JP3127514B2 - Furnace material for ceramic firing - Google Patents

Furnace material for ceramic firing

Info

Publication number
JP3127514B2
JP3127514B2 JP03245091A JP24509191A JP3127514B2 JP 3127514 B2 JP3127514 B2 JP 3127514B2 JP 03245091 A JP03245091 A JP 03245091A JP 24509191 A JP24509191 A JP 24509191A JP 3127514 B2 JP3127514 B2 JP 3127514B2
Authority
JP
Japan
Prior art keywords
furnace material
firing
zirconia
furnace
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03245091A
Other languages
Japanese (ja)
Other versions
JPH0558757A (en
Inventor
昂 雲川
健之 上野
治久 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP03245091A priority Critical patent/JP3127514B2/en
Publication of JPH0558757A publication Critical patent/JPH0558757A/en
Application granted granted Critical
Publication of JP3127514B2 publication Critical patent/JP3127514B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はセラミック焼成用炉材に
関する。具体的にいうと、セラミック電子部品等のセラ
ミック製品の焼成工程に用いられる焼成用炉材に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a furnace material for firing ceramics. More specifically, the present invention relates to a firing furnace material used in a firing step of a ceramic product such as a ceramic electronic component.

【0002】[0002]

【従来の技術】セラミック製品は、グリーンボディやグ
リーンシート等の成形品を焼成用炉材(さや鉢、セッタ
ー)の上に載置したり、内部に納めたりした状態で焼成
される。
2. Description of the Related Art A ceramic product is fired in a state in which a molded article such as a green body or a green sheet is placed on a firing furnace material (pod, bowl, setter) or placed inside.

【0003】このような焼成用炉材としては、従来にあ
っては、炭化珪素系炉材や高純度アルミナ系炉材、アル
ミナ−ジルコニア系炉材等が用いられている。
[0003] As such a firing furnace material, a silicon carbide-based furnace material, a high-purity alumina-based furnace material, an alumina-zirconia-based furnace material, and the like have been conventionally used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、炭化珪
素系炉材は、熱衝撃や高温クリープには強いが、被焼成
物であるセラミック成形品と反応し、セラミック製品の
電気的特性にバラツキが生じるという問題があった。こ
れを防止するためには、炭化珪素系炉材の表面にジルコ
ニアやアルミナ等のコーティング膜を形成するとよい
が、このコーティング膜は剥離し易く、繰返し使用に耐
えない。
However, silicon carbide based furnace materials are resistant to thermal shock and high-temperature creep, but react with ceramic molded articles to be fired, causing variations in the electrical characteristics of the ceramic products. There was a problem. In order to prevent this, a coating film of zirconia, alumina or the like may be formed on the surface of the silicon carbide furnace material, but this coating film is easily peeled off and cannot withstand repeated use.

【0005】高純度アルミナ系炉材の場合には、被焼成
物と反応するような組成が含まれていないのでセラミッ
ク成形品と反応するという問題はない。しかし、熱膨張
係数が高いために焼成時の歪が大きく、耐熱衝撃性が低
く、何度も繰り返し使用することができず、炉材ライフ
が短いという問題があった。これに対し、最近では、小
型電子部品の高速度焼成化が要求されているため、急熱
急冷に耐える耐熱衝撃性の高い焼成用炉材を開発する要
求が高まっている。
In the case of a high-purity alumina-based furnace material, there is no problem that it reacts with a ceramic molded product because it does not contain a composition that reacts with the material to be fired. However, there is a problem that since the coefficient of thermal expansion is high, distortion during firing is large, thermal shock resistance is low, it cannot be used repeatedly, and the life of the furnace material is short. On the other hand, recently, since high-speed firing of small electronic components has been required, there is an increasing demand for developing a firing furnace material having high thermal shock resistance that can withstand rapid heat and rapid cooling.

【0006】また、アルミナ−ジルコニア系炉材は、セ
ラミック成形品と反応するという問題はなく、しかも、
高純度アルミナ系炉材の脆さを改善する効果がある。し
かし、アルミナ−ジルコニア系炉材には、高温クリープ
に弱いという問題があった。
Alumina-zirconia based furnace materials do not have the problem of reacting with ceramic molded products, and
This has the effect of improving the brittleness of high-purity alumina-based furnace materials. However, the alumina-zirconia furnace material has a problem that it is susceptible to high-temperature creep.

