JP2844100B2 - Zirconia refractory and method for producing the same - Google Patents

Zirconia refractory and method for producing the same

Info

Publication number
JP2844100B2
JP2844100B2 JP1339829A JP33982989A JP2844100B2 JP 2844100 B2 JP2844100 B2 JP 2844100B2 JP 1339829 A JP1339829 A JP 1339829A JP 33982989 A JP33982989 A JP 33982989A JP 2844100 B2 JP2844100 B2 JP 2844100B2
Authority
JP
Japan
Prior art keywords
zirconia
composition
layer
zro
yttria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1339829A
Other languages
Japanese (ja)
Other versions
JPH03197356A (en
Inventor
勝之 山口
文男 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKAI KAABON KK
Original Assignee
TOKAI KAABON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKAI KAABON KK filed Critical TOKAI KAABON KK
Priority to JP1339829A priority Critical patent/JP2844100B2/en
Publication of JPH03197356A publication Critical patent/JPH03197356A/en
Application granted granted Critical
Publication of JP2844100B2 publication Critical patent/JP2844100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、苛酷な使用条件に対して優れた耐火性、耐
蝕性および耐スポーリング性を備えるジルコニア耐火物
とその製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a zirconia refractory having excellent fire resistance, corrosion resistance and spalling resistance under severe use conditions, and a method for producing the same.

〔従来の技術〕[Conventional technology]

1800℃を越える高温域で使用することができる耐火物
としては、アルミナ(Al2O3)、マグネシア(MgO)、ジ
ルコニア(ZrO2)等が一般に知られているが、中でもジ
ルコニアは2700℃という非常に高い融点を持つうえ高温
域での安定性(低蒸気圧性、耐蝕性など)に優れている
ため、超高温耐火物として広い分野で活用されている。
Alumina (Al 2 O 3 ), magnesia (MgO), zirconia (ZrO 2 ), etc. are generally known as refractories that can be used in a high temperature range exceeding 1800 ° C. Among them, zirconia has a temperature of 2700 ° C. It has a very high melting point and excellent stability at high temperatures (low vapor pressure, corrosion resistance, etc.), so it is widely used as an ultra-high temperature refractory.

ところで、純粋なジルコニア(ZrO2)には温度段階に
応じて3種の異なる結晶構造が存在し、この結晶系が可
逆的に転移する際に大きな体積変化を伴うことから熱的
なスポーリグ破壊を受け易い欠点がある。これらを改善
する方策としてカルシウム、マグネシウム等のアルカリ
土類金属、ランタン、セリウム等の稀土類元素またはイ
ットリウムを酸化物の形態で1種以上添加し、結晶構造
の一部もしくは全部を立方晶に安定化する方法が知られ
ており、従来から種々の提案がなされている。
By the way, pure zirconia (ZrO 2 ) has three kinds of different crystal structures depending on the temperature stage, and when this crystal system undergoes a reversible transition, it undergoes a large volume change. There is a disadvantage that it is easily affected. As a measure to improve these, one or more kinds of alkaline earth metals such as calcium and magnesium, rare earth elements such as lanthanum and cerium or yttrium are added in the form of oxides, and part or all of the crystal structure is stabilized to cubic. Various methods have been known, and various proposals have conventionally been made.

例えば、特公昭56−4507号公報には酸化カルシウム
(CaO)または酸化マグネシウム(MgO)、特開昭61−15
5257号公報にはイットリア(Y2O3)、また特開昭59−15
2266号公報には酸化セシウム(CeO2)をそれぞれ添加し
て耐スポーリング性を改善したジルコニア耐火物あるい
はその製造方法が示されている。
For example, Japanese Patent Publication No. 56-4507 discloses calcium oxide (CaO) or magnesium oxide (MgO).
Japanese Patent No. 5257 discloses yttria (Y 2 O 3 ) and JP-A-59-15.
No. 2266 discloses a zirconia refractory having improved spalling resistance by adding cesium oxide (CeO 2 ), respectively, or a method for producing the same.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上記した各種安定化剤のうち酸化カルシウム、酸化マ
グネシウムなどは材料価格が安価であるという利点はあ
るものの、シリカ、アルミナ等の不可避不純物または焼
結助剤の影響によって脱固溶が起こり易く充分な耐スポ
ーリング改善効果は期待できない。一方、イットリアの
添加はジルコニアの安定化には著効があり耐火性、耐蝕
性および耐スポーリング性の改善に大きく寄与する特性
はあるが、材料価格が非常に高いため、各種工業炉に汎
用できない問題点がある。
Among the above-mentioned various stabilizers, calcium oxide, magnesium oxide, etc. have the advantage that the material price is inexpensive, but the solid solution easily occurs due to the influence of unavoidable impurities such as silica and alumina or the sintering aid, and thus it is sufficient. The effect of improving spalling resistance cannot be expected. On the other hand, the addition of yttria has a significant effect on the stabilization of zirconia and has the property of greatly contributing to the improvement of fire resistance, corrosion resistance and spalling resistance.However, since the material price is extremely high, it is widely used in various industrial furnaces. There is a problem that cannot be done.

本発明は、上記問題点の解消を図ったもので、その目
的は、安定化剤としてイットリアを含むジルコニア組成
物と酸化カルシウムを含むジルコニア組成物とを積層一
体化することにより高度の耐火性、耐蝕性および耐スポ
ーリング性を備える安価な汎用性ジルコニア耐火物とそ
の製造方法を提供するところにある。
The present invention has been made to solve the above problems, the purpose is to achieve high fire resistance by laminating and integrating a zirconia composition containing yttria and a zirconia composition containing calcium oxide as a stabilizer, It is an object of the present invention to provide an inexpensive general-purpose zirconia refractory having corrosion resistance and spalling resistance and a method for producing the same.

〔課題を解決するための手段〕[Means for solving the problem]

上記の目的を達成するための本発明によるジルコニア
耐火物は、イットリア(Y2O3)を含む部分安定化もしく
は完全安定化したジルコニア(ZrO2)質層以下「YZ層」
という。)と酸化カルシウム(CaO)を含む部分安定化
もしくは完全安定化したジルコニア質層(以下「CZ層」
という。)が積層一体化した二層構造からなることを構
成上の特徴としている。
The zirconia refractory according to the present invention for achieving the above object comprises a partially stabilized or fully stabilized zirconia (ZrO 2 ) material layer containing yttria (Y 2 O 3 ) or less, referred to as “YZ layer”.
That. ) And calcium oxide (CaO) and partially or fully stabilized zirconia layer (hereinafter referred to as “CZ layer”)
That. ) Has a two-layer structure in which the layers are integrated.

YZ層およびCZ層の部分安定化とは立方晶系ジルコニア
が少なくとも70%以上の結晶組成をいい、完全安定化と
は100%立方晶型構造のジルコニアを指す。したがっ
て、本発明においては安定化率70%以上の組成性状とす
る必要があり、70%未満の安定化率では高度の耐スポー
リング性を確保することができなくなる。
The partial stabilization of the YZ layer and the CZ layer refers to a crystal composition in which cubic zirconia is at least 70% or more, and the complete stabilization refers to zirconia having a 100% cubic structure. Therefore, in the present invention, it is necessary to obtain a composition having a stabilization ratio of 70% or more, and if the stabilization ratio is less than 70%, a high spalling resistance cannot be secured.

二層構造を構成するYZ層とCZ層の積層界面は、相互が
強固に結合して一体化した構造を呈している。
The laminating interface between the YZ layer and the CZ layer constituting the two-layer structure has a structure in which the layers are firmly bonded and integrated.

上記のジルコニア耐火物を製造するための本発明によ
る方法は、イットリア(Y2O3)を含む部分安定化もしく
は完全安定化したジルコニア(ZrO2)質組成物(以下
「YZ組成物」という。)および酸化カルシウム(CaO)
を含む部分安定化もしくは完全安定化したジルコニア
(ZrO2)質組成物(以下「CZ組成物」という。)を所定
の層厚、形状に積層されるように一体成形したのち、15
00℃以上の温度で焼結することを特徴とするプロセスか
らなる。
The method for producing the above zirconia refractory according to the present invention is a partially stabilized or fully stabilized zirconia (ZrO 2 ) composition containing yttria (Y 2 O 3 ) (hereinafter referred to as “YZ composition”). ) And calcium oxide (CaO)
Zirconia (ZrO 2 ) -based composition (hereinafter, referred to as “CZ composition”), which is partially or completely stabilized, is integrally molded so as to be laminated in a predetermined layer thickness and shape.
It comprises a process characterized by sintering at a temperature of 00 ° C. or higher.

YZ組成物におけるイットリアの添加量は4〜10モル%
の範囲に設定することが好適で、4モル%を下廻る量で
は安定化度が低くて耐火性、耐蝕性および耐スポーリン
グ性の改善効果が発揮されず10モル%を越す添加はもは
や効果の向上がみとめられない。CZ組成物における酸化
カルシウムの添加量は5〜15モル%の範囲にすることが
望ましい。5モル%未満ではジルコニアが十分安定化せ
ず、15モル%を上廻る添加は不必要となるからである。
The addition amount of yttria in the YZ composition is 4 to 10 mol%
When the amount is less than 4 mol%, the stabilization degree is low and the effect of improving the fire resistance, corrosion resistance and spalling resistance is not exhibited, and the addition exceeding 10 mol% is no longer effective. Improvement is not observed. It is desirable that the added amount of calcium oxide in the CZ composition be in the range of 5 to 15 mol%. If the content is less than 5 mol%, zirconia will not be sufficiently stabilized, and the addition exceeding 15 mol% is unnecessary.

YZ組成物とCZ組成物の積層成形は、例えば金型のよう
な非吸着性成形型にいずれかの組成物粉粒を入れ、振動
またはタッピングしたのち上層部に他の組成物粉粒を充
填して一軸プレスもしくは冷間静水圧プレス(CIP)で
生成する方法、あるいは石膏のような吸水性成形型に一
方の組成物をスラリー状態で流入し、半乾燥後に別の組
成物スラリーを流し込んで完全に乾燥する方法によって
おこなうことができる。この際、用いる型の形状および
各組成物の充填量を変えることにより所定の層厚、形状
に成形される。
For lamination molding of the YZ composition and the CZ composition, for example, one of the composition particles is placed in a non-adsorptive mold such as a mold, and after vibrating or tapping, the other layer is filled with the other composition particles. Then, one of the compositions is poured into a water absorbing mold such as gypsum in a slurry state by a uniaxial press or a cold isostatic press (CIP), and then another composition slurry is poured after semi-drying. This can be done by a completely drying method. At this time, by changing the shape of the mold used and the filling amount of each composition, it is formed into a predetermined layer thickness and shape.

一体成形体は、常法により1500℃以上、望ましくは16
00〜1800℃の温度域で焼結して本発明のジルコニア耐火
物を得る。
The integrally molded body is heated to 1500 ° C or higher by a conventional method, preferably 16 ° C.
The zirconia refractory of the present invention is obtained by sintering in the temperature range of 00 to 1800 ° C.

〔作 用〕(Operation)

本発明によるジルコニア耐火物は、耐火性、耐蝕性お
よび耐スポーリング性に優れるイットリア成分で安定化
されたYZ層と酸化カルシウム成分で安定化ざれたCZ層と
が積層一体化した二層構造を有するから、ジルコニア本
来の耐火物性を大きく改善すると共に安価なCZ層との積
層構造であるためYZ単味の場合と同等性能の耐火物を安
価に提供することができる。したがって、例えば高温炉
を築炉する際に、YZ層を苛酷な条件に晒される炉面内に
位置するように配することにより極めて耐久性の良い炉
壁が比較的低廉な費用で形成される。
The zirconia refractory according to the present invention has a two-layer structure in which a YZ layer stabilized with an yttria component and a CZ layer stabilized with a calcium oxide component are laminated and integrated, which is excellent in fire resistance, corrosion resistance and spalling resistance. Therefore, the zirconia inherently improves refractory properties and has a laminated structure with an inexpensive CZ layer, so that a refractory having the same performance as that of the YZ plain type can be provided at low cost. Therefore, for example, when constructing a high-temperature furnace, by arranging the YZ layer so as to be located in the furnace surface exposed to severe conditions, a very durable furnace wall is formed at a relatively low cost. .

また、本発明によるジルコニア耐火物の製造方法によ
れば、YZ組成物とCZ組成物の主成分がいずれもジルコニ
ア質である事から積層界面で相互分散し、常に強固な焼
結状態が得られる。このため、実用過程で異物質の積層
体に見られる剥離、ストレス破壊等の現象は全く生じる
ことはなく、長期間に亘る安定した使用状態が実現す
る。
Further, according to the method for producing a zirconia refractory according to the present invention, since the main components of the YZ composition and the CZ composition are both zirconia, they are interdispersed at the lamination interface, and a strong sintered state is always obtained. . Therefore, phenomena such as exfoliation and stress destruction which are observed in a laminate of different substances in a practical process do not occur at all, and a stable use state for a long period of time is realized.

〔実施例〕〔Example〕

以下、本発明の実施例を比較例と対比して説明する。 Hereinafter, examples of the present invention will be described in comparison with comparative examples.

(1)耐火物の製造 イットリア(Y2O3)を5.1モル%含有する組成の安定
化率90%のジルコニア(ZrO2)クリンカー(YZ組成物)
および酸化カルシウム(CaO)8.3モル%を含有する組成
の安定化率84%のジルコニア(ZrO2)クリンカー(CZ組
成物)を原料とした。これらYZ組成物とCZ組成物をそれ
ぞれ粗粒(粒度1〜2mm)、中粒(粒度250μm〜1m
m)、微粒(粒度250μm以下)として重量比5:1:4の割
合で配合し、ポリビニルアルコール5%水溶液40ml/kg
をバインダーとして加えて十分に混練した。
(1) Production of refractories A zirconia (ZrO 2 ) clinker (YZ composition) having a composition containing 5.1 mol% of yttria (Y 2 O 3 ) and a stabilization rate of 90%
A zirconia (ZrO 2 ) clinker (CZ composition) containing 8.3 mol% of calcium oxide (CaO) and a stability of 84% was used as a raw material. Each of the YZ composition and the CZ composition was coarse (grain size 1-2 mm) and medium (grain size 250 μm-1 m).
m), as fine particles (particle size 250 μm or less) at a weight ratio of 5: 1: 4, and a 40% aqueous solution of polyvinyl alcohol 5% / kg
Was added as a binder and kneaded well.

混練したYZ組成物とCZ組成物を所定の層厚になるよう
に順次に金型中に充填して200kgf/cm2の圧力で一軸プレ
ス成形し、60℃の温度で48時間乾燥処理した。ついで、
得られた成形体を電気炉に移し、1700℃の温度で1時間
焼結した。
The kneaded YZ composition and CZ composition were sequentially filled into a mold so as to have a predetermined layer thickness, uniaxially pressed at a pressure of 200 kgf / cm 2 , and dried at a temperature of 60 ° C. for 48 hours. Then
The obtained compact was transferred to an electric furnace and sintered at a temperature of 1700 ° C. for 1 hour.

このようにして、縦230mm,横114mm,厚さ65mmでYZ層が
5mm,CZ層が60mmの形状を有する一体二層構造の並形レン
ガを製造した。
In this way, the YZ layer is 230 mm long, 114 mm wide and 65 mm thick.
An integrated two-layer brick with 5 mm and 60 mm CZ was fabricated.

比較のために、実施例で原料としたYZ組成物(比較例
1)およびCZ組成物(比較例2)のみを用い、実施例と
同一方法によって並形レンガを製造した。
For comparison, only the YZ composition (Comparative Example 1) and the CZ composition (Comparative Example 2) used as the raw materials in the examples were used to produce regular bricks in the same manner as in the examples.

(2)性能評価 上記で得られた各並形レンガを、液体プロパンガス
(LPG)と酸素を燃料源とした小型高温ガス炉内にセッ
トした。この際、実施例の並形レンガについてはYZ層が
炉内高温側にくるように装着した。
(2) Performance Evaluation Each of the normal bricks obtained above was set in a small high-temperature gas furnace using liquid propane gas (LPG) and oxygen as fuel sources. At this time, the regular bricks of the examples were mounted such that the YZ layer was on the high temperature side in the furnace.

炉を焼成させ、燃焼率110%の酸化雰囲気下にて、200
0℃まで昇温(昇温速度800℃/hr)したのち消火、約30
分間炉冷し1200℃の時点で再昇温する条件でヒートサイ
クル試験をおこなった。
The furnace is fired and heated in an oxidizing atmosphere with a burn rate of 110% for 200%.
Fire extinguishing after heating to 0 ° C (heating rate 800 ° C / hr), approx. 30
A heat cycle test was performed under the condition that the furnace was cooled for 1 minute and the temperature was raised again at 1200 ° C.

なお、特性のうち気孔率の測定はアルキメデス法(媒
体:蒸留水)、また耐蝕試験は1800℃炉内に炭酸ナトリ
ウム水溶液を注入してレンガ面(実施例ではYZ層)に接
触させ、反応および溶損の状態をX線回折および外観に
より判定(反応なし:良、反応あり:否)する方法によ
った。これらの結果を対比して表1に示した。
Among the properties, the porosity is measured by the Archimedes method (medium: distilled water), and the corrosion test is performed by injecting an aqueous sodium carbonate solution into a furnace at 1800 ° C and bringing it into contact with the brick surface (YZ layer in the example). The state of the erosion was determined by X-ray diffraction and appearance (no reaction: good, reaction: no). Table 1 compares these results.

表1の結果から、実施例のレンガはイットリア含有層
が5mmであるにも拘わらず比較例1と同様に10回のヒー
トサイクル後も溶損、亀裂等の欠陥部分は全く認められ
ず、優れた耐火性、耐蝕性および耐スポーリング性を備
えていることが判明した。これに対し、比較例2では2
回のヒートサイクル時点で表面に多数の亀裂が発生し、
1部には欠損部分が認められた。
From the results shown in Table 1, the bricks of the Examples were excellent in that no defective portions such as erosion and cracks were observed after 10 heat cycles as in Comparative Example 1 even though the yttria-containing layer was 5 mm. It was found to have fire resistance, corrosion resistance and spalling resistance. On the other hand, in Comparative Example 2, 2
Many cracks occur on the surface at the time of the heat cycle,
In one part, a defective part was observed.

〔発明の効果〕〔The invention's effect〕

以上のとおり、本発明によればイットリア含有ジルコ
ニア層と酸化カルシウム含有ジルコニア層とを積層一体
化して2層構造に形成することによって、安価で耐火
性、耐蝕性および耐スポーリング性に優れるジルコニア
耐火物を提供し製造することができる。
As described above, according to the present invention, by forming a two-layer structure by laminating and integrating a yttria-containing zirconia layer and a calcium oxide-containing zirconia layer, a zirconia refractory which is inexpensive and has excellent fire resistance, corrosion resistance and spalling resistance is obtained. Things can be provided and manufactured.

したがって、各種の高温加熱炉、溶解炉の内張り材な
どとして汎用性が期待される。
Therefore, versatility is expected as a lining material for various high-temperature heating furnaces and melting furnaces.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】イットリア(Y2O3)を含む部分安定化もし
くは完全安定化したジルコニア(ZrO2)質層と酸化カル
シウム(CaO)を含む部分安定化もしくは完全安定化し
たジルコニア(ZrO2)質層が積層一体化した二層構造か
らなるジルコニア耐火物。
1. A yttria (Y 2 O 3) partially or fully stabilized zirconia (ZrO 2) including the quality layer part containing calcium oxide (CaO) or fully stabilized zirconia (ZrO 2) Zirconia refractory consisting of a two-layer structure in which porous layers are laminated and integrated.
【請求項2】イットリア(Y2O3)を含む部分安定化もし
くは完全安定化したジルコニア(ZrO2)質組成物および
酸化カルシウム(CaO)を含む部分安定化もしくは完全
安定化したジルコニア(ZrO2)質組成物を所定の層厚、
形状に積層されるように一体成形したのち、1500℃以上
の温度で焼結することを特徴とするジルコニア耐火物の
製造方法。
2. A yttria (Y 2 O 3) parts including or fully stabilized zirconia (ZrO 2) Quality composition and moieties containing calcium oxide (CaO) or fully stabilized zirconia (ZrO 2 ) The quality composition to a predetermined layer thickness,
A method for producing a zirconia refractory, comprising: integrally molding so as to be laminated in a shape; and sintering at a temperature of 1500 ° C. or higher.
JP1339829A 1989-12-26 1989-12-26 Zirconia refractory and method for producing the same Expired - Fee Related JP2844100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1339829A JP2844100B2 (en) 1989-12-26 1989-12-26 Zirconia refractory and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1339829A JP2844100B2 (en) 1989-12-26 1989-12-26 Zirconia refractory and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03197356A JPH03197356A (en) 1991-08-28
JP2844100B2 true JP2844100B2 (en) 1999-01-06

Family

ID=18331205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1339829A Expired - Fee Related JP2844100B2 (en) 1989-12-26 1989-12-26 Zirconia refractory and method for producing the same

Country Status (1)

Country Link
JP (1) JP2844100B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05270911A (en) * 1992-03-25 1993-10-19 Ngk Insulators Ltd Zirconia refractory setter
US6093236A (en) * 1998-05-30 2000-07-25 Kansas State University Research Foundation Porous pellet adsorbents fabricated from nanocrystals
US8450552B2 (en) 2009-05-18 2013-05-28 Exxonmobil Chemical Patents Inc. Pyrolysis reactor materials and methods
WO2011062775A2 (en) * 2009-11-20 2011-05-26 Exxonmobil Chemical Patents Inc. Porous pyrolysis reactor materials and methods
US8932534B2 (en) 2009-11-20 2015-01-13 Exxonmobil Chemical Patents Inc. Porous pyrolysis reactor materials and methods
KR20170139656A (en) 2015-04-24 2017-12-19 코닝 인코포레이티드 Combined zirconia refractories and methods for making same
EP4219425A1 (en) * 2020-09-25 2023-08-02 Kuraray Noritake Dental Inc. Method for producing zirconia sintered compact

Also Published As

Publication number Publication date
JPH03197356A (en) 1991-08-28

Similar Documents

Publication Publication Date Title
JP3007684B2 (en) Zircon refractories with improved thermal shock resistance
JPH0558722A (en) Aluminum titanate ceramics and its production
JP5069301B2 (en) Firing refractory ceramic products
JPH1160240A (en) Production of aluminum titanate powder and sintered compact of aluminum titanate
Standard et al. Densification of zirconia-conventional methods
JP2844100B2 (en) Zirconia refractory and method for producing the same
Kumar et al. Thermo-mechanical properties of mullite—zirconia composites derived from reaction sintering of zircon and sillimanite beach sand: Effect of CaO
JP4458409B2 (en) Method for producing translucent ceramics and translucent ceramics
JP5162180B2 (en) Sintered compact, manufacturing method thereof and use thereof
JP3103480B2 (en) Method for producing zirconia refractory for thermal insulation
CA2315398A1 (en) Dense refractories with improved thermal shock resistance
EP0232095A2 (en) Ceramic composites from chemically derived magnesium-aluminate and zirconium oxide
JP2975849B2 (en) Refractories for steelmaking
JP2515604B2 (en) Zirconia / hafnia composite material
JPH0710746B2 (en) High toughness zirconia sintered body
WO2001068552A1 (en) Low-firing temperature method for producing al2o3 bodies having enhanced chemical resistance
JP3127514B2 (en) Furnace material for ceramic firing
Rana et al. Dolomite stabilized zirconia for refractory application: Part-I phase analysis, densification behavior and microstructure of partial stabilized zirconia
JPS6059189B2 (en) Sintered refractory brick for ultra-dense glass furnace and its manufacturing method
Kyaw et al. Microstructures and mechanical properties of mullite-(yttria, magnesia-and ceria-stabilized) zirconia composites
JPH03197357A (en) Zirconia/hafnia-based refractory material
JP2004359534A (en) Zirconia sintered compact
JPH0455360A (en) Magnesia-based superhigh temperature refractory
JPH03197354A (en) Alumina/yttria refractory
JPS6011263A (en) Low heat conductivity basic refractories

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees