粉末からなる成形体を酸素分圧が0.1気
圧以下の雰囲気中で焼成することを特徴とするもので、
この方法により、ジルコニアとコージェライトとの反応
によるジルコンの合成を抑制し、かつ緻密体を得ること
ができるため、ジルコニアを分散強化させたコージェラ
イトを容易に実現できる。
The method for producing a cordierite-based sintered body according to the present invention comprises a cordierite powder as a main component, 2 to 35% by weight of zirconia, and at least one of a Group 2a element and a Group 3a element in the periodic table. Characterized in that a molded body composed of a mixed powder containing 1 to 10% by weight of a kind oxide is fired in an atmosphere having an oxygen partial pressure of 0.1 atm or less,
According to this method, the synthesis of zircon due to the reaction between zirconia and cordierite can be suppressed and a dense body can be obtained, so that cordierite in which zirconia is dispersed and strengthened can be easily realized.

【0011】[0011]

【発明の実施の形態】本発明は、コージェライトを主体
として、ジルコニウムを酸化物換算で2〜35重量%、
周期律表第2a族元素、第3a族元素のうち少なくとも
1種を酸化物換算で1〜10重量%の割合で含有するこ
とが重要である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a method for producing zirconium in an amount of 2 to 35% by weight as an oxide, mainly comprising cordierite.
It is important that at least one of the Group 2a element and the Group 3a element of the periodic table be contained at a ratio of 1 to 10% by weight in terms of oxide.

【0012】ジルコニウムの含有量が酸化物換算で2重
量%未満では、破壊靱性、強度向上の発現が不十分であ
り、また、35重量%を越えると焼結性が低下し、焼結
温度の上昇に伴うジルコニアとコージェライト成分の反
応によるジルコン生成が顕著となり、破壊靱性及び強度
の低下が生じるためであり、特に3〜25重量%、さら
には5〜15重量%が好ましい。
When the content of zirconium is less than 2% by weight in terms of oxide, improvement of fracture toughness and strength is insufficient, and when it exceeds 35% by weight, sinterability is reduced and sintering temperature is lowered. This is because the formation of zircon due to the reaction between the zirconia and cordierite components accompanying the rise becomes remarkable, and the fracture toughness and strength are reduced. The content is particularly preferably 3 to 25% by weight, more preferably 5 to 15% by weight.

【0013】また、焼結助剤として、周期律表第2a族
元素又は第3a族元素を選定することによって低温焼結
が可能となり、その含有量を酸化物換算で1〜10重量
%とすることにより、緻密体を低温で得ることが可能で
あり、特に2〜8重量%、さらには3〜7重量%が好ま
しい。
Further, by selecting a Group 2a element or a Group 3a element of the periodic table as a sintering aid, low-temperature sintering becomes possible, and its content is made 1 to 10% by weight in terms of oxide. This makes it possible to obtain a dense body at a low temperature, particularly preferably 2 to 8% by weight, more preferably 3 to 7% by weight.

【0014】また、本発明によれば、焼結体の平均気孔
径が4.0μm以下、気孔占有率が3%以下、相対密度
が97%以上、強度が170MPa以上及び破壊靱性が
2.4MPa・m1/2以上であることが重要である。
According to the present invention, the sintered body has an average pore diameter of 4.0 μm or less, a pore occupancy of 3% or less, a relative density of 97% or more, a strength of 170 MPa or more, and a fracture toughness of 2.4 MPa. -It is important that it is not less than m1 / 2 .

【0015】平均気孔径、気孔占有率、相対密度を上記
の範囲に制御することが重要であり、これにより、磁器
表面のチッピングを顕著に抑制することができ、また、
破壊源となる気孔径が小さいために高強度化が促進さ
れ、磁器表面の平滑性が顕著に向上し、容易に鏡面状態
が得られやすく、特に、相対密度は98%以上、さらに
は99%以上が好ましく、平均気孔径は、3.5μm以
下、さらには3μm以下、より好適には2.5μm以下
が好ましく、また、気孔占有率は、特に2.5%以下、
さらには2%以下、より好適には1.5%以下が好まし
い。
It is important to control the average pore diameter, pore occupancy, and relative density within the above ranges, whereby chipping on the surface of the porcelain can be significantly suppressed.
Since the pore diameter serving as a fracture source is small, high strength is promoted, the smoothness of the porcelain surface is remarkably improved, and a mirror surface state is easily obtained. In particular, the relative density is 98% or more, and more preferably 99%. The average pore diameter is preferably 3.5 μm or less, more preferably 3 μm or less, more preferably 2.5 μm or less, and the pore occupancy is particularly 2.5% or less.
Further, it is preferably at most 2%, more preferably at most 1.5%.

【0016】そして、強度が170MPa以上及び破壊
靱性が2.4MPa・m1/2以上であることが重要であ
り、特に強度は190MPa以上、さらには225MP
a以上が好ましく、破壊靭性は、特に2.6MPa・m
1/2以上、さらには2.8MPa・m1/2以上が好まし
い。
It is important that the strength is 170 MPa or more and the fracture toughness is 2.4 MPa · m 1/2 or more, and particularly the strength is 190 MPa or more, and furthermore, 225 MPa.
a is preferable, and the fracture toughness is particularly 2.6 MPa · m.
It is preferably at least 1/2, more preferably at least 2.8 MPa · m 1/2 .

【0017】このように強度と破壊靭性との両方を同時
に改善させることにより、従来の単純な形状から、例え
ば、格子状の構造体のような複雑形状の構造材料として
の応用範囲が広がる。その結果、製品の設計自由度が増
し、軽量化、中空化等の省力化・省スペース化に貢献が
可能となる。
By simultaneously improving both the strength and the fracture toughness, the range of application as a structural material having a complicated shape such as a lattice-like structure from a conventional simple shape is expanded. As a result, the degree of freedom in product design is increased, and it is possible to contribute to labor saving and space saving such as weight reduction and hollowing.

【0018】また、本発明によれば、X線回折によって
焼結体中のジルコニウムの存在状態を評価し、ピーク強
度比の値から機械的特性を改善することができる。即
ち、少なくとも2θが20〜40°のX線回折スペクト
ルにおいて、ジルコン(112)面、ジルコニア(11
0)及びコージェライト(132)面のピーク強度を、
それぞれIZ(112)、IZrO2(110)及びICJ(132)とすれ
ば、ピーク強度比IZ(112)/ICJ(132)が0.05以
下、特に0.03以下、さらには0.01以下、IZrO
2(110)/ICJ(132)が0.05以上、特に0.07以
上、さらには0.1以上であることが好ましい。
Further, according to the present invention, the presence of zirconium in the sintered body can be evaluated by X-ray diffraction, and the mechanical properties can be improved from the value of the peak intensity ratio. That is, in the X-ray diffraction spectrum at least 2θ of 20 to 40 °, the zircon (112) plane and the zirconia (11
0) and the peak intensity of the cordierite (132) plane
Assuming that I Z (112) , I ZrO2 (110) and I CJ (132) respectively, the peak intensity ratio I Z (112) / I CJ (132) is 0.05 or less, especially 0.03 or less, and furthermore 0.01 or less, I ZrO
2 (110) / I CJ ( 132) is 0.05 or more, particularly 0.07 or more, further preferably 0.1 or more.

【0019】これは、ジルコンが破壊靭性及び強度を低
下させるため、ジルコンの含有量を低下させる必要があ
る。そして、上記ピーク強度比IZ(112)/ICJ(132)
0.05以下であれば、ジルコンの影響は小さいため、
ジルコニアの変態強化機構が十分機能し、その結果、破
壊靭性及び強度が向上する。
This is because zircon lowers fracture toughness and strength, so it is necessary to reduce the zircon content. When the peak intensity ratio I Z (112) / I CJ (132) is 0.05 or less, the influence of zircon is small,
The transformation strengthening mechanism of zirconia functions well, and as a result, fracture toughness and strength are improved.

【0020】また、上記ピーク強度比IZrO2(110)/I
CJ(132)が0.05以上であればジルコニアの含有量が
十分となり、変態強化機構による破壊靭性及び強度の向
上という効果が得られるのである。
The above peak intensity ratio I ZrO2 (110) / I
If CJ (132) is 0.05 or more, the content of zirconia becomes sufficient, and the effect of improving the fracture toughness and strength by the transformation strengthening mechanism can be obtained.

【0021】従って、ジルコンとコージェライトのピー
ク強度比及びジルコニアとコージェライトのピーク強度
比とを上記の値に設定することにより、機械的特性に優
れたコージェライトを実現できる。
Therefore, by setting the peak intensity ratio between zircon and cordierite and the peak intensity ratio between zirconia and cordierite to the above values, cordierite having excellent mechanical properties can be realized.

【0022】例えば、図1は本発明のコージェライト質
焼結体のX線回折スペクトルの例であり、多くのピーク
から、単独に存在する3つのピークを使用して、評価す
る。即ち、コージェライト(132)面のピーク11の
ピーク強度ICJ(132)を基準として、ジルコニア(11
0)面のピーク12のピーク強度IZrO2(110)、ジルコ
ン(112)面のピーク13のピーク強度IZ(112)を基
準ピーク強度に対する比を算出する。その場合、バック
グランドは差し引いて算出する。
For example, FIG. 1 shows an example of an X-ray diffraction spectrum of the cordierite-based sintered body of the present invention, which is evaluated by using three peaks existing independently from many peaks. That is, based on the peak intensity I CJ (132) of the peak 11 on the cordierite (132) plane, the zirconia (11
The ratio of the peak intensity I ZrO2 (110) of the peak 12 on the 0) plane and the peak intensity I Z (112) of the peak 13 on the zircon (112) plane to the reference peak intensity is calculated. In this case, the background is calculated by subtracting the background.

【0023】なお、図1から、IZ(112)/ICJ(132)
0、IZrO2(110)/ICJ(132)が0.14である。また、
図2は、従来のコージェライト質焼結体のX線回折スペ
クトルの例であり、同様に評価すると、IZ(112)/I
CJ(132)が0.17、IZrO2(11 0)/ICJ(132)が0.0
11である。
From FIG. 1, I Z (112) / I CJ (132) is 0, and I ZrO2 (110) / I CJ (132) is 0.14. Also,
FIG. 2 shows an example of an X-ray diffraction spectrum of a conventional cordierite-based sintered body, and when similarly evaluated, I Z (112) / I
CJ (132) is 0.17, IZrO2 (110 ) / ICJ (132) is 0.0
It is 11.

【0024】次に本発明のコージェライト質焼結体を作
製する方法について説明する。
Next, a method for producing the cordierite-based sintered body of the present invention will be described.

【0025】まず、出発原料として純度99%以上、平
均粒径が0.3〜2.5μm、特に0.4〜0.9μm
で、MgO、Al23及びSiO2の組成が、それぞれ
13.3〜14.1、34.9〜37.1、49.6〜
52.0の比率となるようなコージェライト粉末と、純
度99%以上、平均粒径が0.3〜1.2μm、特に
0.5〜0.9μmのジルコニア粉末とを準備する。な
お、粗粒原料粉末を用いて、それぞれ上記の範囲の平均
粒径になるように粉砕して用いても、混合原料を粉砕し
て用いても差し支えない。
First, as a starting material, the purity is 99% or more and the average particle size is 0.3 to 2.5 μm, particularly 0.4 to 0.9 μm.
Then, the compositions of MgO, Al 2 O 3 and SiO 2 are respectively 13.3 to 14.1, 34.9 to 37.1, 49.6 to
A cordierite powder having a ratio of 52.0 and a zirconia powder having a purity of 99% or more and an average particle diameter of 0.3 to 1.2 μm, particularly 0.5 to 0.9 μm are prepared. The coarse raw material powder may be used after being pulverized so as to have an average particle size in the above range, or the mixed raw material may be used after being pulverized.

【0026】また、焼結助剤として、純度99%以上、
平均粒径が0.4〜1.2μm特に0.5〜0.9μm
の酸化イッテルビウム粉末又は酸化イットリウム粉末ま
たは純度99%以上、平均粒径が0.8〜5μm特に
0.9〜2.5μmの酸化カルシウム粉末または酸化バ
リウム粉末又は酸化ストロンチウム粉末等の周期律表第
2a族元素酸化物又は第3a族元素酸化物を準備する。
As a sintering aid, the purity is 99% or more.
Average particle size is 0.4 to 1.2 μm, especially 0.5 to 0.9 μm
Periodic Table 2a such as ytterbium oxide powder or yttrium oxide powder or calcium oxide powder or barium oxide powder or strontium oxide powder having a purity of 99% or more and an average particle size of 0.8 to 5 μm, particularly 0.9 to 2.5 μm. A Group 3 element oxide or a Group 3a element oxide is prepared.

【0027】これらの焼結助剤を用いることにより、緻
密化が容易になるとともに広い焼成温度にわたって緻密
化が促進される。また、上記の焼結助剤の添加量が1重
量%未満では緻密化に必要な焼成温度が1400℃を越
え、ジルコン生成が顕著となり、また、10重量%を越
えると液相成分の増加により、ジルコンの生成が増加し
て、強度向上の効果が少なくなる。
The use of these sintering aids facilitates densification and promotes densification over a wide range of firing temperatures. If the amount of the sintering aid is less than 1% by weight, the firing temperature required for densification exceeds 1400 ° C., and zircon formation becomes remarkable. If it exceeds 10% by weight, the liquid phase component increases. As a result, the production of zircon increases, and the effect of improving the strength decreases.

【0028】次に、コージェライト粉末100重量部に
対し、ジルコニア粉末を2〜35重量%好ましくは3〜
25重量%、さらには5〜15重量%及び上記の周期律
表第2a族元素酸化物、第3a族元素酸化物のうち少な
くとも1種を1〜10重量%、特に2〜8重量%、さら
には3〜7重量%の割合で秤量し、ホールミル等を用い
て混合する。
Next, zirconia powder is used in an amount of 2 to 35% by weight, preferably 3 to 35% by weight, based on 100 parts by weight of the cordierite powder.
25% by weight, more preferably 5 to 15% by weight, and at least one of Group 2a element oxides and Group 3a element oxides in the periodic table, 1 to 10% by weight, particularly 2 to 8% by weight, Is weighed at a ratio of 3 to 7% by weight and mixed using a hole mill or the like.

【0029】なお、焼成温度の低温下の観点から、混合
粉末の平均粒子径は1μm以下が好ましいため、原料の
混合には粉砕装置を用いることもでき、これにより、微
細な混合粉末を得ることができる。
Since the average particle diameter of the mixed powder is preferably 1 μm or less from the viewpoint of a low firing temperature, a pulverizer can be used for mixing the raw materials, thereby obtaining a fine mixed powder. Can be.

【0030】この混合粉末を所望の成形手段、例えば、
金型プレス、鋳込み成形、冷間静水圧成形、押し出し成
形等の手法により、所望の形状に成形することができ
る。この成形体を所望により脱脂を行った後、1250
〜1400℃の温度域、好ましくは1270〜1375
℃で焼成を行う。
The mixed powder is formed into a desired molding means, for example,
It can be formed into a desired shape by a method such as mold pressing, casting, cold isostatic pressing, or extrusion. After degreasing this molded body as desired, 1250
~ 1400 ° C temperature range, preferably 1270-1375
Baking is performed at ℃.

【0031】焼成の雰囲気は、酸素分圧0.1気圧以下
の低酸素雰囲気で有ることが重要である。例えば、窒素
雰囲気、窒素・酸素混合雰囲気、アルゴン等の不活性ガ
ス雰囲気、真空雰囲気、カーボンや非酸化物粉末中での
埋め焼き等により所望の特性を有する磁器を得ることが
できる。この低酸素濃度雰囲気中での低温焼成により、
緻密で欠陥や溶融の少ない焼結体を得ることができると
ともに、コージェライトとジルコニアの反応によるジル
コンの生成が抑制され、ジルコニアの状態での分散が可
能となり、その結果、コージェライトの破壊靱性と強度
の向上効果が顕著に発現する。
It is important that the firing atmosphere be a low oxygen atmosphere having an oxygen partial pressure of 0.1 atm or less. For example, a porcelain having desired characteristics can be obtained by a nitrogen atmosphere, a nitrogen / oxygen mixed atmosphere, an inert gas atmosphere such as argon, a vacuum atmosphere, burying in carbon or non-oxide powder, or the like. By firing at low temperature in this low oxygen concentration atmosphere,
A compact sintered body with less defects and less melting can be obtained, and the production of zircon due to the reaction between cordierite and zirconia is suppressed, and dispersion in the zirconia state becomes possible. The effect of improving strength is remarkably exhibited.

【0032】このようにして得られたコージェライト質
焼結体は、緻密で、平滑な磁器表面と高破壊靱性と高曲
げ強度を有する。
The cordierite-based sintered body thus obtained has a dense and smooth porcelain surface, high fracture toughness and high bending strength.

【0033】本発明によれば、酸素分圧が0.1気圧を
超えると気孔の量と大きさが著しく増加する。従って、
酸素分圧は緻密化の観点で、特に0.05気圧以下、さ
らには0.01気圧以下が好ましい。
According to the present invention, when the oxygen partial pressure exceeds 0.1 atm, the amount and size of pores increase significantly. Therefore,
From the viewpoint of densification, the oxygen partial pressure is particularly preferably at most 0.05 atm, more preferably at most 0.01 atm.

【0034】焼成温度は1250℃未満では、気孔占有
率は3%を越え、平滑な磁器表面や鏡面を得ることが困
難となる。1400℃を越えるとコージェライトとジル
コニアが反応し、ジルコンが著しく生成することにより
強度低下が顕著となる。従って、焼成温度は1250〜
1400℃、特に1270〜1375℃の範囲で良好な
焼結体を得ることが出来る。
If the firing temperature is lower than 1250 ° C., the porosity exceeds 3%, making it difficult to obtain a smooth porcelain surface or mirror surface. If the temperature exceeds 1400 ° C., cordierite and zirconia react with each other, and zircon is remarkably formed, so that the strength is significantly reduced. Therefore, the firing temperature is 1250 to
A good sintered body can be obtained at a temperature of 1400 ° C, particularly 1270 to 1375 ° C.

【0035】このようにして得られる本発明のコージェ
ライト質焼結体によれば、緻密で、高靭性、高強度であ
るとともに、低熱膨張かつ低熱伝導性を有するため、熱
的な寸法安定性を必要とし、軽量であることが望まれる
3次元測定機のコラム、支柱のような構造体に利用する
ことが可能となる。
According to the cordierite-based sintered body of the present invention thus obtained, it is dense, has high toughness and high strength, and has low thermal expansion and low thermal conductivity. And it can be used for a structure such as a column or a column of a three-dimensional measuring machine which is desired to be lightweight.

【0036】[0036]

【実施例】実施例1 純度99.0%、平均粒径2.0μmのコージェライト
粉末対して、純度99%以上、平均粒径0.9μmのジ
ルコニア、純度99%、平均粒径1.0μmのYb
23、純度99.5%、平均粒径5.0μmのY23
CeO2、Sm23、Lu23、SrO、BaO及びC
aOを表1に示す割合で秤量した。
EXAMPLE 1 Zirconia having a purity of at least 99% and an average particle size of 0.9 μm, a purity of 99% and an average particle size of 1.0 μm were compared with cordierite powder having a purity of 99.0% and an average particle size of 2.0 μm. Yb
2 O 3, purity 99.5%, average particle size 5.0 .mu.m Y 2 O 3,
CeO 2 , Sm 2 O 3 , Lu 2 O 3 , SrO, BaO and C
aO was weighed at the ratio shown in Table 1.

【0037】これらの混合粉末に、溶媒としてIPA
(イソプロピルアルコール)を使用し、回転ミルを用い
て、平均粒径をマイクロトラック法で0.9〜1.0μ
mとなるように粉砕及び混合した。
These mixed powders were mixed with IPA as a solvent.
(Isopropyl alcohol), and the average particle size was 0.9 to 1.0 μm by a microtrack method using a rotary mill.
m and crushed and mixed.

【0038】次に、結合材としてパラフィンワックスを
混合粉末に対して10重量%になるように加え、IPA
の蒸発除去の後、原料粉末を顆粒状に造粒し、80MP
aの圧力でプレス法により縦6mm、横7mm、長さ4
5mmの成形体を作製した。そして、この成形体を表1
の条件で焼成した。焼成雰囲気は、大気雰囲気と窒素雰
囲気、窒素−酸素混合雰囲気、窒素−空気混合雰囲気、
真空雰囲気、カーボン粉末の埋め焼き(C埋焼き)のい
ずれかの方法を用いた。
Next, paraffin wax was added as a binder so as to be 10% by weight based on the mixed powder, and IPA was added.
After evaporating and removing the raw material powder, the raw material powder is granulated into granules, and 80MP
6mm long, 7mm wide, length 4
A 5 mm molded body was produced. Then, this molded body is shown in Table 1.
It baked on condition of. The firing atmosphere is an air atmosphere and a nitrogen atmosphere, a nitrogen-oxygen mixed atmosphere, a nitrogen-air mixed atmosphere,
Either a vacuum atmosphere or a burying and burning of carbon powder (C burying) was used.

【0039】得られた焼結体は、アルキメデス法により
嵩密度をもとめた後、焼結体を粉砕してJISR162
0に基づいたヘリウム置換法によって得られた真密度と
比較して相対密度を算出した。
The bulk density of the obtained sintered body is determined by the Archimedes method, and then the sintered body is pulverized to obtain a JISR162.
The relative density was calculated in comparison with the true density obtained by the helium displacement method based on 0.

【0040】また、ピーク強度比は、X線回折でスペク
トルを測定し、それぞれのピーク強度比を算出した。な
お、測定に際してはX線回折の測定時にコンピュータに
よるバックグランド除去処理を行った。
The peak intensity ratio was obtained by measuring a spectrum by X-ray diffraction and calculating each peak intensity ratio. At the time of measurement, a background removal process was performed by a computer at the time of X-ray diffraction measurement.

【0041】平均気孔径はサンプルを鏡面加工後、表面
の200倍の金属顕微鏡像をニレコ社製ルーゼックスF
S型に取り込み、データ処理を行った。また、気孔占有
率は観察面積に対する気孔の面積比率とし、気孔面積は
気孔を円と仮定して算出した。
The average pore diameter of the sample was mirror-finished, and a 200-fold metal microscope image of the surface was obtained from Luzex F manufactured by Nireco.
The data was taken in the S type and processed. The pore occupancy was defined as the area ratio of the pores to the observation area, and the pore area was calculated assuming that the pores were circular.

【0042】曲げ強度は、JIS R1601に準じ、
4点曲げ試験法で測定した。破壊靱性は、JIS R1
607に準じ、IF法で評価した。
The bending strength is in accordance with JIS R1601,
It was measured by a four-point bending test method. Fracture toughness is JIS R1
607 was evaluated by the IF method.

【0043】[0043]

【表1】 [Table 1]

【0044】本発明の試料No.2〜4、7、8、10
〜16及び18〜27は、平均気孔径が3.2μm以
下、気孔占有率が3%以下、相対密度が97%以上であ
り、強度が176MPa以上、破壊靱性が2.4MPa
・m1/2以上であった。
Sample No. of the present invention 2-4, 7, 8, 10
Nos. To 16 and 18 to 27 have an average pore diameter of 3.2 μm or less, a pore occupancy of 3% or less, a relative density of 97% or more, a strength of 176 MPa or more, and a fracture toughness of 2.4 MPa.
・ M 1/2 or more.

【0045】一方、ジルコニアを含有しない本発明の範
囲外の試料No.1は、強度が135MPa、破壊靭性
が1.9MPa・m1/2といずれも低かった。
On the other hand, Sample No. which does not contain zirconia and is out of the range of the present invention. Sample No. 1 was as low as 135 MPa and the fracture toughness was 1.9 MPa · m 1/2 .

【0046】また、ジルコニアが40重量%と多く、本
発明の範囲外の試料No.5は、ボイド占有率が3.2
%と大きかった。
The zirconia content was as large as 40% by weight, and the sample No. which was out of the range of the present invention was used. 5 has a void occupancy of 3.2
It was as large as%.

【0047】さらに、Yb23を含まないため相対密度
が低く本発明の範囲外の試料No.6は、緻密体が得ら
れず、機械的特性の評価ができなかった。また、Yb2
3が12重量%と多く、本発明の範囲外の試料No.
9は、気孔率が9.8%と大きく、破壊靭性が1.9M
Pa・m1/2と低かった。
Further, since no relative density was obtained because of no inclusion of Yb 2 O 3 , Sample No. which was out of the range of the present invention. In No. 6, no dense body was obtained, and the mechanical properties could not be evaluated. In addition, Yb 2
O 3 is the most 12 wt%, the sample outside the scope of the present invention No.
No. 9 has a large porosity of 9.8% and a fracture toughness of 1.9M.
Pa · m 1/2 was low.

【0048】さらにまた、酸素分圧が0.21気圧と高
く、本発明の範囲外の試料No.17は、気孔占有率が
3.6%と多く、破壊靭性が1.9MPa・m1/2と低
かった。
Further, when the oxygen partial pressure was as high as 0.21 atm and the sample No. was out of the range of the present invention. In No. 17, the porosity was as high as 3.6% and the fracture toughness was as low as 1.9 MPa · m 1/2 .

【0049】[0049]

【発明の効果】本発明によれば、低温焼成と焼成雰囲気
制御によってジルコンの生成を抑制し、コージェライト
中にジルコニアを分散させることにより、緻密で高強
度、高靭性を有し、また安価なコージェライト質焼結体
を提供することが出来る。
According to the present invention, the production of zircon is suppressed by low-temperature sintering and the control of the sintering atmosphere, and zirconia is dispersed in cordierite. A cordierite-based sintered body can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のコージェライト質焼結体のX線回折ス
ペクトルである。
FIG. 1 is an X-ray diffraction spectrum of a cordierite sintered body of the present invention.

【図2】従来のコージェライト質焼結体のX線回折スペ
クトルである。
FIG. 2 is an X-ray diffraction spectrum of a conventional cordierite-based sintered body.

【符号の説明】[Explanation of symbols]

11・・・コージェライト(132)面のピーク 12・・・ジルコニア(110)面のピーク 13・・・ジルコン(112)面のピーク 11 ... peak of cordierite (132) plane 12 ... peak of zirconia (110) plane 13 ... peak of zircon (112) plane

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】コージェライトを主体とし、ジルコニウム
を酸化物換算で2〜35重量%、周期律表第2a族元
素、第3a族元素のうち少なくとも1種を酸化物換算で
1〜10重量%の割合で含有するとともに、平均気孔径
が4.0μm以下、気孔占有率が3%以下、相対密度が
97%以上、強度が170MPa以上及び破壊靱性が
2.4MPa・m1/2以上であることを特徴とするコー
ジェライト質焼結体。
1. Zirconium is mainly composed of cordierite, 2 to 35% by weight in terms of oxide, and at least one of Group 2a element and Group 3a element in the periodic table is 1 to 10% by weight in terms of oxide. And an average pore diameter of 4.0 μm or less, a pore occupancy of 3% or less, a relative density of 97% or more, a strength of 170 MPa or more, and a fracture toughness of 2.4 MPa · m 1/2 or more. A cordierite-based sintered body, characterized in that:
【請求項2】X線回折スペクトルにおいて、ジルコン
(112)面のピーク強度をIZ(112)、ジルコニア(1
10)面のピーク強度をIZrO2(110)、コージェライト
(132)面のピーク強度をICJ(132)としたとき、ピ
ーク強度比IZ(112 )/ICJ(132)が0.05以下、I
ZrO2(110)/ICJ(132)が0.05以上であることを特徴
とする請求項1記載のコージェライト質焼結体。
2. A X-ray diffraction spectrum, I Z (112) peak intensity of zircon (112) plane, zirconia (1
10) Assuming that the peak intensity on the plane is I ZrO2 (110) and the peak intensity on the cordierite (132) plane is I CJ (132) , the peak intensity ratio I Z (112 ) / I CJ (132) is 0.05. Hereinafter, I
2. The cordierite-based sintered body according to claim 1, wherein ZrO2 (110) / ICJ (132) is 0.05 or more.
【請求項3】コージェライト粉末を主体とし、ジルコニ
アを2〜35重量%、周期律表第2a族元素、第3a族
元素のうち少なくとも1種の酸化物を1〜10重量%を
含有する混合粉末からなる成形体を酸素分圧が0.1気
圧以下の雰囲気中で焼成することを特徴とするコージェ
ライト質焼結体の製造方法。
3. A mixture mainly comprising cordierite powder, containing 2 to 35% by weight of zirconia and 1 to 10% by weight of an oxide of at least one of Group 2a and 3a elements of the periodic table. A method for producing a cordierite-based sintered body, characterized in that a compact made of powder is fired in an atmosphere having an oxygen partial pressure of 0.1 atm or less.
JP2000363704A 2000-11-29 2000-11-29 Cordierite sintered compact and method of manufacturing it Pending JP2002167268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000363704A JP2002167268A (en) 2000-11-29 2000-11-29 Cordierite sintered compact and method of manufacturing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000363704A JP2002167268A (en) 2000-11-29 2000-11-29 Cordierite sintered compact and method of manufacturing it

Publications (1)

Publication Number Publication Date
JP2002167268A true JP2002167268A (en) 2002-06-11

Family

ID=18834771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000363704A Pending JP2002167268A (en) 2000-11-29 2000-11-29 Cordierite sintered compact and method of manufacturing it

Country Status (1)

Country Link
JP (1) JP2002167268A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1780601A3 (en) * 2005-10-28 2007-06-13 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2012115136A1 (en) * 2011-02-24 2012-08-30 京セラ株式会社 Cordierite sintered body and member for semiconductor device composed of cordierite sintered body
JP2016500046A (en) * 2012-11-30 2016-01-07 コーニング インコーポレイテッド Cordierite aluminum magnesium titanate composition and ceramic article comprising the same
JP2017207300A (en) * 2016-05-16 2017-11-24 黒崎播磨株式会社 Member for ceramic reference device for noncontact type shape measuring machine calibration
US10450233B2 (en) 2006-06-30 2019-10-22 Corning Incorporated Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same
US10501375B2 (en) 2006-06-30 2019-12-10 Corning Incorporated Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same
US10526249B2 (en) 2012-11-30 2020-01-07 Corning Incorporated Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same
CN116848074A (en) * 2021-03-05 2023-10-03 Agc株式会社 Cordierite sintered body and method for producing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02289461A (en) * 1989-02-25 1990-11-29 Carl Zeiss:Fa Preparation of dense sintered body of cordierite
JPH11236262A (en) * 1998-02-23 1999-08-31 Kyocera Corp Low thermal expansion ceramic structural member and member for semiconductor device producing apparatus using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02289461A (en) * 1989-02-25 1990-11-29 Carl Zeiss:Fa Preparation of dense sintered body of cordierite
JPH11236262A (en) * 1998-02-23 1999-08-31 Kyocera Corp Low thermal expansion ceramic structural member and member for semiconductor device producing apparatus using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1780601A3 (en) * 2005-10-28 2007-06-13 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2007158309A (en) * 2005-10-28 2007-06-21 Asml Netherlands Bv Lithography device, and method of producing device
KR100801952B1 (en) * 2005-10-28 2008-02-12 에이에스엠엘 네델란즈 비.브이. Lithographic Apparatus and Device Manufacturing Method
JP4599334B2 (en) * 2005-10-28 2010-12-15 エーエスエムエル ネザーランズ ビー.ブイ. Method for manufacturing article support member
US10450233B2 (en) 2006-06-30 2019-10-22 Corning Incorporated Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same
US10501375B2 (en) 2006-06-30 2019-12-10 Corning Incorporated Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same
US9073790B2 (en) 2011-02-24 2015-07-07 Kyocera Corporation Cordierite sintered body and member for semiconductor device composed of cordierite sintered body
JP5762522B2 (en) * 2011-02-24 2015-08-12 京セラ株式会社 Cordierite sintered body and member for semiconductor manufacturing equipment comprising this cordierite sintered body
WO2012115136A1 (en) * 2011-02-24 2012-08-30 京セラ株式会社 Cordierite sintered body and member for semiconductor device composed of cordierite sintered body
JP2016500046A (en) * 2012-11-30 2016-01-07 コーニング インコーポレイテッド Cordierite aluminum magnesium titanate composition and ceramic article comprising the same
US10526249B2 (en) 2012-11-30 2020-01-07 Corning Incorporated Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same
JP2017207300A (en) * 2016-05-16 2017-11-24 黒崎播磨株式会社 Member for ceramic reference device for noncontact type shape measuring machine calibration
CN116848074A (en) * 2021-03-05 2023-10-03 Agc株式会社 Cordierite sintered body and method for producing same

Similar Documents

Publication Publication Date Title
Radford et al. Zirconia electrolyte cells: Part 1 Sintering studies
Moya et al. Microstructure and mechanical properties of mullite/ZrO 2 composites
JP3581879B2 (en) Alumina porous body and method for producing the same
EP1730090B1 (en) Low thermal expansion articles
Yang et al. Porosity and microstructure control of porous ceramics by partial hot pressing
EP1582509B1 (en) Dense cordierite based sintered body
JPH07277814A (en) Alumina-based ceramic sintered compact
JP2002167268A (en) Cordierite sintered compact and method of manufacturing it
EP1197253B1 (en) Method for producing a silicon nitride filter
Yang et al. Synthesis and properties of porous single‐phase β′‐SiAlON ceramics
US20060119016A1 (en) Method for producing silicon nitride honeycomb filter
JP2001192274A (en) Setter for debindering/sintering and manufacturing process for the same
JP2844100B2 (en) Zirconia refractory and method for producing the same
CN112979286B (en) Alumina ceramic for high-density packaging shell, preparation method thereof and raw porcelain tape
JP4912544B2 (en) Low thermal conductivity high rigidity ceramics
JP3995284B2 (en) Silicon nitride-based sintered body and method for producing the same
JPH0640765A (en) Spinel ceramics and its production
JP3121996B2 (en) Alumina sintered body
JP2687632B2 (en) Method for producing silicon nitride sintered body
JP5712142B2 (en) Porous ceramic sintered body and method for producing porous ceramic sintered body
JP2002284575A (en) Zirconia composite sintered compact, its manufacturing method and precise machinary part using it
JP2003002760A (en) Method for producing ceramics porous body
JP3159350B2 (en) Highly dense silicon nitride sintered body and method for producing the same
JP2024053480A (en) Method for producing sintered silicon nitride
JP2002201083A (en) Ceramic porous compact and method of manufacturing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629