【0007】さらに、上記のいずれの炉材も重量が重
く、嵩密度が高いため、熱容量も大きく、焼成工程にお
いて省エネルギー化を図り難かった。
Furthermore, since all of the above furnace materials are heavy in weight and high in bulk density, they have a large heat capacity, making it difficult to save energy in the firing step.

【0008】本発明は叙上の従来技術に鑑みてなされた
もので、その目的とするところは、被焼成物と反応しに
くく、耐熱衝撃性が高く、高温クリープが小さく、しか
も熱容量の小さなセラミック焼成用炉材を提供すること
にある。
The present invention has been made in view of the above-mentioned prior art, and has as its object to hardly react with a material to be fired, to have high thermal shock resistance, to have a small high-temperature creep, and to have a small heat capacity. An object of the present invention is to provide a firing furnace material.

【0009】[0009]

【課題を解決するための手段】本発明のセラミック焼成
用炉材は、高純度アルミナ80〜90wt%に対して単
斜晶ジルコニア20〜10wt%の割合で配合し、高純
度アルミナ及び単斜晶ジルコニア100wt%に対して
0.3〜1.0wt%の割合で酸化イットリウムを添加
し、さらに粒子状ないし繊維状をした樹脂を混合して炉
材原料を調合し、この炉材原料を焼成した多孔質焼結体
からなることを特徴としている。
SUMMARY OF THE INVENTION The ceramic firing furnace material of the present invention is prepared by blending high purity alumina with 80 to 90% by weight and monoclinic zirconia in a ratio of 20 to 10% by weight. Yttrium oxide is added at a ratio of 0.3 to 1.0 wt% with respect to 100 wt% of zirconia, and further, a particulate or fibrous resin is mixed to prepare a furnace material, and the furnace material is fired. It is characterized by being made of a porous sintered body.

【0010】[0010]

【作用】ジルコニアは、1000℃付近で単斜晶と正方
晶との相転移があり、このとき数%にも及ぶ体積収縮を
伴う。このため、本発明の組成からなる焼成用炉材で
は、単斜晶ジルコニアの正方晶ジルコニアへの結晶構造
の変化に伴ってローカルな体積収縮を起こし、これがア
ルミナ組成の熱膨張に伴う体積膨張と相殺され、全体と
しては熱膨張係数がゼロに近くなる。このため、焼成用
炉材の急熱急冷に対する耐久性が向上し、耐熱衝撃性が
高くなる。
The zirconia has a phase transition between a monoclinic system and a tetragonal system at around 1000 ° C., and is accompanied by several percent volume shrinkage. For this reason, in the firing furnace material having the composition of the present invention, local volume contraction occurs due to a change in the crystal structure of monoclinic zirconia to tetragonal zirconia, which causes volume expansion due to thermal expansion of the alumina composition. This offsets the overall thermal expansion coefficient to near zero. Therefore, the durability of the firing furnace material to rapid heating and quenching is improved, and the thermal shock resistance is increased.

【0011】また、本発明の焼成用炉材中に配合された
単斜晶ジルコニアは、適正量の酸化イットリウムが添加
されることにより、単斜晶から相転移して正方晶で安定
化する割合が高くなる。しかも、酸化イットリウムは炉
材焼成工程において、炉材の焼結を促進させ、炉材の組
織を緻密なものとする。このため、炉材の組織が高温ク
リープにも耐えるよう改質される。
In addition, the monoclinic zirconia blended in the firing furnace material of the present invention is characterized in that, when an appropriate amount of yttrium oxide is added, a phase transition from monoclinic to stabilization to tetragonal occurs. Will be higher. Moreover, yttrium oxide promotes sintering of the furnace material in the furnace material firing step, and makes the structure of the furnace material dense. Therefore, the structure of the furnace material is modified to withstand high-temperature creep.

【0012】さらに、この焼成用炉材は、アルミナとジ
ルコニアと酸化イットリウムから構成されており、これ
らの原料はいずれも高温での相状態において安定性が良
好であるので、被焼成物と反応する恐れがない。
Further, this firing furnace material is composed of alumina, zirconia, and yttrium oxide, and all of these raw materials have good stability in a phase state at a high temperature, and thus react with the material to be fired. There is no fear.

【0013】しかも、粒子状もしくは繊維状の樹脂を混
合してあるので、焼成時に樹脂が燃焼してその跡に多く
の気孔が生じる。この気孔のために焼成用炉材の嵩密度
が小さくなり、焼成用炉材が軽量となって炉材熱容量が
小さくなり、焼成エネルギーを省エネルギー化できる。
In addition, since the resin in the form of particles or fibers is mixed, the resin burns at the time of sintering, and many pores are generated in the trace. These pores reduce the bulk density of the firing furnace material, reduce the firing furnace material weight, reduce the heat capacity of the furnace material, and save energy for firing.

【0014】[0014]

【実施例】図1に示す焼成用炉材(セッター)1は、純
度99.0%以上の高純度アルミナ80〜90wt%に
純度99.0%以上の#325メッシュパス(#325
のふるいを通したもの)電融単斜晶ジルコニアを20〜
10wt%の割合で配合し、アルミナ及びジルコニア1
00wt%に対し純度99.5%以上の酸化イットリウ
ムを0.3〜1.0wt%の割合で添加し、さらに樹脂粒
子や樹脂繊維を混合してスラリー状の炉材原料を調製
し、この炉材原料を石膏型に流し込んで炉材形状に鋳込
成形し、これをバッチ炉において1600℃で4時間保
持して焼成したものである。こうして得られた焼成用炉
材1は、焼成時に樹脂粒子等が燃焼することによって多
数の気孔2を含んで嵩密度1.1〜1.6g/ccの軽量
炉材となっている。なお、電融単斜晶ジルコニアとは、
出発原料バデライト鉱物から単斜晶ジルコニアを製造す
る際に電気的熱処理が施されたものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A firing furnace material (setter) 1 shown in FIG. 1 is a # 325 mesh pass (# 325) having a purity of 99.0% or more and a high purity alumina of 80-90 wt% having a purity of 99.0% or more.
Through an electric sieve) electrofused monoclinic zirconia from 20 to
10% by weight, alumina and zirconia 1
Yttrium oxide having a purity of 99.5% or more is added at a ratio of 0.3 to 1.0% by weight with respect to 00% by weight, and resin particles and resin fibers are mixed to prepare a slurry-type furnace material. The raw material was poured into a gypsum mold and cast into a furnace material shape, and this was held in a batch furnace at 1600 ° C. for 4 hours and fired. The firing furnace material 1 thus obtained is a lightweight furnace material having a bulk density of 1.1 to 1.6 g / cc including a large number of pores 2 by burning of resin particles and the like during firing. In addition, electrofused monoclinic zirconia is
An electric heat treatment was performed when monoclinic zirconia was produced from the starting material badderite mineral.

【0015】このようなアルミナ−ジルコニア複合材に
あっては、ジルコニアの相転移に伴う体積変化とアルミ
ナの熱膨張による体積変化とが相殺し、全体として熱膨
張がゼロに近くなり、耐熱衝撃性が高くなる。また、酸
化イットリウムの添加によりジルコニアが正方晶で安定
化する割合が増加し、さらに酸化イットリウムが炉材の
焼結を促進させ、その結果、炉材の組織が緻密なものと
なり、高温クリープが小さくなる。さらに、多孔質の軽
量炉材となっているので、熱容量が小さく、焼成時の消
費エネルギーが少なくなる。
In such an alumina-zirconia composite material, the change in volume due to the phase transition of zirconia and the change in volume due to the thermal expansion of alumina cancel each other out, so that the thermal expansion becomes almost zero as a whole, and the thermal shock resistance is reduced. Will be higher. In addition, the addition of yttrium oxide increases the proportion of zirconia that is stabilized in a tetragonal system, and yttrium oxide further promotes the sintering of the furnace material. Become. Furthermore, since it is a porous lightweight furnace material, the heat capacity is small, and the energy consumption during firing is reduced.

【0016】次に具体的な実施例を比較例とともに説明
する。まず、純度99.0%以上の高純度アルミナ(A
23)と、#325メッシュパスで純度99.0%以
上の電融単斜晶ジルコニア(ZrO2)と、純度99.5
%以上の酸化イットリウム(Y23)を表1に示す割合
で調合し、スラリー状をした比較例A及び実施例B〜G
の炉材原料を調製した。ついで、スラリー状をした各炉
材原料を石膏型に流し込んで炉材形状もしくは規定寸法
となるように鋳込成形し、これをバッチ炉において16
00℃で4時間保持して焼成し、比較例A及び実施例B
〜Gの焼成用炉材を得た。
Next, specific examples will be described together with comparative examples. First, high-purity alumina having a purity of 99.0% or more (A
l 2 O 3 ), electrofused monoclinic zirconia (ZrO 2 ) having a purity of 99.0% or more by a # 325 mesh pass, and a purity of 99.5
% Or more of yttrium oxide (Y 2 O 3 ) in the proportions shown in Table 1 and slurried.
Was prepared. Next, each of the furnace material raw materials in a slurry state was poured into a gypsum mold and cast into a furnace material shape or a specified size.
Comparative Example A and Example B
To G were obtained.

【0017】[0017]

【表1】 [Table 1]

【0018】この後、製作した比較例A及び実施例B〜
Gの焼成用炉材について、嵩密度、抗折強度、高温クリ
ープ試験値及びジルコニア結晶の安定化度を測定した。
この結果を表2に示す。
Thereafter, the comparative example A and the examples B to which were manufactured.
With respect to the firing furnace material of G, the bulk density, bending strength, high-temperature creep test value, and degree of stabilization of zirconia crystals were measured.
Table 2 shows the results.

【0019】[0019]

【表2】 [Table 2]

【0020】嵩密度は水中重量法によって測定されたも
のであり、実施例B〜Gでは比較例Aよりも若干嵩密度
が大きく、緻密になっている。これは、実施例B〜Gに
おいてジルコニアが正方晶で安定化した割合が高いため
であると考えられる。抗折強度は、5×35×2mmの
試料を支点間距離が25mmとなるように支持し、荷重
を増加させて試料が折れたときの荷重の大きさから求め
た。表2によれば、実施例B〜Gの場合には、比較例A
よりも抗折強度が大きくなっている。クリープ量(高温
クリープ試験値)は、20×80×3mmの試料を用
い、試料の中央に660gの荷重を加えた状態において
1400℃で10時間保持する加熱工程を10サイクル
繰り返した後の最大反り量を測定したものである。この
結果、実施例B〜Gでは、比較例Aと比較して大幅にク
リープ量が小さくなった。ジルコニア結晶の安定化度
(ZrO2安定化度)は、焼成された試料のX線回折記
録より正方晶系(2θ≒32.2°)の強度(ピーク
値)Tと単斜晶系(2θ≒28.2°)の強度(ピーク
値)Mを求め、 安定化度(%)=100×T/(T+M) より計算されたものである。実施例B〜Gでは、全体と
して比較例Aよりもかなり大きな安定化度となってい
る。これより、酸化イットリウムの割合が0.3〜1.0
wt%の実施例B〜Gでは正方晶ジルコニアの安定化傾
向が高いことが確認された。
The bulk density is measured by the underwater gravimetric method. In Examples B to G, the bulk density is slightly larger than that in Comparative Example A, and the density is high. This is considered to be because in Examples B to G, the proportion of zirconia stabilized with a tetragonal system was high. The bending strength was determined from the magnitude of the load when the sample was broken by supporting the sample of 5 × 35 × 2 mm so that the distance between the fulcrums was 25 mm and increasing the load. According to Table 2, in the case of Examples B to G, Comparative Example A
Bending strength is larger than that. The amount of creep (high-temperature creep test value) was the maximum warpage after repeating a heating step of holding a sample of 20 × 80 × 3 mm at 1400 ° C. for 10 hours with a load of 660 g applied to the center of the sample for 10 cycles. The amount was measured. As a result, in Examples B to G, the creep amount was significantly reduced as compared with Comparative Example A. The degree of stabilization of the zirconia crystal (ZrO 2 stabilization degree) was determined from the intensity (peak value) T of the tetragonal system (2θ ≒ 32.2 °) and the monoclinic system (2θ (≒ 28.2 °) intensity (peak value) M was obtained, and the degree of stabilization (%) was calculated from 100 × T / (T + M). In Examples B to G, the degree of stabilization as a whole was considerably higher than that in Comparative Example A. Thus, the ratio of yttrium oxide is 0.3 to 1.0.
In Examples B to G of wt%, it was confirmed that tetragonal zirconia had a high tendency to stabilize.

【0021】表2では、比較例Aと比較して実施例B〜
Gのクリープ量は小さくなっており、表1と対比して、
アルミナ−ジルコニア炉材に酸化イットリウムを添加す
ることにより高温クリープに強くなることが確認でき
た。特に、安定化度が90%以上のものでは、極めて高
温クリープに強くなっている。
In Table 2, Examples B to
The creep amount of G is small, and in comparison with Table 1,
It was confirmed that the addition of yttrium oxide to the alumina-zirconia furnace material increased the resistance to high-temperature creep. In particular, those having a degree of stabilization of 90% or more are extremely resistant to high-temperature creep.

【0022】次に、表1の比較例A及び実施例B、E〜
G(安定化度が90%以上のもの)と同一組成のスラリ
ー状をした炉材原料を用い、これらに粒径100〜50
0μmの樹脂粒子を混合し、図2に示すような平板状
(縦横の寸法a=b=220mm、厚みt=5mm)に
鋳込み成形し、焼成して嵩密度1.1〜1.6g/ccの
多孔質炉材3(それぞれ比較例A及び実施例B,E〜G
という。)を製作し、各多孔質炉材3の上にセラミック
コンデンサ素体約500gを積載して実装試験を行なっ
た。すなわち、各炉材の上にセラミックコンデンサ素体
を積載し、1400℃で2時間保持の焼成工程を10回
繰返し、そのときの比較例A及び実施例B,E〜Gの撓
み(クリープ量)を測定した。この結果を表3に示す。
Next, Comparative Example A and Examples B and E of Table 1
G (a material having a degree of stabilization of 90% or more) was used as a slurry material for the furnace material.
0 μm of resin particles are mixed, cast into a flat plate shape (length and width dimensions a = b = 220 mm, thickness t = 5 mm) as shown in FIG. 2 and fired to obtain a bulk density of 1.1 to 1.6 g / cc. Porous furnace material 3 (Comparative Example A and Examples B, EG
That. ) Was manufactured, and about 500 g of a ceramic capacitor body was mounted on each porous furnace material 3 to perform a mounting test. That is, the ceramic capacitor body was mounted on each furnace material, and the firing step of holding at 1400 ° C. for 2 hours was repeated 10 times, and the deflection (creep amount) of Comparative Example A and Examples B and EG at that time. Was measured. Table 3 shows the results.

【0023】[0023]

【表3】 [Table 3]

【0024】表3から明らかなように、酸化イットリウ
ムの添加により安定化度が90%以上になる組成領域で
は、焼成累積回数を10回行っても撓みは1.5mm以
内の範囲にあり、積載品の電気的特性にも影響を与えな
いことが確認された。
As is clear from Table 3, in the composition region where the degree of stabilization is 90% or more due to the addition of yttrium oxide, the deflection is within 1.5 mm even when the number of firings is 10 times. It was confirmed that it did not affect the electrical characteristics of the product.

【0025】[0025]

【発明の効果】以上説明したように、本発明の酸化イッ
トリウムが添加されたアルミナ−ジルコニア系炉材は、
被焼成物と反応しにくく、耐熱衝撃性が高く、かつ高温
クリープの少ない炉材となる。したがって、炉材の高温
におけるクリープ特性を改善することができ、焼成炉に
おける雰囲気制御等の焼成条件の制御を精確かつ容易に
行なえる。また、炉材の寿命も長くなり、酸化イットリ
ウムを添加していないアルミナ−ジルコニア系炉材より
約50%程度寿命が長くなり、炉材コストを低減するこ
とができる。さらに、軽量炉材となるため、熱容量が小
さくなり、焼成時の消費エネルギーを小さくでき、省エ
ネルギーにも貢献できる。
As described above, the alumina-zirconia-based furnace material to which yttrium oxide is added according to the present invention is:
A furnace material that hardly reacts with the material to be fired, has high thermal shock resistance, and has little high-temperature creep. Therefore, the creep characteristics of the furnace material at a high temperature can be improved, and firing conditions such as atmosphere control in the firing furnace can be accurately and easily controlled. In addition, the life of the furnace material is prolonged, and the life of the alumina-zirconia-based furnace material to which yttrium oxide is not added is increased by about 50%, so that the cost of the furnace material can be reduced. Furthermore, since it is a lightweight furnace material, the heat capacity is reduced, the energy consumption during firing can be reduced, and it is possible to contribute to energy saving.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例による焼成用炉材の外観斜視
図である。
FIG. 1 is an external perspective view of a firing furnace material according to an embodiment of the present invention.

【図2】高温クリープ試験に用いた炉材の斜視図であ
る。
FIG. 2 is a perspective view of a furnace material used in a high-temperature creep test.

【符号の説明】[Explanation of symbols]

1 焼成用炉材 2 気孔 1 Furnace material 2 Pores

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−137074(JP,A) 特開 昭63−139044(JP,A) 特開 平2−102168(JP,A) 特開 昭62−46960(JP,A) (58)調査した分野(Int.Cl.7,DB名) C04B 38/06 C04B 35/101 C04B 35/64 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-137707 (JP, A) JP-A-63-139044 (JP, A) JP-A-2-102168 (JP, A) JP-A 62-108 46960 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C04B 38/06 C04B 35/101 C04B 35/64

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高純度アルミナ80〜90wt%に対し
て単斜晶ジルコニア20〜10wt%の割合で配合し、
高純度アルミナ及び単斜晶ジルコニア100wt%に対
して0.3〜1.0wt%の割合で酸化イットリウムを添
加し、さらに粒子状ないし繊維状をした樹脂を混合して
炉材原料を調合し、この炉材原料を焼成した多孔質焼結
体からなるセラミック焼成用炉材。
1. A monoclinic zirconia content of 20 to 10 wt% with respect to 80 to 90 wt% of high purity alumina,
Yttrium oxide is added at a ratio of 0.3 to 1.0 wt% with respect to 100 wt% of high-purity alumina and monoclinic zirconia, and further, a particulate or fibrous resin is mixed to prepare a furnace material. Furnace material for ceramic firing made of a porous sintered body obtained by firing this furnace material.
JP03245091A 1991-08-29 1991-08-29 Furnace material for ceramic firing Expired - Fee Related JP3127514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03245091A JP3127514B2 (en) 1991-08-29 1991-08-29 Furnace material for ceramic firing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03245091A JP3127514B2 (en) 1991-08-29 1991-08-29 Furnace material for ceramic firing

Publications (2)

Publication Number Publication Date
JPH0558757A JPH0558757A (en) 1993-03-09
JP3127514B2 true JP3127514B2 (en) 2001-01-29

Family

ID=17128475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03245091A Expired - Fee Related JP3127514B2 (en) 1991-08-29 1991-08-29 Furnace material for ceramic firing

Country Status (1)

Country Link
JP (1) JP3127514B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0619514U (en) * 1992-04-15 1994-03-15 アキレス株式会社 Waterproof shoes

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017024916A (en) * 2015-07-15 2017-02-02 三井金属鉱業株式会社 Jig for electronic component firing
CN112225543A (en) * 2020-10-12 2021-01-15 郑州方铭高温陶瓷新材料有限公司 Fusion-cast formed cylindrical ceramic tile applied to glass kiln regenerator and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0619514U (en) * 1992-04-15 1994-03-15 アキレス株式会社 Waterproof shoes

Also Published As

Publication number Publication date
JPH0558757A (en) 1993-03-09

Similar Documents

Publication Publication Date Title
JPH07277814A (en) Alumina-based ceramic sintered compact
JPS63206367A (en) Lightweight refractories and manufacture
JPH0558722A (en) Aluminum titanate ceramics and its production
JPH0572341B2 (en)
JP3127514B2 (en) Furnace material for ceramic firing
JP2003137671A (en) Mullite-based porous body and method of producing the same
JPH0157075B2 (en)
JP3644015B2 (en) Electronic component firing jig
JP2818945B2 (en) Fibrous molded body for jig for ceramics production
JPS6374978A (en) Ceramic composite body
JPH0558717A (en) Furnace member for sintering ceramic
JP3108362B2 (en) High-strength inorganic fiber molded body
JPH0674178B2 (en) Porous refractory
JP2611405B2 (en) Method for producing zirconia refractories
JP2508511B2 (en) Alumina composite
JPH0558748A (en) Alumina-zirconia-based calcining tool material
JP3663445B2 (en) Electronic component firing jig
JP2671539B2 (en) Method for producing silicon nitride sintered body
JP2687634B2 (en) Method for producing silicon nitride sintered body
JPH0832586B2 (en) Heat shock resistant firing setter
JP3155054B2 (en) Zirconia refractory setter
JP2742622B2 (en) Silicon nitride sintered body and method for producing the same
JP2876521B2 (en) Manufacturing method of aluminum nitride sintered body
JPH03137074A (en) Thermal shock-resistant kiln material
JP2687633B2 (en) Method for producing silicon nitride sintered body

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071110

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081110

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees